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Abstract

In this study, three classes of generalized and more efficient combined regression-cum-ratio
estimators are presented to estimate the population mean of the study variable in stratified two-
phase sampling considering non-response and measurement error are present jointly. The
expressions for the bias and mean square error of the three proposed generalized combined
regression-cum-ratio estimators have been obtained. Optimal conditions which make the proposed
generalized regression-cum-ratio estimators more efficient than modified combined regression
estimator are discussed. The performance of the proposed generalized combined regression-cum-
ratio estimators has been compared theoretically as well as empirically with various combined type
estimators in stratified two-phase sampling including usual combined ratio estimator, usual
combined exponential ratio estimator, usual combined regression estimator, and modified
combined regression estimator. An empirical study shows that the proposed generalized combined
regression-cum-ratio estimators perform more efficiently than all combined type ratio, exponential
ratio, and regression estimators discussed in the study.
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1. Introduction

In survey sampling, usually, it is presumed that all the observations of the variables under study
are adequately measured and all units in the sample give a response. But in reality, such
assumption infringes, because not all units respond and also measurement errors may arise due to
the difference between the recorded and true values. Hence with these reasons the statistics are not
error-free. In practice, it is therefore, researchers may need to deal with the problem of non-
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response and measurement errors if present jointly. Generally, non-response and measurement
error are debated separately using supportive information.

Sanaullah et al., [1] proposed the “generalized exponential-type ratio-cum-ratio and product-cum-
product estimators in the presence of non-response under stratified two-phase sampling. Sanaullah
et al., [2] taking inspiration from Samiuddin and Hanif [3] and Sanaullah et al., [4], proposed the
generalized exponential-type estimators in the presence of non-response under stratified random
sampling by using two auxiliary variables. Saleem et al., [5] taking inspiration from Koyuncu and
Kadilar [6], proposed the generalized estimators in stratified sampling using two auxiliary
variables in the presence of non-response. Saleem et al., [7] suggested the general class of
estimators in the presence of non-response using two auxiliary variables. Shabbir et al., [8]
extended Grover and Kaur [9] difference type estimator and suggested a generalized class of
estimators for finite population mean in two-phase sampling using two auxiliary variables in the
presence of non-response. Khare and Jha [10] advised six classes of different ratio-type estimator
of mean in stratified sampling assuming the existence of the non-response. Some more studies are
available for estimation of mean considering the presence of the non-response. One can see for
example, Singh and Usman [11], Unal and Kadilar [12], Sanaullah and Hanif [13], Ehsan and
Sanaullah [14], Sanaullah et al., [15], Wu et al., [16], and Varshney and Mradula [17] among many
other.

Cochran [18] is supposed to be the first who suggested an unbiased estimator assuming the
occurrence of measurement error onyl. Many researchers following Cochran [18] have studied the
problem of mean estimation considering the measurement errors only. Singh and Karpe [19]
provided different separate-type and combined-type ratio and product estimators in stratified
sampling assuming the existence of the measurement error. Shukla et al. [20] taking motivation
from Manisha and Singh [21], proposed a dual to ratio estimator of mean in the presence of
measurement error. Masood and Shabbir [22] suggested a generalized regression type estimators
for estimation of finite population variance of study variable using multivariate supportive
information under multi-phase sampling scheme taking measurement error on the study variable.
Khalil et al., [23] suggested a generalized combined regression-cum-ratio estimator in stratified
sampling using scrambled responses in the presence of measurement error. Shalabh and Tsai [24]
presented ratio and product estimation procedures keeping the correlated measurement error in
their consideration. Khalil et al., [25] highlighted the issues when measurement error can be
present in the survey, and then provided a generalized estimator of mean using auxiliary variable.
Keeping the presence of the measurement error in view as one component of survey error, there
exist several studies for estimation of mean using auxiliary variable in simple random sampling
and stratified random sampling as well. For more detail, one can see for example Singh et al., [26],
Yaqub and Shabbir [27], and Singh et al., [28] including many other.

After having a careful review of the existing studies for the estimation of mean, it can be noted that
the individual components of the survey error have been well documented in the literature,
however relatively little is known about the intersection of these components of survey error. The
researchers who have studied the measurement errors as individual component of error for
estimation mean, have ignored the non-response as another possible component of survey error
similarly those who have studied the non-response, have ignored the possibility of existence of the
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measurement errors, whereas in many real-situations both components of the survey errors may be
present. One may have to deal with while estimation of mean if these both types of errors, non-
response and measurement errors are existing jointly. Consequently, ignoring the existence of any
component of error will yield the estimate(s) with a relatively larger amount of the bias. A few
numbers of researchers have debated the estimation of mean in simple random sampling assuming
the joint existence of the non-response and the measurement error, such as, Azeem [29] studied the
problem of mean estimation considering the joint influence of the non-response and measurement
error; Kumar et al. [30] proposed the exponential ratio-type estimator in the presence of non-
response and measurement error; Kumar [31] extended the work of Azeem [29] and provided a
class of more efficient estimators to estimate the population mean; Azeem and Hanif [32]
suggested different types of estimators including dual to chain ratio estimator, a ratio-cum- dual to
ratio-type exponential estimator, and ratio-cum dual to exponential ratio estimator; Irfan et al. [33]
provided an optimum class of estimators for mean in simple random sampling. Sabir and Sanaullah
[34] revisited Kumar[31] estimator and, hence provided a note on correct usage of Kumar’s [31]
for estimation of mean if the wo components of errors are present simultaneously.

A few more studies have been presented the studies in stratified random sampling. Zahid and
Shabbir [35] suggested a class of estimators for mean estimation whereas Kumar et al. [36]
suggested a ratio-cum-product exponential type estimator of the population mean in the joint
existence of non-response and measurement error using two auxiliary variables. Howeve in both of
the studies seprate type estimator in stratified random sampling are advised for mean estimation
when the two components of error are existing simultaneously.

After having a very careful review, it is felt that only a few research studies have discussed the
estimation of mean in stratified random sampling but these studies provide only separate-type
estimators of mean. It is also observed that mean estimation is discussed under simple random
sampling whereas estimation in some other sampling designs such as stratified sampling and multi-
stage sampling design is completely ignored. Another thing can also be felt that most of the
existinng estimators in simple random sampling and in stratified random sampling as well, are
proposed under the assumption if population mean of the auxiliary variable is readily availble.
However in many real situations such auxiliary information may not be readily avaiable and use of
two-phsae sampling is one of the possible alternates in such situations. Otherwise existing
estimators can not be made useful for mean estimation unless they are modified accordingly.
Hence many gaps are found to work on. Therefore assuming the situation when populartion mean
of the auxialiry variable is not readily available, this study is motivted to prsent some combined-
type estimators for mean estimation in stratified two-phase sampling.

Now in order to fill some of the gaps as stated in previous text, the objective of this study is to
provide some generalized classes of more efficient combined type estimators for estimating the
population mean of study variable following few assumptions such as; i)- the two components of
survey errors, the non-response, and the measurement error are simultaneously present; ii)-
population mean of the auxiliary variable is not ready available in prior of the survey; iii)- units of
the population under observation are not homogeneous; iv)- relationship between the study
variable and the auxiliary variable is same in each stratum; v)- ratio between the means of the
study variable and the auxiliary variable in each stratum is approximately equal to the ratio of the
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stratified means so as to get combined type estimators. The study is then prompted to get such
conditions which make each of the proposed generalized classes of the combined type estimators
more efficient than combined-regression estimator. Furthermore, the study is motivated to evaluate
the proposed class of efficient combined type estimators for its performance with the combined
ratio estimator, combined exponential-type ratio estimator and combined regression estimator in
stratified two-phase sampling. In the present study it is discussed that the proposed combined
estimators can be molded into three different situations of real-life which are given separately as
three remarks. In the following sections, some notations and sampling procedure for estimation of
mean with the assumption of simultaneous existence of the non-response and the measurement
error are discussed along with some results which will be helpful for observing the properties of an
estimator. An attempt has also been made to compare the mean square errors (MSEs) of the
proposed estimators with the MSEs of the existing estimators. A simulation study is performed to
compute MSEs of all the estimators discussed in the text. The simulation results are also
demonstrated through the graphs to have a quick understanding with the performance of all the
estimators by changing the non-response proportion.

2. Notations and Stratified Two-Phase Sampling

Before to present stratified two-phase sampling and estimation procedures, some basic notations to
be used in this text are defined. Let a population of size N be divided into L homogenous strata

L
with N,, units(h=1,2, ..., L) such that > N, =N,
h=1

N: Population size;

Np: Population size of h" stratum;

Y \ X: Study variable \ Auxiliary variable;

.\ uy : Population mean of Y \ Population of X;

L\ fy, - Population means in h™ stratum;

Hynays Hxnq - Population means of respondents group in ht stratum;

Hync2yr Hxn(2) - Population means of group of non-respondents in hth stratum;
aYZh , af(h : Population variances of Y & X respectively in h'" stratum;

aYzh(l) , O'>2<h(1)3 Population variances from group of respondents in h™" stratum;

th(z) : aih(z) : Population variances from group of non-respondents in h™" stratum;

CYh(l), C . Coefficient of variations for Y & X from group of respondents in h'" stratum;
CYh(z), C Xn(2) - Coefficient of variation from group of non-respondents in h" stratum;

Yii \ X,; : reported values on Y and X for i unit in h™ stratum;

Y, \ X,; : True values on Y and X for i unit in h™ stratum;

U, =Y, —Y, : measurement error on the study variable associated with i unit in h*" stratum;
V.. =X — X, : measurement error on the auxiliary variable associated with i unit in h'" stratum;

4



U =y;, =Y, : measurement error and non-response on Y associated with i unit in h™" stratum;
V,: = x, — X;,: measurement error and non-response on X associated with i unit in h" stratum;

Gsh(z)and th(z):Populatlon variances of U and V respectively from the group of non-

respondents;
Ponw aNd Py, - Coefficients of correlation between the study and auxiliary variables for the

respondent and non-respondent parts of the population respectively;

N
P, = Wh - weight of h™" stratum; n; : first-phase sample size in h* stratum;
L
n/': 2"-phase sample size in h™ stratum; n'= Z ny : first-phase stratified sample size;
h=1

L
n" = Z ny : 2"-phase stratified sample size;
h=1

ﬂ>'<(st) : Sample mean estimator based on first-phase sample;

sty \ /fz;'fst) : Sample mean estimator (for y and x) based on 2nd-phase sample with non-response
and measurement error.

Now consider,

L L 1 Nh 1 Nh
He=D Pty and gy =) R, where fon =—=— > Vhi, g, =—— > x, and
i1 i1 Ny = N, =

N

R =—".
"N

The measurement errors U, =y, —Y, and V,; =x; — X,; in the presence of non-response

i
associated are assumed to have their means zero and the variances o and ol for the non-
Uh(2) Vh(2)

respondent part of the population.

Unknown population mean of the auxiliary variable is estimated using stratified two-phase
sampling. Let (y,;,x,) be the observed values instead of true values (Y, X,,)of the two

th

characteristics (Y, X ) respectively associated with I sample unit of h™" stratum where,

i"(i=12, .., n;). Now we take a first-phase sample comparatively of large size say n, from each

L
hth stratum such that YN/ =N’ and information on the variable X is obtained. Now a usual
h=1

unbiased mean estimator based on first-phase sample information in stratified sampling is defined
by

L n'h
' ' ' , 1
t, = Hy(st)y = Z Phtn where Hyn = n_,z Xpi o 1)
h=1 h i=l



with variances given by,
var (t ,uYZP A CE (2)
A sub-sample of size nh'(C n(]) from each stratum is taken as 2" phase sample such that

Znh =n"" by simple random sampling without replacement and information on variables Y is

taken Here it is assumed that measurement error and non-response are jointly present. It is also
H " 1 14 .
assumed that only n/;;, sample units respond and Ny, :(nh —nh(l)) do not. Following Hansen

Moz
and Hurwitz [37] technique, let T, {Z %;kh >1J be a sub-sample of the individuals who do not
h
respond to the survey question(s) but respond when they are contacted again for their personal
interviews, where k, is the inverse sampling ratio. It is further assumed that all r, units respond

while interviewing them for the study variable.

Following Hansen and Hurwitz [37] an unbiased estimator of means is reproduced for Y and X
variables in stratified sampling as

~ % ~ 1%
:uy (st) — Z I:>h :uyh ) (3)
n” n”
~ppk " " 2 " _ h@) _ h®
where Hyy = Wl(:uyh(l) +/uUh(l))+W2 (/uy(z)kh T M)k ), W = '’ W, = n
h h
1 "M@ h(1)
r * *
Hyny = PR Z Yhi » 1 e Z Uy, /uy(Z)kh ZYG: , luyh(Z)kh Zyr’ul , and
My = N Mh o K, =
IUL’J;](Z)kh ZUm :
h i=1

The expression of the variance t, may be defined as,

2
O
Var( ) ﬂvzpz on| Cn + O-Uh + 0y | Cingyy + UZ(Z) : “)
,UY Hy
N W, (1, —1
where ﬂzh:(i”_i],ﬂh:[i,_%,wh(z):%,em: o (1)
nh Nh nh Nh h nh



L
Similarly, for the auxiliary variable, sample mean estimator is [tx'zs*t)=ZPhﬁ;,;*, where
i=1

nu nu nh(l)
~pre ' ) _ h() "o
;r: - x,r’](1) ’h(l) 2 ;Ez)kh ”(Z)kh ) (AP 2 = T xh@) — 1y hi
U W\ i + Uy +W, | i + 4 W, W. U — X
Ny Ny M =
nA(2) 1 kh
142 * *
la\/h(l) ,, Z th ) :ux(2)kh Zxr,u’ ) xh(2)kh Zxr,u' ) and ILI\;f: 2)k :_zvhi :
(2)kh k
M = I = ky = h il

3. Method of Mean Estimation in Stratified Two-phase Sampling

In this section, method for estimating population mean of the study variable is presented under the
assumption, the non-response and the measurement error are jointly occurring on both variables,
the study variable and the auxiliary variable in stratified two-phase sampling. It is also assumed
that population of the auxiliary variable is not known in prior of survey; relationship between the
study variable and the auxiliary variable is same in stratum; ratio between the means in each
stratum is approximately equal to the ratio of the stratified means. Method of mean estimation in
stratified two-phase sampling is proposed under three different procedures separately in the three
following sub-sections.

3.1  Procedure I: Proposed Class of Usual Combined Type Estimators

Now, for estimation of population mean, three modified combined type of estimators named as,
usual combined ratio estimator, usual combined exponential ratio estimator, and usual combined
regression estimator following the assumptions in stratified two-phase sampling are given
respectively by

~ 1%

f'* _ :uy(st) ]

ra = e Hxsty [modified combined ratio estimator] (5)
x(st)
Hqsty ~ Fx
el ~ % x(st) X(st)
tee = Hy(qy €XP| ————,— |, [modified combined exponential ratio estimator] ~ (6)
sty T Hysty
and
t ~ 1% +W ~ 1% . . . .
= Hysty :ux ) “Hysty],  [modified combined regression estimator] @)

where W is an optimizing constant.

In order to obtain the expressions for the bias and the MSEs of Eq. (5)-(7), let us consider,



L P * * ~H* 1 L P * ® ’ 1 - P r
Z_h,(WYh +WUh)’ x(st) = Znh, (WXh +WVh) and &,y :_Zn_h(xhi ~ Hyn )

! !
x h=1 M Hy h= Ty

and the sample means associated with the sampling errors assuming the joint presence of non-

response and measurement error are defined by /iy = 4 (1+ ey(st)) THINEITS (1+ eX(St))and

:ux(st)
sty = H (1+ e;((st)) such that E<~”(:t) ) = E(é;gt)> =E (e;(st) ) =0,

2
~r % 2 L G O-Uh(Z) N rrx
E (ey(st) ) = Z th {ﬂ% {th UhJ + HZh CYZh(Z) 7 = Ay(st) J
2
o O w2 "
[j?h [Cf(h + Vh] +0,, C>2<h(2) — A((st) ’

L
~N* ~I* 2 Sk
( y(st) Ex(st) ) z R (ﬂ'Zh PoxnCvnCxn + HthYXh(Z)CYh(Z)CXh(Z) ) = ny(st) ,

h=1

E (€1 )2 = E(&m8ien ) = ZP 2Cxn = Ay
L

and E( ;’(j;t)ex(st)) thz(/ih pYXhCYhCXh) Coyist) -
h=1

A * ' ' N 15 '
where A((st) A((st Ax(st) and ny(st _ny (st) ny(st

3.1.1 Derivation of the biases and MSEs expressions of the estimators

Now ., f;, and ' _ are given alternatively in terms of e,s by,

reg



u, (1460 (el ). (8)

fr; - JU
Hx (1+ Cx(st) )
. « (1l ) —ux (1+€10 )
ter Hy (1+ey(5t) )eXp ' ~rrx ) (9)
My (1+ €y (st) ) + py (1+ Ex(st) )
and
fng = Hy (1+ e;/’(Zt) )+ W(/ux (1+ ex(st)) —Hy (l"' e>’<gt) )) ) (10)
or alternatively by
he RI* RI1%2 Uk RIN*E RI% RIN*
—Hy = Hy ( v T8t — e T s — Exien sy — Sy Brcy +ey(st)ex(st)) (11)
XIE 12 A RITE 1% A ’
ex(st) ex(st) 3 5142 ex(st) ex(st)ex(st) ey(st)ex(st) ey(st)ex(st) ] (12)

11

—Hy = luY(y(st)—i_ 2 - 2 +§ x(st) 8

4 2 2

and
(13)

—Hy = :uYé),/,(g;t) + Wity (e;((st) - éﬁg» )
up to the order O(n’l)are given by,

The expressions of the biases for each of {;, f; and
Bias (fr:\) = Hy (Ax(st) é:y(st) )v (14)
s 3% 1
BIaS (t ) (é A< st) xy(st) j (15)
and
Bias 1, ) =0 (16)

From Eq. (16), we get that the regression estimator £ is an unbiased estimator while ratio
are biased estimators, see the Eq. (14) and (15). Further

estimatorf, and exponential estimator
expressions of the MSEs for each of fn tr and e,
are obtained up to the order O(n‘l) and are given by,
MSE (frZ ) = 4 ('5\;2;) + Ky —2C4 ) ) , (17)
MSE (fe*r ) = Uy (A;’(Zt) +— A((st) xy(st)j (18)
(19)

and
MSE( reg ) = (,U\f ,gt) + Wzlu)z( A:(st) _2/uY /Jx WC:y(st) ) .
9



In order to achieve the optimum value of W, Eq. (19) is differentiated partially with respect to w
and then equating the first derivative with zero. The optimum value of W which gives the

~
*

C
expression of the minimum MSE{; is given by W, :sz(“). Substituting the optimum value
Hy A((St)
W, of W in Eq. (19), the expression of the minimum MSE of £ is given by,
C?
min MSE (T, ) = 16 A, (1— L. U S J (20)
A((st) (st)
or after more simplification Eq. (20) is given by
- C2

: 2 Nrrx 2 (st)

min MSE (treg ) = Ay (1— Payist ) where pp ey = = (21)
A<(st) (st)

3.1.2 Theoretical Comparisons among the usual combined type estimators
Now in this section, efficiency of combined regression estimator £* is compared with the

reg

efficiencies of unbiased S estimator, combined ratio estimator f., and combined exponential
estimator t .

i) From equation Eq. (4) and Eqg. (21) we have

MSE ( ., ) - MSE(f; ) >0,

G L
Hy Z P ezhCYh(z) (1 pYXh(Z) ) + 4y Z Pzﬂ?h I:Yh(Z) [ﬂ‘? Z PhZZ‘ZhC\?h (1_ pY2Xh ) +
h=1

h=1

L 2 L 2 2
O o o
,ufz R 6o [# - lufz R?| Zon| Cli + > |+ O C\?h(z) + UZ(Z) >0,
h=1 My hel 7% L
and

o O' h(2)
ZP o (C\?h Uh]PYXh + 4y ZP Oy, CYh(Z) + : & P\EXh(z) >0. (22)

Y Y
i) From Eq. (17) and Eq. (21) we have

MSE (., ) - MSE(f;, ) >0,

reg

Y h=1

L L o
Hy {z Py ZonCi (1_ P ) + Z Py 02nCrna) (1 Pocncz) ) Z Py Lo {iUhJ+ Z Py Oy { /:;(2)}
h=1 h=1

10



_:U? (hzl_; thﬂ'ZhC\?h + hZL; thﬂ?.h (C>2(h =200, Cyn Gy ) +hZL; Ph292h (C\?h(Z) + C>2<h(2) - 2pYXh(2)CYh(2)CXh(2) )
L 2 2 L 2 2

+Z Py Ao {O-;Jh + G_;/h] + 2 R6y, [GUZ(Z) + O-VZ(Z)J >0,
) Hy X h=1 Ay Hx

and

L , & L )
,uf [Z thﬂ%h (th = PoxnCyn ) + Z thﬂ'hc\?hp\th + Z Ph2‘92h (CXh(z) - pYXh(Z)CYh(Z) ) +
he1 h=1 h=1

L 2 L 2 L 2
O O O un)
thzﬂzhp\?Xh[ th—FZthﬂ'ZhL ;hJJFZ Ph202hp\?xh(2) 2
h=1 Hy h=1 H Hy

X h=1

2
= o O vn(2) 23
+> P26, - >0. (23)
h=1 H

X

11)) From Eq. (18) and Eq. (21) we have

MSE (£, ) - MSE(£; ) >0

dl
L
h=;

L 1 L 1
1y (Z R’ 4,nCiy + Z P Ay, (Zcih = PyxnCynCon j + Z R0, (C\?h(Z) + ZC>2(h(2) = Pyxn2)Cvn2) Cxne) j
ho1 ho1

1

-

h=1 Hy h=1

>
|

\M'_

1

L 2 L 2
o} O un2)
thﬂzhcvzh (1_p$Xh)+ZPh292hC$h(2) (1_p$Xh(2))+zthﬂzh[ lthJ"'Zthezh[ ,:3 : J -
h=1

L 2 2 L 2 2
F> R, | Cw 10w | Sz, | Oua , 10w ||,
h=1 My Ay h=1 Hy 4 py

and

L 1 2 L L 1 2
:U\? LZ th/‘{sh (ECXh = PyxnCwn j + Z thﬁhc\?hp\th + Z Ph202h (ECXh(z) = P2 Sz ] +
h=1 h=1 het

L 2 L 2 L 2
lo O une
P2 2 |Ow | Np2; | 20w |, N p2g ol Z @y,
hZ:;, hﬂ?hpYXh( 2 = h Ao 1 .72 hZ:;, h O2n Pyxn(2) 2

X
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2
h=1 Hx

2
L
> P26, % Owe ||, (24)

From Eq. (22) to (24), it can be easily seen that the combined regression estimator {7 is more
efficient than combined ratio estimator '

ra’?

and combined exponential ratio estimator £ .

3.2 Procedure I1: Proposed Class of Modified Combined Regression-type Estimators

In this section another procedure of mean estimation in stratified two-phase sampling is presented
as a class of modified combined regression-type estimators. The proposed class of generalized
combined regression-type estimators is due to some modifications in the form of usual combined
regression estimator. The procedure includes to get a class of modified combined-type regression
t,) DY replacing f, with J, in Eq. (7). The proposed estimator t,,, in the form of a general

estimator is given by,
Ly = (‘J(i) + Wy (ﬂ;(st) — Hy(s) )), for 1=12,3. (25)
where

~ Pk ’ ~ % ~ % ’ ~ ¥ ! ~ 1%
Hysty Hysty = Hxst Hx(sty — Hx(st) Myt | Hxisty | Hxsy
J(l) = 2 exp ’ ~rrE +exp ~rr% ' ! J(Z) - 2 ~rpE + ' !
:ux(st) + :ux(st) qu(st) + /ux(st) lux(st) lux(st)

~ ’ ~ % ’
y24 Y24 —HU y2
and \](3) _ y(st) (exp[ x(st) x(st) J"‘ x(st) J .
2 ~ ¥ ~ %

:u;((st) + Uy (s Hy(st)

3.2.1 Derivation of the biases and MSEs of the modified estimator
Now t,; can be given in terms of e,s by,

sy (1+6,%) tiy (1€l ) = 2ax (1+ 655 ) ,
o =" e ui (1+ eE: )+ ﬂi (1+ éz: ) # (L €l ) =anc (1485 ).
(26)
t _ Hy (1+ é)’/’(#;t)) Hyx (1+ e;((st)) N Hy (1+ é;(gt)) rexp Hy (1+ éQEZt) ) — Hy (1+ e>’<(st))
o 2 Hx (1+ €0 ) Hyx (1"' €t ) Hy (1"' € ) + Hy (1+ €xst) )
Wo, (/”x (1+ e;((st) )_:ux (1+ é;gt) )) , (27)
and
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= My (1"‘ e;/'(Zt) ) exp My (1 + €y ) — Hy (1+ e%i;t) ) N My (1+ € st) )] N
Hyx (1+ e><(st) ) Hy (1+ ex(st) ) (1+ ex(st) )
W, (,Ux (1+ Exst) ) (1 + e;gt) )) , (28)

or alternatively

e72 éH*Z érr* er
~rr% x(st) x(st) x(st) ~x(st) ' __Arx
toy =My = My | €y T 3 + s 2 + Wi Ly (ex(st) ex(st))! (29)
2 A
~p P e{ ey(st) ~p ANE
o)~ =ty | €y T—5— 5 +T_e>’<zst)elst + Woy Ly ( x(st) — Ex(st) ) (30)
and
3 ey 11 5 3
N* +_e/ __éu* _ x(st) +_éu*2 éu* e +2 éu* e
tie — iy = :UY[ v T e T s T T T e T g Sxisn Sxisy T Byt Sxisn
3é'H* é'N* édl* 31
2 o0 Sxtst) + Wy iy ( By ~ &y ) (31)

The expressions for the biases and MSEs of t,;, up to the order O(n‘l) are respectively given by,

Bias (t,q ) = 44 &;St) , (32)
Bias(ty(, ) = 14 &2(“) , (33)
Bias(ty(5) ) = 4 G_é K = %é:y(st) j ’ (34)
and

MSE (ty) ) = MSE (tys) ) = (46 Aty + Witk Ay =218 1y WisCry sy ) (35)

MSE(tg(3 ) Hy (A;/'Zt) A((st xy(st)j"' W31ﬂx A<(st) + 24 puy 31( A:(st) - xy(st)j (36)

Now, to get the optimum values of w,,, w,,, and w,,, Eq. (35) and Eq. (36) are differentiated
partially with respect to w,,, w,,, and w,,, and then equating each of the first derivatives with
13



zero. This gives three normal equations which are then solved simultaneously for the optimum
values of w,;, w,,, and w,, . Finally, the optimum values are shown by,

ol A< t t
u,C [ 0~ Caytst
WPt = wott = Ut ICO) and  w =- . (37)

Hy A;(st) Hy Ax(st)

Substituting the optimum values of w,,, w,, and w,, in Eq. (35) and Eq. (36), the expression of

the minimum MSE is obtained. However, it is to mention that the minimum MSE expression is
same for each of the three estimators, and it is given by,

_ C?
min MSE (t,, ) = 14 Alrs, (1 L ] (38)
Ax(st) (st)

3.3  Procedure Ill: Proposed Efficient and Generalized Combined Regression-cum-ratio
type Estimators

The proposed modified regression estimator t,, presented in the preceding section, can be taken
as an alternate to the regression estimator. However, the proposed estimator t ,, can further be

molded into another form of combined regression-cum-ratio type estimator so as to get more
efficient and more generalized estimators than usual combined regression estimator and the
modified combined regression estimator presented in the preceding sections.

Therefore, now three new classes of more efficient and generalized combined regression-cum-ratio
estimators tS(I)(a By where 1=1,2,3 are proposed for estimating the population mean, and form of

the proposed estimator is given by,

’ ~ ¥
] ~ P ILlX(S'() /Ll)((S'[) ~ % *
_ r ’ ~rr "
Ly ap) = (ﬂy(st) (0‘ e t(l-a)— + Wy (ﬂx(st) Ay ) + Wa ) Ay ety

Hy (st Hy (st
plie o p e | (39)
:ux(st) :ux(st)

’ ~ % ~ % ’
. H —H H —H . -
Eoran = | Ay | @ EXP TR |+ (L-a)exp| T | i, (/lxl(st) = Fysy )
:ux(st) + :ux(st) :ux(st) + lux(st)

~Ir* ~Pr*

~ My s My Hy(s _/Ll;s
Wy ) Ayt )[ﬂ eXp(HJ + (l— ﬁ)exp(%n ) (40)
)

:ux(st) + lux(st) :ux(st) + :ux(st
and

14



! ~ % !

£ ~ Hysty = Hx(st Hysty ~ % ~

_ 7 _ ' =

ts(3)(a,ﬁ’) =1 Hysy | XEXPL— —- |t (1 a) — | T Wi (/ux(st) Hy(sty )
/Ux(st) + :ux(st)

. /,l’ _ﬂ’!* ILl!
W) Ay (r) )['BEXF{ —t(so ) J+ (1-p) = J (41)
/ux(st) /ux(st) x(st)
or alternatively
t s(i)(a.8) (:[‘;’(st) H(I)a 1(.) (,Ux(st) :ux(st) ) + W2(|)/u;/'(st) ) H(i)ﬁ’ ' for i=1,2,3 (42)

~II* "’N*

,U’( t) Hst) Hy
Where H(l =Qa = +(1 a)% ) (l)ﬂ ﬂ ~):r(*5t ( ﬂ) St)

H*

Hy(sty Hy(st) Hy(st) 78 (st)

~ ~pp '
:ux(st) lux(st) :ux(st) - :ux(st)
~pp% (1—a)eXp ~ % !
:ux(st) + :Ux(st) :Ux(st) + lux(st)

— Bexp (:ux(st) [‘;gt) ] (1_ ﬁ) exp(/flx'&) - lux(st) ]
Heyp = popy — |
)

(Z)a -

x(st) :ux(st) /ux(st) + /ux(st

Hg), = aexp

~ 1% ! ~ 1% ~IP%

~ % ’ ~ %
x(st) X(st) + (1_ a) ~x(st) , and H _ ﬁexp x(st) x(st) (1 ﬂ) x(st)
:Ux(st) + x(st) :Ux(st) + :Ux(st) x(st)

where « <0, 1] and g <[0,1] are the generalizing constants whose values are suitably chosen, and

W, and w;, are the optimizing constants which are needed to be estimated such that the

optimum values of wj, and w; give the minimum MSE value to each estimator which belongs

to the proposed class of regression-cum-ratio estimators.

3.3.1 Derivation of the biases and MSEs of the proposed combined regression-cum-ratio
estimators

In order to obtain the expressions for the biases and the MSEs of the proposed regression-cum-ratio
estimators iy, T, 5 and iy, , are given in terms of e,s respectively by,

. o Uy (1+e Uy (1+ 87 .
Cyap) = | (1+€%) aﬁﬂla)ﬁ +W1(1)</‘x (L+ew ) -

Hy (1+ e>’<(st) )

)

o (148 )
1-p) 2] 43

sy (1+ éii’;))Jr( A u )

(l+ ex(st) )) + W2(1)/uY (1+e),/’(>;) )) ﬂ X (1+ ex(st) )

15



1+ ex(st)) (1+ eLE;))

l+ ex(st) ) Hx (1+ éLEl}) )

1+¢€; 1+e
X 21: ~>:St) ; - zx E1+ eX(st) ) W:(z)ﬂx (1+ ex(st) ) (l+ e;;st) )) +W;(2)IUY (1+ e;,,(;) ))
x(st) X

+(1-a)

s = # (1+ &y {0‘ eXp

exp ~
/J x(st) )

(1"‘ €x(st) ) My (1 + €4y ) Hy (1"' € ) — Hyx (1+ €xst) )
pexp — |+ (1-B)exp o , (44)
(l+ ex(st) ) + Hx ( ~>,<Est) ) ( ) Hyx (1 x(st) ) — Hx (1+ e><(st) )
and
tj(s)(a,ﬁ) =| M (1+ €l ) a eXp - (1 o ) o (1+ S ) +(1-a) BT ) (1 " )

@+ggg

X (1"‘ €5 st) ) — Hy (1+ é;gt) )
(1"' ex(st) ) + Ly (l+ eigt) )

X (1+ e;((st) ) (1+ e>’<gt) )

Wf(s)#x (1+ € sty ) (1+ ex(st) )) + Wz(s):“v (1+ e;'(:t) )) Bexp z

:u (l+ex(st))
1- g\ X&)
b (1+ &)

Further simplification of the above expressions up to the first order of approximation O(n!) gives
the expressions, as given by,

(45)

£ ' i ~I!* ~H* ’ ~H*2

ts(l)(a B) —Hy = Hy ( + 2ex(st) 2ex(st) + 20{6 x(st) -2 x(st) +2ﬂex(st) - x(st) 36Kex(s’() +
Pk ~rr*2 1% xI1%2 ’ ~pp 2

4aex(st)ex(st) x(st) 3ﬂex(st) +4ﬁex(st)ex(st) +ex(st) +3€x(st) x(st)e;,(st) +4aﬂe>,<,(st) +4aﬂex(st) +

I 1%

rr* A A N * "‘/’* "’"* I
8aﬂex(st)ex(st) + Zey(st)ex(st) 2ey(st)ex(st) zaex(st)ex(st) +2a ey(st)ex(st) 2 €ysnexsy T 23 €y x(st) +

* ~fr% ~f % ~rr%2 ~NE S R ~NE
(1+e;/,(st) +e>,<'(st) x(st) -2 >’<'(st) +Zﬁex(st) + ;(,(st) ﬂex(st) +ey(st)ex(st) ey(st)ex(st)

ANk xIrE * ~PE ~ v [ ~r1* ~1r%k2
2,3 €y (st Cx(st) +2ﬁe;’(st)ex(st) + ex(st) ex(st)e:('(st) )) - W1(1) X (e;(’(st) ex(st) + e),(,(st)
~”>k
2ﬂex(st) +4ﬂex(st x(st) ) (46)
gt ! N* % IR E
ts(Z)(a,ﬁ) Hy = Hy ( y(st) +ex(st) e x(st) + aex(st) x(st) IBex(st) +aey(st)ex(st) ﬂey(st)ex(st) +

ARI*  RIN* RIT* AI* XI* 1152

~AI* ’ ~f P
JEicH st)e vty T BCst) —€sny sty € (st)e wst) ~ €y (s Cxisty XBCysh) +aﬂex(st) — 2038, €1ty T Wagp)
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~AI* ! ~AI* !

12 I 11%2 12
e x(st) ex(st) 1% _ex(st) 3@ x(st) ex(st)ex(st) IBe X(st) IBe x(st)

o 1% RI*
(1+ Syt A

2 g 8 4 2
éu* én* 'éH*Z 12
~,,* y(st)“x(st) W porr ' x(st) x(st) RIT* 1152 12
y(st x(st) 2 1(2 :uX e x(st) ex(st) + 2 - 2 +ex(st)ex(st +ﬂex(st +IBex(st)
A

—2/3€} 5 €en ) (47)
and
£ u* u* O s /B ' ﬂ ~u* H*Z !2
ts(S)(a,ﬂ) —Hy = Hy ( vty T 26 —2e, xst) T > e (CS Py _Eex(st) = 2 Cst) +3e et

9 5 7
~//* X152 n* ~//*2 I 1% ~H*
4ex(st Yox(st) _gaex(st) —gae (st) +— 4 aex(st (st) 3 IB x(st) ﬂex(st) + ﬂex(st)ex(st) 2ey(st )Ox(st)
* PO a4 ﬂ NIEE UL ﬂ ok aﬁ ) aﬂ 2 (Zﬂ

+26) By T 5 e”(st)e)'(,(st) > — €ty T Eey(st)ex(st) 5 ey(st)ex(st) 4 —=& T 4 €yt 5

! NI 1 N ﬂ A ﬁ ﬂ XNk I E ﬂ A V ~11%2
€x(st) Cx(st) +W2(3) (1+ey(st) €x(sty +€, X(st) +Eex(st) > ex(st) + > €y (styCx(st) ~ > €8sty — ﬂex(st)

2 A11%2 12
ﬂe’( 3 1r% ~ XI1% A1152 12 11 ex(st) ex(st)
3 L= ﬁex(st)ex(st) — Wiy | ity — sty T Exen) T Brsty — 28xcsn Exieny = B — -p - +
A

Beysni ) (48)

The expressions for the biases of f:(l)( p) t @(ap) aNd t:(3)(a’ﬂ) are obtained up to the order of

approximation O(nfl), taking the expectation of Egs. (46) - (48) respectively. The expressions of
the biases are given respectively by,

Bias (t s@)(a.p ) = Hy (At(st) —al g~ A HAaf A +2C5 o —20C, ) = 2C g + Wi

(1+ /W(st) +C;y(st) - Zﬁc:y(st) )) - Wf(l)ﬂx (A:(st) - Zﬂp\;ﬁ(st) ) ) (49)
~ g <o ~ At S| A( S| X S|
B'as( s2)(a. B )) =u, | af A&(St) + ny(st) any(St) 'Bny(st) +Wa(2) (ﬂ 2( 2 - 8( 2+ ;( 2
gty ~ N A:(S)
BCsty )) + Wy by | BAGt) — 5 2, (50)

and
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ap i B

A<(5t XY(St) += ny(st) + _ny(st) +

B'as( 5(3)(a, /3)) Hy ( AA (st) aA((st) ﬂA:(st) > >

W2(3) (1"' g ny(st) xy(st) ﬂA&(st) jj +Wf(3)ﬂx (A:(st) - E A:(st) J . (51)

The expressions for the MSEs of ts*(l)( g t @(ap) aNd ts*(3)((1, p) are obtained taking the square of
Egs. (46) - (48) respectively, retaining the terms up to the order of approximation O(n’l), and

then taking expectation. Finally, general expressions of the MSEs of fs*(l)(a, 5 ts*(z)( p and t @)

are given respectively by,

MSE(t ( s@)(a.8) ) / ( '5\'/&) + 4'8\:@0 - 8“'5\:@0 - Sﬂﬁ\}k(st) + 40!25\:(50 +4'B2 Aj(St) + 8aﬂ'5‘j(st) +
4C5 s~ ABC ) + Wiy (ZA;(st) +10C5 0y ~128C5 o) + 6A () — 6 Ay ~145A,
+16ap K +8/57 Ay ~8aCryqy ) Wy (14 AT + Al + 25&*(3t +4C;, ) —8BC e +
A% A )) Wy 15 Ky 20t 1 Wiy (200 B gy + 2B 0y =2 = Cryy + Wy (413 A~
2A3<(st) xy(st) )) (52)
MSE(t ( s(2)(a, ﬁ)) Y (A;'(*st) + Ay —2a Ry = 2B Ry + @ Ky + B Ky + 20 K +2C5
~20C ) = 28Cy 0y + Wapy (2 Ky + Ay +5C3 09 —40Cly g =68CS oy — Ay + 4B A
+2/5* Ny = 36K« ) + Wao) (1+ Ay +2C 5 ~4PC @) + 41" Ax(st) )) + Wi 15 Algary + 28 11

Wf(z) (0‘ A<(st) + IBA<(SI) A<(st) xy(st) + Wz(z) (ZﬂA((st) A<(st) xy(st) )) (53)

—4aC:

and

MSE (fs*(3)(a,ﬁ) ) Hy (A;/(st) + 4A< st) 20"5\:(50 - 25'5{:(50 Ax(st) + Ax(st) + £ Ax(st)
4éxy(st) + any(st) + IBny(st) +V~VZ(3) (2 '(st) +1Oé:y(st) +3ﬂé:y(st) +10'5\j(st) _GO‘A:(st) _ZIBA:(st)
ﬁZ

13 N Nk N = ~*2 s N % -~
_Zan(st) + B3 A<(st) + aﬂA((st) + zany(st)j Wa(3) (l+ Ay'(st) + A((st) ﬁA((st) - 4ny(st) +

Zﬂ wisty T p A<(st) D + Wfé)yx A<(st + 24, pry W, ( Ax (st) Ax(st Ax(st) sy T W, 2(3)
(2A<(st) ﬂ&(st) xy(st) )) (54)
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Alternatively, the expressions MSEs of £, o, €., and g, , can be given by the

expression of MSE of ;) . and it is expressed by,

"‘* * ~ %D * ~ % Ty *2 ~ %
MSE( s(i)(a, ﬂ)) \PO(i) + Woiiy iy + Woeiy oy +Wl(|)\P 3(i) +W1(|)W2(|)IP4(i) +W1(|)‘P 5(i) » (55)

where,
Pow = ( ey + AR —8a R ) ~BBA  + 40 Ay + 4B +BaB A, +4CS
~4aCy ) = 4BCr )
li’1(1) 1y (L Ay + Ay + 28R +4C ) =88C,, ) + 487 K ) ’
Wi = 14 (2R +10C;, ) ~128C; ) +6 A ) —6a Ay —14BA; ) +16af A, +8B° Al g,

—8a(§:y(st) ) :

\P ,ux A< (st) 1 lI14(1) = 2 by ply (4ﬁA<(st) 2Ax(st) xy(st))
IP =24, iy (Za A((st) + ZﬂAA(st) ZAA(st) xy(st))
v st) + A<(st) ZaAj(st) - ZﬂA:(st) ta A{:(st) +ﬂ2'&:(st) + ZaIBA:(st) + 2C~:y(st) - Zaé:y(st)

0(2)

»-e*z

12) ~

(A
Cvis ) ’
(L Ky + 2G50 ~48C ) +48° A ) !
Py =14y (2 Ay + Ay +5C5 0 —40Cly g = Gﬁ’é;‘y(m —al g +daB A + 287Ky 3B A, ) '
@;(2) = :U>2< Aj(st)l q’:(z) =24, iy (Zﬂ'&\j(st A((St) xy (st) )
Wiy = 2t 11y (0 Ay + By = Ay ~Cryen ) ’

o
7 )i ap
\PO(3) Hy (A/(st) +4By) —2aBy) — 2By, — 4 Bty + 4 By +— 5 By =4Cy +@Cqy + BCq |

T+ " 9 ﬁZ
Yy = ,uf (1"' Ay T By _ZﬂB(st) —4v, +2pu, + 1 B(st)] )

. . 21 13 B
Wyu = :Uf (2 Aqy +10C ) +38C ) +10B ) —6aB ) — 7 BBy — 4 —aB, + By + @BB
+20Cyg) ).
II13(3) /Jx B(st) ' @2(3) = 2y (ZB(st) _ﬂB(st) _C(st)) '
and
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; a B
‘P5(3) =24y L1y (ZB(st) _E B(st) _E B(st) _C(st)j'

Now, to get the optimum values, Eq. (55) is differentiated partially with respect to w;;, and w;,,

and then equating each of the first derivatives with zero. This gives three systems of normal
equations, including two normal equations in each system. For each system normal equations are
then solved simultaneously to get the optimum values of w;;, and w; . Finally, the optimum

values are shown by,

~vopt Yo' Paw —2%15 ¥ ot Pan'Vew —2¥50 s
B T A T G %)
1) Yy — Y ag) 1y Yy = Yag)

Substituting the optimum values of W

(i)
MSE of t, 5 is obtained as,

and W, in Eqg. (55), the expression of the minimum

Ty Ty Ty Tr*2 \Js* Tox \Jsr*2
\P2(i)\P4(i)\P5(i) B IIJZ(i)1P3(i) B \Pl(i)\P5(i) )
—4v¥, . \¥

min MSE (£y..5) ) = Po) — WA, ., fori=1,23.  (57)

3.3.2 Theoretical comparisons between the modified combined regression estimator and the
generalized regression-cum-ratio estimators

MSE (£, )~ MSE (£, ) >0
1K (1= Py ) > MSE (€0 )

MSE (f:(i)(aﬁ) )

'uYZ A;"(Zt)

MSE (fs*(i)(a,m)
var(fu*)

(1— pfy(st) ) >

. (58)

2
pxy(st) <1-

Remark 1:

When only the measurement error is present on the study and auxiliary variables, and complete
response is available on both of the variables, then modifications to the estimation procedures
presented in the preceding sections are followed by,
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Hygy = Mgy = h:; and then the expression of the variance is given by

Var([l;/'(st)) ZPZ Lﬂﬁh (th ,U\? D ~;/'(st)

Similarly, sample mean estimator along with the variance expression can take the forms
respectively as given by

ZL:

)~(f'lll L 2

% ~I1 _ 2 2 GVh = .

ey = Mgy = = ;” and Var(,ux(st))— E P [ﬂgh [CXh +_ﬂ2 D—TX(SO- Expressions for the

h h=1 X
different covariance terms are reproduced, and given by

L L
~ ~ 2 ~ ~ 2 2
COV(,U;,(st) , :u>’<’(st) ) = Z R (ﬂ'zr] PoxnCynCon ) = Ty sty COV(/u;(’(st) , :u>’<(st) ) = Z R 4Cn = A;(st) , and
h=1 h=1

L
Cov(la;/,(st) ’ :u;((st)) - Z Ry (ﬂh PYXhCYhCXh) Cows
h=1

~ _=n _ ! ~
where T, = Tyst) AA( and 7,y = Ty ~ Coygon) -

The proposed estimators of Eq. (42) are reproduced under remark 1, and can be given by,

t ~1 ~ ~ N - - .
Lo :(ﬂ oo Mo+ Wy (Bso = Aty )+ Wy B )H(i)ﬂ- for i=1,2,3 (59)
7" ~11
~ IL[' ILl - lLl ILl
where Fy —a 4041 a) B iy = (g ) Pl
Htsn Hxs X(st) /ux(st)

~1 ~I

~ :u;(st) — Hyst) Hysty — ,u; (st)
H., =aexp| ——— = |+(1-a)exp| ————
:ux(st) + /ux(st) :ux(st) + :ux(st)
' ~1r il
;ux(st) - :ux(st) :ux(st) - :ux(st
Hepyp = Bexp| —————= |+(1- B)exp —~u
:ux(st) + :ux(st)

~11 ' !

~ :ux(st) - :ux(st) lux(st) :u;(st) - ;ux(st :ux(st)
H(3)0! =aexp ' ~1r + (1_ a) ~ | and H 3 — ﬂexp ' ~1 (1 ﬂ) ~11
;ux(st) + :ux(st) lux(st) :ux(st)

;ux(st) :ux (st)
The expressions of the biases are reproduced for the estimators, and given respectively by,

Bias (ts(l)(a ﬂ)) Hy (fx(st) — QT = Blysy TAUB T sy T 2Ty —2O0Ty(sty = 2By sty + Wagay

(1+ ﬂfx(st) +7}xy(s’[) - 216 ﬁ-xy(st) ))_ Wl(l):ux (fx(st) - 216 fx(st) )a (60)
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~ ~ ~ ~ ~ z-x(st) z-x(st) ﬁ'xy(st) ~
Bias (t 2)e.) ) O Ty + Tay(sy =0 Ry = B Mgy + W [ﬂ o T ~B oy

2 8 2
~ ~ Afx(st)
Wiy | Bysn T, | (61)
and
(e . 9 a,B . . a . ﬂ -
BIaS (ts(3)(a,ﬂ)) = :uY (BTx(st) - 8 x(st) ﬂrx(st 4 x(st) 27Z.><y(st) +E Xy (st) += 2 xy(st)
B - . P
W, (1+ 5 gty = Fy(st) ~ ﬂT o) | | TWaaMx | Txst) _ETx(st) : (62)
The MSEs of class of three estimator fs(i)(a' p) are expressed by,
MSE( s(i)(a, ﬂ)) ®0(i) +W22(i)®1(i) +W2(i)(:)2(|) +W1(|)®3(|) Wiy 2(|)®4(|) +W1(|)®5(|) : (63)
where,

N , .
Opy = ( Ty T4y —8Tys) =8P () + 40" Tyt 4% Ty T8APT, gy + Ay — ATy )
_4/B”xy(st )

1+Ty(st) +Tx(st) + Zﬁ z-x(st) +47Txy(st) Sﬂ ﬂxy(st) +4ﬁ Z-x(st))
~ ~ ~ ~ ~ 2~
_12:B7Z-xy(st) + 6Tx(st) _60”-x(st) _14ﬂ7x(st) +16aﬂrx(st) +8ﬁ z-x(st)

1(1)

» N
Oy = (2 Ty T107, o

8a7rxy(st))
®3(1) :Ux x(st) (:)4(1) =24y fiy (4ﬂfx(st) _fo(st) _ﬁ.xy(st)) ,
Oy = 204ty (20 gy + 23y = 2y ~ Ty ) ’
Ouey = e (Fay +Eysy — 20F ) = 2BF ) + 0 Ty + BE gy + 20F gy + 2 = 207
_zﬁﬁxy(st)) '
iy = 18 (14 By + 27y = 4By + 4B T )

. N N ~ . N N - N
Oy = Ly (ZTy(st Tty T g5ty — A0y = OBy y = A Ty T 3B Ty + 28 Ty =3P Ty ) :

@

~

w0 = Hx sy Ouy =20ttty (28 oy ~ Ty — 7

@

XY(SY)> !

Ogp) = 214 Ly (a Tysty T B Tty ~ Ty — Pyt ) ,
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~ - - a . - ap . ~ ~
®0(3) = /.15 ( Ty(st) + 42-x(st 2Om-x(st) - 2ﬂTx(st) + 7 Tx(st) + T Tx(st) + 7ﬂ Tty ~ 4'ﬂ-xy(st) + aﬂxy(st)

+ﬁﬁxy(st))'

~

9 . . i B
@ = Hy (1+ 4 (st x(st) - Zﬂrx(st) - 4'7Z-xy(st) + 2lBﬂ-xy(st) + T Tx(st) )

- N N N .21, 13 . B
®2(3) (2 z-;/'(st +107[xy(st) + 3ﬂ7z.xy(st) +1Oz-x(st) - 6051')((50 - Zﬁfx(st) - Zafx(st) + 7 z'x(st)
+aft, g + 207, )
®3(3) = ,Ux Tx(st) , ®4(3) =244 ply (fo(st) -p fx(st) _ﬁxy(st) ) ,
and

~ . a . b . .
®5(3) = 2 iy [y (fo(st) _Efx(st) _Ez-x(st) _”xy(st)j :

The optimum values of W, and w,;, from Eq. (63) are reproduced under remark 1, and given by,

0Oy — 20,0, —ot 94)Os = 20,04

(i)
and Wi = SRS

2 2(i) 2
300) ®4(,) 40, .0 ®4(,)

046

: (64)

1(i) 131) ~73(1)

Substituting the optimum values of w,;, and W, in Eg. (63), the expression of the minimum

(i)
MSE of fs(i)(aﬁ) is obtained as,

ANOA A 2 A 2
~ (®2(i)®4(i)®5(|) ®2(|)®3(i)_®1(|)®5(|))

=0, 65
0 —40,. .0 (65)

min MSE (t —
@i
( @)i(.) 1(i) - 3(i)

o)

Remark 2:

When it is assumed that only non-response is present on the study and auxiliary variables, but no
measurement error exists on the study and auxiliary variables, then modifications in the estimation
procedure are followed by

L
£
Z Yhi
~ % ¥

Hyisy = My = T and then the expression of the variance  becomes
h

L
var(y;’(*;t) ) = Z P2 (ﬂthfh +6,,.Ch) ) Qi -

h=1
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Similarly, sample mean estimator for the auxiliary variable can take the form

ZXN*

~ % pr% h=1

Hy(sty = Hsty = =T and the expression of the variance can be reproduced as
h

L
var(yx'{;) Zth( Xh+02hC>2<h(2) Qs and the expressions of the covariance by
h=1

COV(,U;'(*st) :[l:('(*st)) th ( ah PoxnCvnCxn + O, Pyxn(2) CYh(Z)CXh(Z ) ‘%;Est)’

L

2

h=1

L L

COV(,U;':t :ux(st ) Z thﬂ'hc)z(h = A;(st) , and COV(,U;,(; 1y st)) Z th (ﬂ”n IOYXhCYhCXh) C;(y(st
h=1 h=1

1 ' * I !
where Q Qx(st) - A((st) and ‘9xy(st) - ‘9xy(st) B CXy(st)

Following the assumption stated in remark 5.2, the proposed estimators of Eq. (42) are reduced to
the form given by,

t:u)(a,ﬂ):(/‘;'(:t)"'(ﬁ) Wiy (”x(st) Hy st))+Wz(.)ﬂ§'Zt )H(* i) for i=1,2,3 (66)
\ Hy J74% ) My J7
where H), = ,St) +(1-a) ,(St) ) Huyp =F ”it) +(1-B)—— =
Hy(st) Hy (st Hy(sty £y (st)

11

. ,U’( t) — Hx(st) /U’E*t) —,u' t)
Hiy, = aexp| =0 14 (1- o) exp| =80 |

11 11

/ux(st) + qu(st) :ux(st) + /ux(st
11 11

* :ux(st) — Hysty Hysty — :ux(st)

H(Z)ﬁ :ﬂexp rrk +(1_ﬁ)exp prs ' !

:ux st) + :ux(st)

1% ! 1%

12 ! !

. Higsy — H Higsy = H 7
Hiy. = exp —X,(St) ffit) +(1- )= Jand Hg,, = Bexp —T(St) ffit) +(1- ﬂ)—ff) .
Hy(sty T Hy(sty Hy (s Hysty T Hy(sty Hy(st)

Bia (g ) = 24 ( Qs = @ iy = B Ly + 4B Ly + 290y —200y 0y = 2B+ Vs

(1+IBQ st) xy(st) Zﬂ Xy (st) ))_Wl(l)lux ( Z,BQ st)) (67)

Bias(t aIB Q' +F  —a¥F _ﬂlg* W ﬂ Q 2 Ex(st) N ‘9xy(st) _ ﬁ,‘g*
(2)(a ﬂ) x(st) Xy (st) Xy (st) xy(st) 2(2) 2 8 2 xy(st)

* * Qi(st)
Wiy i | By~ 5 | (68)
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9 aﬂ ) ) a . B o
BIaS (t (3)( )) IUY (30)((5,[) ga X(St) ﬂQ St) 4 Qx(st) - 219Xy(st) +E]9)(y(8t) +— 2 lgxy(st)
l ﬂ&' Q Q éQ*

+ 2 xy(st) st) IB x(st) +W 3)/JX X(st) 2 x(st) |- (69)

The MSEs of ts(.)( p) 1s expressed by,
* *2

MSE( s(i)(a 8 )):KO(i) o+ Wi Ky Wiy Koy + Wi Ky +Wagy Way Kagy + Wiy Ky (70)
where,
K;(n = Hy (Q”Z‘st) "‘4Qx(st) —8a Q;(st) -8p Q?((st) +4a° Qj((st) +4/5 Q;k((st) +8af Qi(st) +4'9xy(st) —4a l9xy(st)

4ﬂ xy(st))
K1(1) Hy (1+Q'y'zst) +Qx(st) +20 Q;k((st) +4‘9xy(st) 89, sty T 4p° Qx(st))

K2(1) Hy (ZQ,y'E‘st) +10ny(st) 12ﬂcxy(st) +6Qx(st) —ba Qx(st) 145 Qx(st) +16a3 Qj((st) +8ﬂZQ;(st)
—8a 8 )
K3(1) :ux Q x(st) » KZ(D = 24y Ly (4ﬁ Qt((st) _ZQ?((st) —l%(st)) ,

5(1) = 24y fy (205 Qz(st) +2p Qj((st) -2 Qi(st) - lg:y(st) )

K;(z) = Hy (Q'y';st) +Qi(st) —20:Q) x(st) —2p Qx(st) +ta Qx(st) + Qx(st) +20f Qx(st) + 2'9xy(st) 20 ‘9:y(st)
“2B%ys).

I<1(2 = Hy (1+ QH(*st) +2 '9xy(st) 418 Xy (st) + 4ﬂ Q )

KZ(Z) = /uY (ZQ,y,zst) st) +5'9xy(st 4 19xy(st) _Gﬁ '9xy(st) an(st) +4aﬂQx(3t) + Zﬂ Qx(st 3ﬁgzx(st))
K3(2) Hy Qx(st) , 4(2) =24 Ly (213 Qx(st) x(st) I9:y(st)) ,

5(2) =24 ply (05 Qx(st) +p Qx(st) Qx(st) '9;y(st) ) ,
2 2
% 5% % a * ﬁ * aﬂ *
Kog = :U\? (Qy(st) +4Q, 4 —20Q x(st) Z,BQ 4 — Qe t TQx(st) +—Q,

5 (st)—4,9( +ad.

xy(st)
+,3 ‘9xy(st) )’
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2
* 2 * * ﬂ *
Ky = ty (1+Q'y'(st) X(st) ~ IB Q X(st) Yy (st) +288, wis) T 1 Qx(st)],

* % * 21 * 13 * ﬂz *
Ko =ty (ZQ (st) +109, v(st) +38 9, %y (st) +1OQx(st) 6a Q) _ZﬂQx(st) _Zan(st) +7Qx(st)
+af Q4 +208 )

K3(3) ,Ux Qx(st)l 4(3) Zﬂvﬂx( x(st) -p Q x(st) '9xy(st))
and

* % (04 % ,B * %
K5(3) =21, puy (ZQx(st) _EQx(st) _EQx(st) - gxy(st)J :

The optimum values of w;;, andw;;, from Eq. (70) are reproduced under remark 2, and given by,

Wf((_);)t — I<2(|) 2I<l(|)I< and W;?;;t — I<4(|) 2I<2(|)I<3(| (71)
1 * * %2 1 * * %2 *
4K1(i)K3(i) _K4(i) 4K1(i)K3(i) _K4(i)

Substituting the optimum values of w;,, andw;,, in Eq. (70), the expression of the minimum MSE

1(|)
of ts(.)(a p) 1 obtained as,

- (K K Kso) KZ?,)K3(,)—K1(,)K*2)

oM
4(') 4K1(I)K3(l)

min MSE( e, ﬂ)) (72)

Remark 3:
When there exist no non-response and no measurement error on both of the study and auxiliary
variables, then modifications to estimation procedures presented in the preceding sections are

followed as given by;
sample mean estimator of the study variable along with the expression of the variance can take the

L
Z Yhi L
. ~ h=1 " _ 2 2\ _ n
form as given by /i) — fys) = B and Var(:uy(st) ) = Z a (ﬂthvh) =My(st -
h h=1

Similarly, for the auxiliary variable, sample mean estimator is stated as

L
143
thi
~ PPk

14}
lux(st) - :ux(st) =

—, and an expression of its variance is given by
I"Ih

L
var( ,u)'('(st)) > P! (JZth(h )zn;'(st). The expressions of the different covariances are reduced to
h=1
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L
" " 2
the forms Cov(luy(st)/ux(st) ) = Z P ﬁ?h pYXhCYhCXh) ¢xy(st) ,
h-1
L
" ' 2 2 [
Cov(lux(st)/ux(st) ) = Z R 4Cn = A
h=L

L
" ' 2 i " ,
and COV(,uy(st),uX(st) ) = Z P, (ih PoxnCnCoxn ) ny(st) . where Musty = sy — Ast) and
h=1

’
¢xy(st) ¢xy(st) ny(st)

The proposed estimators of Eq. (42) are reproduced under remark 3, and the estimator is given by,
L) = (Iuy(st) H e + Wiy (ﬂ;(st) — Hyst) ) + Wiy Ay(st) ) Heyg for i=1,2,3 (73)

:ux (st) :ux(st)

Hys Hys
=+ (l-a) = Hyp = B——+(1-5)=

lux(st) /ux(st) /J (st) :ux(st)

! 1 " !
y2/ — U M — U
Hepy, = aexp| ——28 1 (1- o) exp| =80
:ux(st) + qu(st) /ux(st) + /Ux(st)

where H, =

! r 14} /
Hysty = Hyst Hysty = Hyst)
(2),5 ﬂexp ' " +(1_ﬁ)exp " ' ’
/ux(st) + /ux(st) :ux(st) + /ux(st)

! n
L — [ yr i u 7y
e = aexp| 200 |4 (1-a) 252 Jand i), = Bexp —X“‘) D4 (1-p) =
Hy(sty T Hy(sty Hyst) lux(st) + 4y (st) /ux(st)

Bias (ts(l)(a,ﬁ)) = Uy (Ux(st) Oyt ~ B Mysty t 4a1677x(st) +2 ¢xy(st) _2a¢xy(st) -2p ¢xy(st) W

(1+ ﬂﬂx(st) Thyst) ~ 2p ¢xy(st) )) = Wy Hx ( Mx(st) ~ 2p st ) ' (74)
Bias (tS(Z)(a,ﬂ)) = Hy [O‘ﬂ sty T Pyisty = Wgisty = B Prysy T Wogz) [ﬂ ﬂxém - nxéso + %Z(St) ~ by« J]
W) Hx [ﬂ”x(st) - nxgt) ] (75)
Bias (ts(3)(0,,ﬁ)) =ty [377x(st) - % Ay sty — ﬂnx(St) t f sty ~ 2¢xy(st) to ¢ (T Ig sy T Wo)
(l+§¢xy(st) ~Bst) ﬂnx st jj W) Hx (ﬂx(st) _§T7X(st)j- (76)
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The MSEs of ts(i)(a' p) 1s expressed by,

2 2
MSE {t ( s(i)(a, ,6’)) Vg T Wagiy Vigy T Wagiy Vo) T Wigiy Vagiy +Way Wagiy V agiy +Wagiy Vs, (77)

where,

Voo = (77y(st) +417, ) =827y =8B My +4X 2’7x(st) +4/5 Mysty + 82BNty T 4By =4 Dy
4By,

Vig = (1+ 77y(st) sty T 2Bty T4 By(sty —8B By T4 277x(st) ) ,

Vo = ( My + 106y =128 by + 671y — 61,0 =140, +160B17 ) +8/3°T1
—8ay ) '
Vo =Hx sy Vi = 2640 (41 =2 =By )
Vi = 2ty tx (205 + 2By = 211y ~ By )
Vo) = H (’7y(st) iy = 200y = 2B ey + & Ty + B ey + 208 ey + 2hy ) — 20 By
2By
Viy =y (L4 ) + 280 = 4B By + 45" Mg )
Vatey = e (21151 * sy + 5y =40 By =68 by = gy + 4By + 2 ey ~3P ey )
Vi =t Ty, Vi =24t (Zﬁ Meis) = ast) ~ By ) ’
Vi) = 21y i (@ Ty + Brlgay = Matsy = By ) ’
o W i ap

Vog = :U\? [n;'(st) + 47,y — 20 My — 2B s + 1 Mysty T 1 sty T 777x(5t) 4Py T A By T B Py ] )

" 9 ﬁz
Vig = :U? (1"' Myesty T sty ~ Zﬂﬂx(st) 44yt 2By + a1 My sty J ,

2

21 13 B
V2(3 = Hy (Zny (st) +10 ¢xy(st) + Bﬂ ¢xy(st) + 1077x(st) - 60”7)((50 - Z anx(st) - Z anx(st) + 7 nx(st) + aﬂnx(st)

+2a¢xy(st)) ,

V3(3) = ,U>2< (st » V4(3) =24, iy (an(st) -p Mty ~ ¢xy(st) ) ,
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a p
and v5(3) = ZIUY Hy (an(st) - E’]x(st) - Eﬂx(st) _¢xy(st)] .

The optimum values of w,;, andw,, from Eq. (77) are given by,

(M

opt __ VZ(i)v4(i) B 2V1(i)v5(i) and WPt — vA(i)VS(i) - 2v2(i)v3(i)
1) — 2 2() — 2 '
4vl(i)v3(i) N v4(i) 4V1(i)v3(i) - v4(i)

(78)

Substituting the optimum values of w,; andw,, in Eq. (77), the expression of the minimum MSE
of Li)(a,p) is Obtained as,
(VZ(i)V4(i)V5(i) _vg(i)v3(i) _vl(i)vt’z:(i)>

oG) 2
v4(i) _4V1(i)v3(i)

min MSE(t \Y%

s(i)(a,ﬂ)) = (79)

4. Results and Discussion

In this section, all of the proposed combined regression estimators are compared for their
efficiency using the criterion of absolute MSE. The MSEs of all estimators are computed by
changing the value of k following the four different situations; i)-when the non-response and the
measurement error are simultaneously present; ii)- when only the non-response is present; iii)-
when only the measurement error is present; iv)- when neither the non-response nor the
measurement error is present; and results are presented in table 1-4. MSEs of all the estimators are
also expressed by figures 1 and 2 by changing the value of k. The caption of each table shows the
situation under which the MSEs are computed in the given table. The efficiency comparisons of the
unbiased sample mean estimator, combined ratio estimator, and combined exponential ratio
estimator with usual combined regression estimator are computed numerically following the
conditions expressed by Egs. (22) to (24), and results are presented in table 5. In tables 6-8, the
efficiency comparison of the proposed generalized combined regression-cum-ratio estimators with
the proposed modified combined regression estimator is given using the condition expressed by
Eq. (57).

To compute the MSE of the estimator, an artificial stratified populated is generated using the R-
language. The stratified population is generated with arbitrary parameters of normal distribution.
Further description on parameters, population size and sample size are shown below.

Stratified Population: [Based on Simulated Normal Distribution]

stratum—1— X, = N (5000,4,15);z, = N (5000,0,1);Y, =50X, +15z;; y, =Y, + N (1,3); x, = X; + N (1,3);
stratum—2 — X, = N(5000,5,15);z, = N (5000,0,1);Y, =50X, +152,;y, =Y, + N (1,3); X, = X, + N (1,3);
stratum —3 — X, = N (5000, 6,15); z; = N (5000,0,1)Y, =50X, +1525; y, =Y; + N (1,3); X, = X; + N (1,3);
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Stratum N, oy, Hyn My, o o, o o

1 5000 0.98 183.62 3.67 9.19 9.32 543610.50 227.16
2 5000 0.98 248.67 4.97 9.19 9.25 583685.70 242.30
3 5000 0.98 301.68 6.04 9.10 9.18 578114.50 240.50
Stratum nr'1 nr’: O-)Z/h(z) o-ih(z) O'LZJh(Z) o-\fh(z) Pyxn(2)

1 500 300 575428.90 230.66 9.15 9.75 0.99

2 500 300 599476.60 239.94 9.14 8.80 0.99

3 500 300 577044.10 230.86 9.32 8.63 0.99

The MSEs of the estimators are computed, and results are presented in table 1.
Table 1:
Figure 1:
Table 2:
Table 3:
Figure 2:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:

From table 1-4, this can be noted that the two proposed estimators, usual combined regression
estimator . , and modified combined regression estimator {;, are equally efficient as these are

achieving same MSE values whereas usual combined ratio estimator {;, and usual combined
exponential ratio estimator f; have their MSEs larger than the MSEs of £ and ;. These results

are also confirmed by the required conditions shown in Egs. (12) to (14), and are also computed
numerically in Table 5. Therefore, subsequently proposed generalized combined regression-cum-

ratio estimators f:(i)(a,ﬁ) for i=1,2,3 are compared only with f; and f;, based on their MSE

values. Further from Table 1-4, it is observed that the proposed estimators f:(i)(a, p fori=1,23 are

more efficient than f; and f, , as the bold figures in tables 1-4 indicate, the MSE values of

reg
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t
s(i)(. )
required conditions shown by (40) are met, and the required conditions are computed numerically

in tables 6-8.

are smaller than the MSE values of £ and ;. These results are also confirmed as the

Form figures 1-2, it is much easier to understand that MSEs of each estimator is increasing as sub-
sample size of recontact is decreasing which is expected for each estimator. Sub-group sized is
decreased as the value of k is increased. However, figures 1-2 are also clearly indicating that the

proposed generalized combined regression-cum-ratio estimators f:(i)(a’ﬁ) for i=1,2,3 are achieving

smaller MSE values than the MSE of t; . Whereas MSE of 7 is smaller than usual combined
ratio estimator, and usual combined exponential ratio estimator.

5. Conclusion

In the present study, usual combined regression estimator f; and modified combined regression
estimator f;, for mean estimation in stratified two-phase sampling are concluded to be equally
efficient, however both types of combined regression estimators are remained more efficient than
usual combined ratio estimator ' and usual combined exponential estimator f’. Another proposed
generalized combined regression-cum-ratio estimators f:(i)(aﬁ) for i=1,2,3 is found to be the most

efficient class of estimators as all combined regression-cum-ratio estimators attain least MSE
values than the MSEs of all the estimators discussed in the text. Therefore it is concluded from

tables 1-8, that the proposed generalized combined regression-cum-ratio estimators f:(i)(a’ 5) is the

most efficient and more generalized combined estimator of mean than ¢, f: {, and ;.

Further, it is also concluded that fs*(i)(m p) Performs well in all of the four situations. Therefore, the

proposed generalized combined regression-cum-ratio estimators f:(i)(a,ﬁ) for i=1,2,3 are

recommended for their applications of mean estimation under stratified two-phase sampling when
the two components of survey error, the non-response and the measurement error are present
simultaneously.

This study may be extended for mean estimation assuming the simultaneous presence of non-
response and measurement error in different sampling designs, such as multistage sampling, and
ranked set sampling. For estimation of unknown parameter(s) under ranked set sampling schemes,
one can find Zamanzade and Mahizadeh [38], Zamanzade and Wang [39], and Dumbgen and
Zamanzade [40] worth reading and helpful for future work.
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Figures Captions

Figure 1: MSEs of the all estimators at different values of k with presence of the non-response and
measurement error

Figure 2: MSEs of the all Estimators with presence of the only non-response

Tables Captions

Table 1: MSEs of all Estimators with presence of the non-response and measurement error
Table 2: MSEs of the all estimators with presence of the only measurement error

Table 3: MSE values of all estimators with the only presence of the non-response

Table 4: MSE values of all estimators without presence of the non-response and measurement
error
Table 5: Efficiency comparisons of 7 with t7,t;,t;

Table 6: Efficiency comparison of ts(l)(a, p) With £,

g 3

Table 7: Efficiency comparison of ts(z)(a, 5) with £

Table 8: Efficiency comparison of s with £*

reg
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Table 1:

37

1k
(a.B) Estimators 2 113 Y 1/5
£ 885.23 1105.39 132554 154570
£ 464.50 481.27 498.05 514.83
£ 528.46 587.66 646.87 706.08
f® 452.89 469.29 485.33 501.19
t00) 450.55 466.93 482.95 498.80
(0,0) ty00) 450.05 466.33 482.25 497.99
t)00) 447.99 463.70 479.00 494.08
t009) 427.76 428.32 424.93 417.90
(0,05) t2009) 444.68 457.89 470.21 481.87
ta009) 446.61 461.58 476.02 490.15
toa) 438.17 446.64 453.18 458.05
0.1) oo 444.66 457.85 470.14 481.76
2 x
g Lia)00) 446.63 461.61 476.07 490.22
E '
E’ Lw(05.0) 452.45 469.24 485.30 500.82
2 (0.5,0) t0s0) 451.32 468.13 484,51 500.66
o
Q. g
< L) 05.0) 448.98 465.10 480.85 496.41
t0s.09) 435.52 442.71 447.75 450.89
(0.5,0.5) to)05.05) 446.95 461.77 476.04 489.97
te)05.05) 44773 463.23 478.28 493.09
tyosa) 443.93 456.95 469.10 480.63
(0.5,1) to ) 446.94 461.74 476.00 489.91
tas) 44775 463.25 478.32 493.15
two) 452.85 468.18 481.66 493.42
(L0) N
L2 w0) 452.21 469.10 485.33 501.09



~

ts*(g)(l,o) 449.87 466.30 482.37 498.29
fs*(l)(lyof,) 441.84 454.00 465.18 475.60
(1,05) fs*(z)(l,o.s) 448.85 464.84 480.46 495.89
tanos) 448.75 464.68 480.22 49558
f4:(1)(1,1) 448.27 464.15 479.63 494.94
L.1) fs*(Z)(l,l) 448.84 464.83 480.44 495.86
fs*(g)(lyl) 448.76 464.70 480.25 495.62
Note: = e =80 =T =5 -
Table 2:
(a, ,8) Estimators MSE (a, ,8) Estimators MSE
t, 665.07 f45(1)(0.5,0.5) 407.61
£ 421.28 (0.5,0.5) fs(2)(0.5,o.5) 412.42
t! 462.64 s ax05.09) 412.87
f® 416.51 (0.5,1) fs(l)(o_m) 411.07
fs(l)(o,o) 414.11 fs(z)(o_g,,l) 412.42
0,0) fo00) 413.89 w0 faosa) 412.87
fs(s)(o,o) 413.01 fs(l)(l,o) 416.21
o fs(l)(o,o.s) 404.42 fs(Z)(l,O) 415.26
g (0,05) fy2009) 411.36 105) fano) 41387
% fs(3)(0,0.5) 412.38 fs(l)(l,o_g,) 410.30
(Uéi two) 408.53 foos 413,36
o g ~
0,1) L200) 411.35 1) La)05) 413.32
fs(3)(0,1) 412.39 fs(l)(l,l) 413.12
©50) fs(l)(o.s,o) 415.41 t:s<z)(1,1) 413.36
5(2)(05.0) 414.63 Ly 413.33
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~

t

5(3)(0.5,0)
Table 3:
1k
(a.B) Estimators 2 113 1/4 1/5
t; 885.22 1105.37 1325.52 1545.67
t 393.91 393.99 394.07 394.15
t 510.80 565.83 620.86 675.89
£*® 393.63 393.79 393.92 394.02
w00 391.15 391.28 391.38 391.45
(0,0) te00) 391.12 391.27 391.38 391.48
te)00) 390.83 390.96 391.04 391.11
t00s) 372.07 358.49 341.70 321.83
(0,05) t008) 386.74 384.35 381.53 378.29
t(00s) 380.89 389.56 380.16 388.70
o 380.62 373.81 365.57 355.97
©0.1) B 386.72 384.32 381.48 378.22
LI 389.90 389.58 380.18 388.74
s 393.32 393.78 393.79 393.36
(0.5,0) to050) 392.46 393.05 39351 393.85
t050) 391.30 391.60 391.86 392.11
ty05.05) 380.27 373.38 365.06 355.37
(0.5,0.5) teo0509) 389.11 388.27 387.29 386.20
te)05.05) 390.43 390.35 390.23 390.07
*
g Ly 0s.) 386.77 384.51 381.87 378.90
15
E *
s (05D L05) 389.10 388.25 387.27 386.17
o] %*
3 La05.) 390.44 390.37 390.24 390.10
Qo
£ (L,0) o) 393.43 391.92 388.65 383.58
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*

Lo 393.30 393.77 393.81 393.43
L) 391.72 392.16 392,54 392.89
twos) 386.52 384.21 381.54 378.52
(1,0.5) o wos) 390.99 391.15 391.27 391.38
teos) 390.93 391.06 391.16 391.24
Loy 390.97 391.16 391.30 391.43
(1,1) o) 390.98 391.14 391.26 391.37
t) 390.94 391.07 391.17 391.26
Table 4:
(a.B) Estimators MSE (a.B) Estimators MSE
t, 412.75 Lwy(05.05) 231.39
t, 251.00 0505 L0505 234.42
t, 258.20 L3)05.05) 234.45
t8 236.01 Lay(05.) 233.60
L100) 235.52 (0.5,1) Lio0s2) 234.41
(0,0) L200) 235.32 Lia)0sa) 234.45
L 00) 234.46 L) 236.01
é Lny003) 229.88 (1,0) L) 235.76
g (0,05) Loy 00s) 233.97 L) 235.10
_LI; ts(3)(0,0.5) 234.07 ts(l)(1,0.5) 232.69
D
g L) 232.48 (1,0.5) Lio(w09) 234.80
o 0,1) L0 233.97 Lia)(w09) 234.79
ts(3)(0,1) 234.07 ts(l)(l,l) 23451
L1y (05.0) 235.88 (1,1) Ly 234.80
(05,0) L2(05.0) 23557 Laywy) 234.79
L(3)(05.0) 234.80
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Table 5:

fogvs Ty 0.01457>0

th,vs B 0.00682>0

fe,vstsr 0.00828>0

Table 6:
P2y =0-48839 Py =0-57544 Pl =063386 | pZ o =0.67574
Estimators Yo 1/3 Ya 1/5
t"s(l)(O o) VS t 0.49103> p2 0.57758> p2 0.63566> o2 ) 0.67729> p2
Ein(00s) VS tre 051677> p2, ., 061251> 2, | 0.67942> p2 0.72961> p2,
Lo V8 g | 0505025 2 ) 059504> p2 . | 0.65811> p2 0.70366> p? .,
fs*(l)(O.S,O) 'S treg 0.48888> p2 0.57549> p2 0.63388> p2 ) 0.67599> p2
fonosos) VS b | 0508025 of 059949> 2, | 0.66221> pZ, 0.70829> p2,
t"s"(l)(05 VS fr"e 0.49851> pf 0.58661> pf ) 0.64610> pZ ) 0.68905> pZ )
t"s(l)(1 0 VS t 0.48844> pf 0.57645> pf ) 0.63663> pf ) 0.68077> pZ )
t"s"(l)(1 05) S tre 0.50087> p2 0.58928> p2 0.64906> p2 0.69230> p2
't's(l)(1 ) Vs t 0.49360> p . 0.58010> p2 . 0.63815> p2 . 0.67979> p?
Table 7:
Plysry =0:48839 Py =0.57544 Piyy =0.63386 | p2  =0.67574
Estimators Yo 1/3 Ya 1/5

fs(z)(o o) VS t 0.4916> p2 0.57812> p? . 0.63619> p2 . 0.67782> p2
t"s"(z)(0 05) S tre 0.49766> o ., 0.58577> pf ., 0.64527> p? . 0.68825> o .,
fs(z)(o ) VS t 0.49769> pf ) 0.5858> pZ ) 0.64532> pf ) 0.68832> pf )
fs*(2)(0.5,0) VS treg 0.49017> pf ) 0.5765> pZ ) 0.63448> p2 0.67609> pf )
fioos0s) VS Ty | 0:4952> 3, 058226> p2 ., | 0.64087> p?, . 0.68301> o2, o,
fioosy) VS Ty | 0:49512> 2 058228> p2 | 0.64091> p?, 0.68305> p?,
fs(z)(l o) VS t 0.48916> p ., 0.57562> p o, 0.63387> o o, 0.67582> p2 .
f;(a(l,o.s) Vs treg 0.49295> p? 0.57947> pf . 0.63754> p? . 0.67918> o7 .
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Ty VS Teg | 049296> o7 057949> p2 | 0.63755> pZ, 0.6792> p?
Table 8:
Pl 048839 | p?  =0.57544 P2, =0.63386 | p? . =0.67574
Estimators Yo 1/3 Ya 1/5
fs*(S)(o,o) vs fn, | 049392>p2 0.58051> p2 ., | 0.63864> 2 0.68035> o .
fs*(3)(o,0.5) vs e, | 049549>p2 | 058243>p2 | 0.64088> o2, 0.6829> o2, .
fs*(3)(0,1) Vs f,’;g 0.49547> pZ 0.58241> pZ ) 0.64084> pZ ) 0.68285> pf )
fos0) VS g | 0492852 ) 057924> p2 | 0.63724> p2, 0.67884> o2,
t"s*(3)(ol5’0.5) vs B, | 0494225 p2 0.58093> p? | 0.63918> p? 0.68099> 2, )
fs*(S)(O.S,l) vs e, | 0.49421> 02, 0.58091> p? | 0.63915> p? 0.68095> 2, )
fs*(s)(l,o) Vs f,’;g 0.49181> pZ ) 0.57815> pZ ) 0.63609> pZ ) 0.67763> pf )
fs*(S)(l,O.S) VS t"r';g 0.49307> pZ ) 0.57962> pf ) 0.63771> p2 0.67938> pf )
fs*(3)(1’1) vs e, | 049306> 2, | 057961> 2, | 0.63769> p2 0.67935> p?,
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