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Abstract. This article assesses the robustness of shape parameter for Bayesian acceptance
sampling plans assuming Erlang and Weibull distributions. In particular, the prior
information on the parameter is combined assuming different loss functions to derive
different sampling plans. The cost model for the group sampling plans is studied by
satisfying the constraints of producer’s and consumer’s risks for the Weibull sampling. The
single sampling plan is compared with the group sampling plan and the results suggest
that the group sampling plan performs better than the single sampling in terms of cost. It
is noticed that the shape parameters of Erlang and Weibull distributions are not robust as

KEYWORDS

Bayesian acceptance
sampling plan;
Consumer risk;
Producer risk;
Erlang distribution;
Weibull distribution.

claimed in the literature.

1. Introduction

In any manufacturing systems, planning of inspection
is crucial part as it decides whether a product is
conforming or nonconforming. A product is said to
be nonconforming if it consists of one or more defects,
otherwise the product is declared as a the conforming
one. Therefore, acceptance sampling plan is needed
for determining the range in which the goods have to
be inspected before delivering to the customers. The
acceptance sampling is an important field of the Sta-
tistical Quality Control (SQC) [1]. It is the sampling
ingpection procedure in which consumer decide either
to reject or accept the lot of goods, which are shipped
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by producer, on the basis of random sample [2]. Dodge
and Romig [3] gave a comprehensive account to develop
acceptance sampling plans.

Bayesian acceptance sampling technique is related
to the use of prior knowledge of process history to de-
scribe the random variations, which are involved in the
acceptance sampling. Basically, the prior distribution
is the expected distribution of the lot quality on which
a sampling plan is operated. The combination of both,
i.e., the prior information which is represented by the
prior distribution and empirical information which is
based on the sample, may lead to a better decision for
the lots. Thus, the main objective of the study is to
construct a Bayesian acceptance sampling plan for lot
cousisting of M units, where the number of defects in a
unit can be defined by Erlang or Weibull distribution to
assess the effect of the shape parameter. Furthermore,
we compare the effect of different priors, loss functions,
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and single versus group acceptance sampling plans. In
the acceptance sampling, from the lot of size M a
sample of size n is randomly selected. If the number
of defects in the sample is less than the acceptance
number ¢, the lot is accepted otherwise it is rejected.
The Expected Total Cost (ETC) for the acceptance
sampling depends whether a lot is rejected or accepted.
In case a lot is accepted, the remaining of the lot is not
examined. For any defect in a lot, we assume the step-
loss and the quadratic loss functions for the calculation
of ETC. We further assume that the cost components
are independent of each other [4].

In the literature, Tang et al. [5] developed
Bayesian multi-attribute acceptance sampling schemes
for the determination of optimal sample size. An
efficient repetitive algorithm was developed to find the
best near multiattribute sampling plans possessing a
large number of attributes. In Bayesian inspection
models, the basic assumption is the prior information
about the number of defects. Usually this prior
information can be illustrated as a probability dis-
tribution. Chun and Sumichrast [6] proposed three
conditions for the determination of prior distribution
for a defective product. Reviewing several probability
distribution, they noticed that the negative binomial
distribution satisfies the desired conditions only. By
using the negative binomial as a prior distribution, they
showed that the effect of undetected errors. Kwon [7]
considered the Bayesian life test sampling plans for the
products assuming Weibull distribution with known
shape parameter.

Fallahnezhad and Aslam [8] proposed a accep-
tance sampling model on the basis of a cost func-
tion. To update the probability distribution function
of the proportion of defective, Bayesian inference is
used. Furthermore, backward induction along with the
Bayesian inference is used to estimate the ETC for the
various decisions. The sensitivity analysis is carried
out for the parameters of the proposed methodology
to analyse the optimal solution for various decisions.
Fallahnezhad and Babadi [9] developed acceptance
sampling plan in the presence of inspection error using
the decision tree approach.

Following Moskowitz and Tang [4], Fallahnezhad
and Saredorahi [10] proposed a Bayesian acceptance
sampling plan on the basis of smallest proportion of
a lot which should be inspected in the presence of
inspection error. Gomnzalez and Palomo [11] derived
Bayesian acceptance sampling plans for the number
of defect to minimize the ETC of quality. For the
calculation of acceptance sampling cost, two loss func-
tions are considered for the Poisson distribution. In
manufacturing industries, the decision either to reject
or accept a product is generally made on the basis
of the measurement information. As this information
is seldom complete, in general, it is not possible to

be completely sure about the measured values. Lira
[12] studied the probabilities of incorrectly rejecting
or accepting the product using Bayesian statistics.
Adibfar et al. [13] proposed a sampling scheme as-
suming Bayesian methods. The Bayesian risks for both
consumer and producer provide a better understanding
for decision making than the traditional ones. The
results of sensitivity analysis show that lot size, the cost
of inspection, and the cost of one defective items are the
key factors in the sampling design. The lot tolerance
proportion defective, the acceptable quality level and
the Bayesian risks also influence the sampling policy.
On frequentist side, we refer to [2,14-18] for sampling
plans assuming different truncated distribution. For
group acceptance sampling plans, we refer to [19-34],
and references cited therein.

Hsu [35] proposed an economic model for deter-
mining optimal sampling plan which minimizes the
producer’s total cost by satisfying both the producer’s
and consumer’s risks. For variable acceptance sam-
pling plan, Schmidt et al. [36,37] presented cost
models. Tagaras [38] developed an economic model
for acceptance sampling plan for variables assuming
normal distribution. Taguchi loss function is used
when the quality characteristics deviate from the target
value. Aslam et al. [39] proposed economic reliability
test plans by taking into account the lifespan of the
submitted products assuming the Pareto distribution
of second kind. For different acceptance number (c),
sample size (n), producer’s risk and the minimum
test termination time are obtained. Fallahnezhad and
Fakhrzad [40] proposed a new sampling plans for the
defective proportion of the batch. To measure the
deviations between the proportion of defective and the
acceptance quality level, a continuous loss function is
used. A sensitivity analysis is performed for the desired
values of sample size, which allows practitioners to plan
optimum inspection plan.

The remainder of the study is organized as follows:
Section 2 discusses the ETC for the Erlang distribution.
The Weibull acceptance sampling plan is discussed
in Section 3. Some concluding remarks are given in
Section 4.

2. ETC assuming erlang sampling

Let X denotes the number of defects per unit of the
product, where X follows the Erlang distribution with
parameter 6. For the Bayesian analysis, the prior for
parameter 6 is required and here, we consider two
different prior distributions. The first one is the gamma
prior f(8) = F(la)baH“’le’be, where a and b are the
shape and rate parameters, respectively. The second
prior is the noninformative prior f(#) = K6~ !, where
K > 0 is a positive constant. Let I(x) denotes the
loss due to the presence of defects per-unit X in the




B. Bibi et al./Scientia Iranica (2025) 32(4): 4914 3

accepted lot. This study consider the quadratic and
step loss functions [11]. The quadratic loss function
is defined as I(x) = ha?, where h > 0 is a positive
constant while the step-loss function is defined as:

i <z <
R )
S, ifz>p

where S > 0 and p > 0 are positive constants. For a
given value of #, the per-unit conditional expected loss
is given by:

Z l(z;)P(x;|0), (2)
z; =0

where [(x;) denotes the loss incurred having « defects.
For the parameter 6, P(z;|0) denotes the probability of
defects. For the quadratic loss function, the conditional
expected loss is:

L(Q) = h(ne_nl)’ xzz:oxn+1e_19. (3)

Similarly, for the step loss function, we have:

_n_llz nl—:c9. (4)

x;=0

L#) =S

In fact, the ETC is composed of three independent
components [4,11,36]. The important one is the cost
of acceptance, which is incurred due to defective items
in the accepted lots. Let X be the number of defects
in a sample of n units, having Erlang distribution with
parameter #. The probability of acceptance of a lot for
a given value of 6 is:

P(acceptance|d) = P(X < ¢|0)

- 1 n—1 n—1 —r@
= Z e 1)!9 rtTreT . (5)
=0

The marginal probability of acceptance can be found
as:

P(X <¢)

P(acceptance) =

—Z/

and hence, the ECA is:

T Le™? f(0)d(6), (6)

ECA = M/ L(6)P(acceptance|®) f()d(0). (7)
0

The ECA for both cases, i.e., quadratic and step loss
functions, can be obtained by substituting Eq.(6) in
Eq. (7). Four different quantities of interest can be
considered, which depends on the prior distribution of
# and the loss functions. To this end, we calculate
the Expected Cost of Rejection (ECR), that is the cost
associated with the disposition of rejected lots obtained
by:

ECR =M x R x P(rejection), (8)

where R represents the per-unit cost of rejection. The
probability of rejection of a lot is:

P(rejection) = 1 — P(acceptance)

- Z‘; /0 = ﬁe“ " £(0)d(0). (9)

Next, to compute the ECI, let J represents the per-
unit inspection cost. Then, ECI = nJ. Finally, the
ETC becomes ETC = ECA + ECR + ECI, thus by
minimizing the ETC, the optimum sampling plan can
be obtained.

2.1. Optimum sampling plans

To determine the sampling plan (n,¢), we minimize
the ETC using different loss functions and prior dis-
tributions of #. To this end, we present the sampling
plans for the quadratic and step loss functions assuming
gamma and noninformative priors for 6.

2.1.1. ETC quadratic loss function and gamma prior
The ECA for the quadratic loss function by using the
gamma prior is discussed in this section. To this end,
the ECA is:

ba
T{a)(n— 1)i(n — 1)

n+1 n—1 (2n+ a’) 1
ZZI troropre (10

z;=0r=0

ECA=Mh

Similarly, the ECR is obtained as:

b no1 L'(a+mn)
a)(n—1)! (b+r)atn|”

(11)

ECR= MR 1_Zr(
=0

The ECI = nJ, which is the same for different
sampling plans discussed in this study. Consequently,
the ETC takes the form:

be oo oo
ETC = Mh ntlpn=l1
ERR O CESTICESIP IP P
I'(2n+a)
(r+atbpnte TME
o 1 T(a+n)
1 ZF n—l' (b4 ot +nd.  (12)

For the determination of the optimum values (n,¢) the
ETC is minimized. As the derivative of the function
is very complicated, the optimum values are computed
numerically.



4 B. Bibi et al./Scientia Iranica (2025) 32(4): 4914

2.1.2. ETC using quadratic loss function and
noninformaltive prior

The ECA for the quadratic loss function by using

noninformative prior is obtained as follows:

hkM n—1 n+1 QTL)
ECA_—(n_l n—l’ZZ CESE (13)

z;=0r=1

Similarly, the ECR is obtained as:

ECR=MR

1—kii]. (14)

Therefore, the final form of the ETC is given as:

ETC_(n—l I(n —1)! ern et

r;=0r=1

T'(2n)

— - + MR
(z + )2 +

+nd, (15)

iy

which needs to be solved numerically for optimizing n
and c.

2.1.8. ETC using step loss function and gamma prior
The ECA for the step loss function by using the gamma
prior is:

b* n—1

r=

P(a+n) I'(2n+a) i z"!
(b4 r)etr (n—=1! 2= (b+7r+z)>te

] ()
and ECR is obtained as:

ECR=MR [1

Therefore, the final form of the ETC is:

_ b . n—1
ETC _Msi(n i) Z r

=0

T'(a+mn) L'(2n+ a) z" !
(b+r)etr — D(n) 2:0 (b+r+ x)2n+a]

n—1 FCL+TL)
+ MR |1 - !Z b+r‘1+"

+nJ. (18)

The optimal parameters are calculated numerically.

2.1.4. ETC using step loss function and
noninformative prior

The ECA for the step loss function by using the

noninformative prior is obtained as:

Cc

MSk -
ECA =03y Z !

[(n—l)! _I(2n) & ! (19)

e (n—1! = (r+z)*

i =

whereas the ECR is obtained as:
1—-% ZC: 1 (20)
r=1 r .

Therefore, the final form of the ETC is:

ECR=MR

c

ETC — MSk,Z el

(n —1)!
[ rm n—l'z (r+x)2n

+ MR +nl. (21)

r=1

For the determination of the optimum values (n,c) the
ETC is again minimized numerically and the results
are discussed in the next section.

2.2. Prior robustness

Suppose that the incoming lot of size M = 10000 to be
inspected. To test a unit, it cost J = 4.5, and h = 5.
Furthermore, the cost associated with the rejected lot
per unit is R = 2.5. In the case of step loss function,
the values of parameters are assumed S = 50 and
p = 1. Furthermore, it is supposed that the number of
defects per unit follows the gamma distribution with
parameters ¢ = 1.25 and b = 0.25 which are used by
Gonzalez and Palomo [11].

Table 1 lists the results for the quadratic and
step loss functions. The ETC for the aforementioned
specifications is 473252, and the optimum rule draws
21 units and the lot is accepted when number of defects
is less than 6 otherwise rejected. For the quadratic loss
function, the ETC associated with the best decision
without inspection is:

min (R, E [L(F)]),

which becomes:

min hbT(a+n) —=  a"t!
(R’ ['(a)T(n) z,Z::O (b+ a:)“"‘“) )
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Table 1. Bayesian sampling plans assuming different loss functions and priors.

Prior n c ETC Percentage Percentage
distribution increment saving
Quadratic loss function
I'(a,b) 21 6 473252 18 34.9
Ko™t 28 9 2.58052 x 10° —
Step loss function
I'(a,b) 25 7 266504 40 34.9
Ko~! 32 10 660656 -
Similarly, it can be shown that for the step loss 14.0 0 ETCq
function, the ETC associated with the best decision + ETCs
without inspection is: 13.5 4
min (R, E[L(6)).
13.0
which becomes:
hbeT'(a + n) p L1 = 12.5 4
min | R, Z . =
T(@T(n) 2= (b+a)
" 12.0
When the step-loss function is used the ETC is 266504,
and the optimum rule draws 25 units and the lot 115 1
is accepted when number of defects are less than 7
otherwise the lot is rejected. When the quadratic loss 110 1
function is used and the prior distribution is gamma, ' ' ' ' ' ' '
10 20 30 40 50 60 70

the sampling plan obtain from noninformative will
result 18% increase in ETC. Similarly, when the step
loss function is used with gamma prior, the sampling
plan will result 40% increase in ETC.

Table 2 presents the percentage increment in ETC
when the prior standard deviation remains unchanged
and prior mean differs from the true mean. For
example, when the quadratic loss function is used and
the prior distribution is gamma, the sampling plan
computed by the gamma prior with 20% greater mean
than the true one will result 20.88% increase in the
ETC. Similarly, the percentage increase in the ETC
when the prior standard deviation changes and prior
mean remains unchanged is presented in Table 2. From
the table it is noticed that the percentages of ETC are
smaller with the misspecification of mean as compared
to the standard deviation, which shows that sampling
plans are robust with respect to the prior mean than
the standard deviation.

Sample size

Figure 1. Variations of the ETC verses the sample size.

In Figure 1, the ETC computed by using the
gamma prior for quadratic and step loss functions is
plotted against sample size. It is evident from the
graph that as the sample size increases, the ETC
gradually decrease.

3. Economic design of the group acceptance
sampling assuming Weibull distribution

The probability of accepting a poor quality lot is called
the consumer risk and the probability of rejecting a
good quality lot is called the producer risk. It is of the
great interest of producers to use a sampling plan that
make sure protection from the risk of rejecting a good
quality lot and thus a producer always wants to use

Table 2. Misspecification of gamma prior mean and standard deviation for the quadratic and step loss functions.

Misspecification —30% —20% —10% 10% 20% 30%
Quadratic loss function
Mean 12.76 14.83 16.72 19.61 2047  20.88
SD 24.20 21.97 20.05 16.85 15.54 14.41
Step loss function
Mean 26.46 31 35.7 44.82 49 52.88
SD 50.30 47.53 43.58  37.29 34.43 31.86
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a sampling plan that allows the inspection of the lot
at the optimal cost, as inspection of the product need
for a laboratory equipped with testers, time, labors,
etc. A single acceptance sampling plan established
upon on the inspection of product by putting a single
item in a single tester. In this situation, the number
of items selected in the sample is equal to the number
of testers. When more than one item can be put in
a single tester, the group sampling plans are used to
reduce the inspection cost.

If the quality level of the product is higher than
the specified level, the product is said to be of a good
quality. Generally, these levels are determined by using
the percentile ratios ¢,/t,,, where ¢, represents the gth
percentile life of the product and t,, represents the
specified percentile life. Therefore, the most important
goal of the acceptance sampling is to accept a lot
of goods when t, > t,, otherwise reject the lot.
Aslam et al. [24] showed that it performs better than
the existing group sampling plan in terms of average
sample numbers. The algorithm of the group sampling
plan is:

e Take a random sample of size n from the lot of size
M and assign r items to g groups, i.e., n = rg, for
the time duration tg;

e The lot is accepted if the total number of failures
from the ¢ groups is smaller than or equal to ¢,
otherwise the lot is rejected before the experiment
time tg.

Suppose that the observations lifespan follows
a Weibull distribution with the following probability
density function.

ALYt/ >0

o ={ #7 (20 ()

where o denotes the scale parameter and A denotes the
shape parameter of the Weibull distribution. Contrary
to previous studies, this study assumes known scale
parameter and unknown shape parameter. The Cu-
mulative Distribution Function (CDF) of the Weibull
distribution is given as follows:

F(t)=1—exp (—(t/o)*)

and the gth percentile life of the product is given by:

t, =8 [m (;q)] ' (24)

Under the group sampling plan, the probability of the
acceptance of a lot [2] is given as follows:

L(p) = Z (?) pi(L—p), (25)

=0

t>0, (23)

where p denotes the probability of failure before the

termination time ¢q, which can be calculated from the
CDF of the Weibull distribution. The experimentation
time is a multiple of the percentile life t, = m¢,,, where
m is a fixed constant which is called the termination
time. The probability of failure p can be written as:

p=1—exp |—m(t,/ty,) In (iq)] . (26)
3.1. Minimization of total cost model
Let the per-unit inspection cost is denoted by C,
the internal failure cost (i.e., reparation, rework, and
restoration of the failed products) by Cy, the outgoing
defective cost by Cp, and the setup cost per group
by C4. Then, the total cost for the group acceptance
sampling plan is considered as follows:

TC = C{(ATI) + Cp(Dy) + Co(Dy) + g(C,),  (27)

where ATI denotes the Average Total Inspection, Dy
is the number of defective products detected and
D,, represents the number of defective products not
detected. Thus:

ATI =rg+ (1 - L(p))(M —rg) (28)
Dq=rgp+(1—L(p))(M —rg)p (29)
D, = L(p)(M —rg)p, (30)

where r denotes the group size, g is the number of
groups and M denotes the lot size. The Average
Outgoing Quality (AOQ) is a measure of rectifying
inspected items, i.e., the quality of the lot that result
from the application of rectifying inspection. The AOQ
can be obtained over a long sequence of lots by a
process defective fraction p. It can be obtained as:

10q = PHO —rg)

(31)
3.2. Bayestan group design

As p is unknown and to obtain the plan parameters,
Hsu [35] prefixed the values of p. Contrary to Hsu
[35], we use the Bayesian approach to estimate the
unknown values of p which is function of A. To
this end, the prior distribution of A is assumed to
follow a gamma distribution with the shape parameter
~v > 0 and the scale parameter § > 0 using the PDF

F) = F‘S(j{))ﬂfle’m. Hence, the ATI and AOQ can

be written as:

o
()

N lem AN (32)

ATT = / T rg+ (1= L) (M = rg)
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Dd = / " rgp+ (1 — L(p))(M — rg)p] %
AT e TN, (33)
i 87 -1 —xs
Dn = / (LM = rg] F 207 e (34)
AOQ — /0'00 L(p>(]\]4w_ Tg)p 1—‘6(:;) A”{—le—)\édA. (35)

Due to complexity of integration, the results can be
calculated by numerical integration. For the hyperpa-
rameters, we assume v = 1.25, 6 = 0.25 and obtain the
following equations:

ATI =rg+ (M — T'g)/ Z T‘ig>
0

i—=c+1

(1 — exp [—mk(tq/tqo)kln (ﬁ)b
x <6Xp [—mA(tq/th)Aln (L])Drg_i

67 —1_—)6
— AT eT N, 36
ey (36

Dd =rg /000 (1 — exp {_mA(tQ/th)Aln (ﬁ)])

5"/
INGD)

+(M—7“g)/0oo Xn: rf)

i=c+1

(1 —exp [—mA(tq/th)Aln (1;1)})%1
x (exp {—mk(tq/t%)nn (liq)Dg

o7 T exp(—
F(’Y)A p(—=A8)dA, (37)

A exp(—A8)dA

Sy

(1 — exp {—mh(tq/tqo)nn (1iq>:|>i+1
x (exp [—mk(tq/t%)nn (liq)Dg_

6’7

) AT exp(—=A6)dA, (38)

A0Q :(Mj\zrg) /O‘x’ 3 7’;})
=0

(1 — exp {—Wp(tq/t%)A n <1iq>:|>i+1
X (EXP [_mA(tq/th))\ln (1iq>})rg_i

6’7
I'(y)

AT exp(—A6)dA. (39)

Since acceptance sampling plans are associated
with producer and consumer risks denoted by a, and
B respectively, (1-a) denotes the producer and (1-3)
consumer confidence levels, respectively. The producer
wishes the acceptance chance of the items batch to
be greater than the confidence level (1-a), and the
consumer desires that it should be less than the 3 risk.
Let p; and py denote the probability of failure of a
product before the termination time ¢y at o and 3,
respectively. Then, we have to minimize the following
cost model [26]:

Minimize 7TC =Ci(ATT) + C;(Dy)

subject to the constraints:

L(p2) < B, (41)
Lip) 21—« (42)

For the calculation of the optimal parameters and to
minimize the total cost, we use the following values:
C;=10,C, =3, C; =20, and Cy = 1.0 [26,35]. In
addition, we considered » = 5 and 10 as group sizes,
a = 0.5, 1.0 as the experiment time ratio, ¢ = 0.5, M =
1000 as the lot size, v = 0.05, and t,/t;0 = 2,4,6,8 as
the percentile ratio. The results are listed in Tables 3-6.

For r=5, it is observed that the optimal TC in-
creases by increasing the percentile ratio or experiment
time ratio m. Similarly, for » = 10, we observe a similar
trend as noticed for r = 5.

From Figures 2 and 3, it is clear that as the
percentile ratio (t,/t,,) increases, the total cost also
increases. Thus, increase in the quality may also
increase the total cost of inspection when the shape
parameter is unknown. Similarly, the average total
inspection remains constant for ratio from 2 to 4
and as the percentile ratio (¢,/t,,) increased, the ATI
cost decreased. Hence, the shape parameter has a
significant impact on the Bayesian design and cannot
be treated fixed as considered by Aslam et al. [26].
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B tg/teq, ATI D, D, AO0Q g,c TC
0.25 2 1000 500 0.00143765 1.43765 x 1076 8.4 2024
4 1000 926.56 0.000579062 5.79062 x 1077 4,1  2865.12
6 999.99  954.44 0.0221231 0.0000221 2,0 2914.89
8 999.99  964.95 0.0166504 0.0000166504 2,0 2935.91
0.10 2 1000 530 1.53962 x 1077 1.53962 x 107'° 125 2096
4 999.97  925.05 0.000017051 1.7054 x 107% 5,1 2865.07
6 1000 954.45  9.67503 x 107%  9.67503 x 107 5,1  2923.89
8 1000 964.96 0.00033018 3.3018 x 1077 3,0 293891
0.05 2 1000 500 3.34929 x 107 3.34929 x 10™'* 15,6 2045
4 1000 925.06  5.07223 x 1077 5.07223 x 107*° 6,1  2868.13
6 1000  954.446  2.87355 x 1077 2.87355 x 107'° 6,1  2926.89
8 1000 964.96  2.15432 x 1077 215432 x 107'° 6,1  2947.91
0.01 2 1000 500 1.64815 x 1071 1.64815 x 107 21,8 2063
4 1000 925.06  1.77339 x 107'' 177339 x 107'* 10,2 2880.13
6 1000 954.45  2.58459 x 1071 258459 x 107'* 81  2932.89
8 1000 964.96  1.93645 x 107! 1.93645 x 107! 8,1  2953.91

Table 4. The optimal parameters of the Bayesian plan for the Weibull distribution for » =5 and m = 0.1.

B ty/tqe ATI Dy D, AO0Q g,c TC
0.25 2 - - - - - -
4 999.973  964.943 0.113803  0.000113803 32 2938.97
6 999.918  973.886  0.223859  0.000223859 2,1 2953.91
8 999.932  978.063  0.186395  0.000186395 2,1 2962.24
0.10 2 - - - - - -
4 999.973  964.943 0.113803  0.000113803 3,2 2938.97
6 999.918  976.886  0.223859  0.000223859 2,1 2953.91
8 999.932  978.063 0.186395  0.000186395 2,1 2962.24
0.05 2 - - - - - -
4 999.973  964.943 0.113803  0.000113803 3,2 2938.97
6 999.918  973.886  0.223859  0.000223859 2,1 2953.91
8 999.932  978.063 0.186395  0.000186395 2,1 2962.244
0.01 2 - - - - - -
4 999.973  964.943 0.113803  0.000113803 3,2 2938.97
6 999.918  973.886  0.223859  0.000223859 2,1 2953.91
8 999.998 978.1  0.00518982 5.18982x 10°° 3,1  2965.20




Table 5. The optimal parameters of the Bayesian plan for the Weibull distribution for » = 10 and m = 0.5.
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J¢; tq/tq, ATI Dy D, AO0Q g,c TC
025 2 1000 500 1.53962 x 1077 1.53962 x 10°7 6,5 2018
4 1000 925.063  0.000579062 5.79062 x 1077 2,1 2856.13
6 999.99  954.44  0.0219018 0.0000219018 1,0 2911.89
8 999.99  964.953  0.0166504 0.0000166504 1,0 293291
010 2 1000 500 1.53962 x 1077 1.53962 x 107'% 6,5 2018
4 1000 925.063 5.07223 x 1077 5.07223 x 107 3,1  2859.13
6 1000 954.446  2.87355 x 1077 2.87355 x 1070 3,1 2917.89
8 1000 964.953 2.15432 x 1077 2.15432x 107 31  2938.91
0.05 2 1000 500 3.27347 x 10710 3.27347 x 1071 8,7 2024
4 1000 925.063 5.07223 x 1077 5.07223 x 107*° 3,1 2859
6 1000 954.446  2.87355 x 1077 2.87355 x 107! 3,1  2917.89
8 1000 964.953  2.15432 x 1077 2.15432x 107 31  2938.91
0.01 2 1000 500 7.51059 x 107'7  7.51059 x 107%° 11,8 2033
4 1000 925.063 1.77339 x 107! 1.77339 x 107'* 52  2865.13
6 1000 954.446  2.58459 x 107'%  2.58459 x 107'* 4,1  2920.89
8 1000 964.957 1.93645 x 107'°  1.93645 x 10™'% 4,1  2941.91

Table 6.

The optimal parameters of the Bayesian plan for the Weibull distribution for » = 10 and m = 0.1.

3 tq/tq, ATI Dy D, AO0Q g,c TC
0.25 2 - - - - - -
4 1000  964.957 1.83807 x 107'°  1.83807 x 107** 6,5 29 47.94
6 1000 973.932 4.03624 x 1075 4.03624 x 107° 3,2 2956.86
8 1000 978.101  0.000149585 1.49585 x 1077 2,1 2962.20
0.10 2 - - - - - -
4 1000  964.957 1.83807 x 1071 1.83807 x 107!* 6,5  2947.91
6 1000 973.932 4.03624 x 107  4.03624 x 107° 3,2 2956.86
8 1000  978.101  0.000149585 1.49585 x 1077 2,1 2962.20
0.05 2 - - - - - -
4 1000 964.957 1.83807 x 107  1.83807 x 10™'* 6,5  2947.91
6 1000 973.932 4.03624 x 107 4.03624 x 107° 3,2 2956.86
8 1000  978.101  0.000149585 1.49585 x 1077 2,1 2962.20
0.01 2 - - - - - -
4 1000  964.957  1.83807 x 1071 1.83807 x 107*% 6,5  2947.91
6 1000 973.932 4.03624 x 107 4.03624 x 10°° 3,2 2956.86
8 1000 978.101  0.000149585 1.49585 x 1077 2,1 2962.20
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Figure 2. Total cost assuming unknown shape parameter
with m = 0.5 and » = 5 for different percentile ratios.
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Figure 3. Average total inspection assuming unknown
shape parameter with m = 0.5 and » = 5 for different
percentile ratios.

3.3. Comparison of group sampling plan and
single sampling plan

Here, we present a comparison of single acceptance
sampling plan to the group acceptance sampling plan.
The group sampling plan reduces to single sampling
plan when r = 1, i.e., the single sampling plan is the
special case of group sampling plan, however the setup
cost for the group sampling plan is larger than the
single sampling plan. For example, Aslam et al. [26]
pointed out that the setup cost for the group sampling
plan is C, = 3 while Cy = 1.5 for the single sampling
plan.

Table 7 lists the total cost for both single sampling
plan and group sampling plan. From the table, one can
conclude that the group sampling plan will perform
better than the single sampling plan in terms of total
cost, i.e., the total cost associated with group sampling
plan is smaller than the single sampling plan assuming
unknown shape parameter of the Weibull distribution.

Table 7. Comparison of group and single sampling plans
for the Weibull distribution.

Group plan when

JC; tq/tq, Single plan
r =10
0.25 2 7956.25 2018
4 2862.9972 2856.13
0.10 2 10153.34 2018
4 2861.79 2859.13
6 2918.77 2917.89
8 2939.57 2938.91
0.05 2 15020.27 2018
4 2861.43 2859
6 2919.21 2917.89
8 2940.26 2938.91
0.01 2 35085.74 2033
4 2868.13 2865.13
6 2921.25 2920.89
8 2942.19 2941.91

4. Conclusion

In this article, Bayesian acceptance sampling plans
are derived under Erlang and Weibull distributions to
assess the robustness of the shape parameters which
is mainly ignored in the previous studies. For the
Erlang distribution, we used two loss functions while
Bayesian acceptance group and single sampling plans
are discussed for the Weibull distribution. The ro-
bustness analysis of the Erlang sampling plan with
respect to the prior distribution and misspecification
of the variance and mean of the process average is
analyzed. For the group acceptance sampling plan a
cost model is used. We compared a single sampling
plan with the group sampling plan and showed that
the group sampling plan will perform better than
the single sampling plan in terms of the total cost.
The Weibull distribution is assumed because of its
importance in quality control. In future, the techniques
presented here can also be extended to design two-stage
group sampling plan. Furthermore, other distributions,
priors, and loss functions can also be considered. A
recent literature on neutrosophic statistics can be used
to extend the present work [41-43].
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