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Abstract. In this study, three classes of generalized and more e�cient combined
regression-cum-ratio estimators are presented to estimate the population mean of the
study variable in strati�ed two-phase sampling considering non-response and measurement
error are present jointly. The expressions for the bias and mean square error of the
three proposed generalized combined regression-cum-ratio estimators have been obtained.
Optimal conditions which make the proposed generalized regression-cum-ratio estimators
more e�cient than modi�ed combined regression estimator are discussed. The performance
of the proposed generalized combined regression-cum-ratio estimators has been compared
theoretically as well as empirically with various combined type estimators in strati�ed
two-phase sampling including usual combined ratio estimator, usual combined exponential
ratio estimator, usual combined regression estimator, and modi�ed combined regression
estimator. An empirical study shows that the proposed generalized combined regression-
cum-ratio estimators perform more e�ciently than all combined type ratio, exponential
ratio, and regression estimators discussed in the study.

© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

In survey sampling, usually, it is presumed that all
the observations of the variables under study are
adequately measured and all units in the sample give
a response. But in reality, such assumption infringes,
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because not all units respond and also measurement
errors may arise due to the di�erence between the
recorded and true values. Hence with these reasons the
statistics are not error-free. In practice, it is therefore,
researchers may need to deal with the problem of non-
response and measurement errors if present jointly.
Generally, non-response and measurement error are
debated separately using supportive information.

Sanaullah et al. [1] proposed the \generalized
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exponential-type ratio-cum-ratio and product-cum-
product estimators in the presence of non-response
under strati�ed two-phase sampling. Sanaullah et
al. [2] taking inspiration from Samiuddin and Hanif [3]
and Sanaullah et al. [4], proposed the generalized
exponential-type estimators in the presence of non-
response under strati�ed random sampling by using
two auxiliary variables. Saleem et al. [5] taking
inspiration from Koyuncu and Kadilar [6], proposed
the generalized estimators in strati�ed sampling us-
ing two auxiliary variables in the presence of non-
response. Saleem et al. [7] suggested the general
class of estimators in the presence of non-response
using two auxiliary variables. Shabbir et al. [8]
extended Grover and Kaur [9] di�erence type estimator
and suggested a generalized class of estimators for
�nite population mean in two-phase sampling using
two auxiliary variables in the presence of non-response.
Khare and Jha [10] advised six classes of di�erent
ratio-type estimator of mean in strati�ed sampling
assuming the existence of the non-response. Some more
studies are available for estimation of mean considering
the presence of the non-response. One can see for
example, Singh and Usman [11], Unal and Kadilar [12],
Sanaullah and Hanif [13], Ehsan and Sanaullah [14],
Sanaullah et al. [15], Wu et al. [16], and Varshney and
Mradula [17] among many other.

Cochran [18] is supposed to be the �rst who
suggested an unbiased estimator assuming the occur-
rence of measurement error only. Many researchers
following Cochran [18] have studied the problem of
mean estimation considering the measurement errors
only. Singh and Karpe [19] provided di�erent separate-
type and combined-type ratio and product estimators
in strati�ed sampling assuming the existence of the
measurement error. Shukla et al. [20] taking moti-
vation from Manisha and Singh [21], proposed a dual
to ratio estimator of mean in the presence of mea-
surement error. Masood and Shabbir [22] suggested
a generalized regression type estimators for estima-
tion of �nite population variance of study variable
using multivariate supportive information under multi-
phase sampling scheme taking measurement error on
the study variable. Khalil et al. [23] suggested a
generalized combined regression-cum-ratio estimator in
strati�ed sampling using scrambled responses in the
presence of measurement error. Shalabh and Tsai [24]
presented ratio and product estimation procedures
keeping the correlated measurement error in their
consideration. Khalil et al. [25] highlighted the issues
when measurement error can be present in the survey,
and then provided a generalized estimator of mean
using auxiliary variable. Keeping the presence of the
measurement error in view as one component of survey
error, there exist several studies for estimation of mean
using auxiliary variable in simple random sampling and

strati�ed random sampling as well. For more detail,
one can see for example Singh et al. [26], Yaqub and
Shabbir [27], and Singh et al. [28] including many
other.

After having a careful review of the existing
studies for the estimation of mean, it can be noted
that the individual components of the survey error
have been well documented in the literature, however
relatively little is known about the intersection of
these components of survey error. The researchers
who have studied the measurement errors as individual
component of error for estimation mean, have ignored
the non-response as another possible component of
survey error similarly those who have studied the
non-response, have ignored the possibility of existence
of the measurement errors, whereas in many real-
situations both components of the survey errors may be
present. One may have to deal with while estimation
of mean if these both types of errors, non-response and
measurement errors are existing jointly. Consequently,
ignoring the existence of any component of error will
yield the estimate(s) with a relatively larger amount of
the bias. A few numbers of researchers have debated
the estimation of mean in simple random sampling
assuming the joint existence of the non-response and
the measurement error, such as, Azeem [29] studied
the problem of mean estimation considering the joint
in
uence of the non-response and measurement error;
Kumar et al. [30] proposed the exponential ratio-
type estimator in the presence of non-response and
measurement error; Kumar [31] extended the work
of Azeem [29] and provided a class of more e�cient
estimators to estimate the population mean; Azeem
and Hanif [32] suggested di�erent types of estimators
including dual to chain ratio estimator, a ratio-cum-
dual to ratio-type exponential estimator, and ratio-cum
dual to exponential ratio estimator; Irfan et al. [33]
provided an optimum class of estimators for mean in
simple random sampling. Sabir and Sanaullah [34]
revisited Kumar [31] estimator and, hence provided a
note on correct usage of Kumar's [31] for estimation
of mean if the wo components of errors are present
simultaneously.

A few more studies have been presented the
studies in strati�ed random sampling. Zahid and
Shabbir [35] suggested a class of estimators for mean
estimation whereas Kumar et al. [36] suggested a
ratio-cum-product exponential type estimator of the
population mean in the joint existence of non-response
and measurement error using two auxiliary variables.
However in both of the studies seprate type estimator
in strati�ed random sampling are advised for mean
estimation when the two components of error are
existing simultaneously.

After having a very careful review, it is felt
that only a few research studies have discussed the
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estimation of mean in strati�ed random sampling but
these studies provide only separate-type estimators
of mean. It is also observed that mean estimation
is discussed under simple random sampling whereas
estimation in some other sampling designs such as
strati�ed sampling and multi-stage sampling design is
completely ignored. Another thing can also be felt
that most of the existing estimators in simple random
sampling and in strati�ed random sampling as well,
are proposed under the assumption if population mean
of the auxiliary variable is readily availble. However
in many real situations such auxiliary information
may not be readily avaiable and use of two-phase
sampling is one of the possible alternates in such situ-
ations. Otherwise existing estimators can not be made
useful for mean estimation unless they are modi�ed
accordingly. Hence many gaps are found to work
on. Therefore assuming the situation when population
mean of the auxiliary variable is not readily available,
this study is motivated to present some combined-type
estimators for mean estimation in strati�ed two-phase
sampling.

Now in order to �ll some of the gaps as stated in
previous text, the objective of this study is to provide
some generalized classes of more e�cient combined
type estimators for estimating the population mean of
study variable following few assumptions such as:

(i) The two components of survey errors, the non-
response, and the measurement error are simultane-
ously present;

(ii) Population mean of the auxiliary variable is not
ready available in prior of the survey;

(iii) Units of the population under observation are
not homogeneous;

(iv) Relationship between the study variable and the
auxiliary variable is same in each stratum;

(v) Ratio between the means of the study variable
and the auxiliary variable in each stratum is approx-
imately equal to the ratio of the strati�ed means so
as to get combined type estimators.

The study is then prompted to get such condi-
tions which make each of the proposed generalized
classes of the combined type estimators more e�cient
than combined-regression estimator. Furthermore, the
study is motivated to evaluate the proposed class
of e�cient combined type estimators for its perfor-
mance with the combined ratio estimator, combined
exponential-type ratio estimator and combined regres-
sion estimator in strati�ed two-phase sampling. In
the present study it is discussed that the proposed
combined estimators can be molded into three di�erent
situations of real-life which are given separately as three
remarks. In the following sections, some notations and

sampling procedure for estimation of mean with the as-
sumption of simultaneous existence of the non-response
and the measurement error are discussed along with
some results which will be helpful for observing the
properties of an estimator. An attempt has also been
made to compare the Mean Square Errors (MSEs)
of the proposed estimators with the MSEs of the
existing estimators. A simulation study is performed
to compute MSEs of all the estimators discussed in
the text. The simulation results are also demonstrated
through the graphs to have a quick understanding with
the performance of all the estimators by changing the
non-response proportion.

2. Notations and strati�ed two-phase sampling

Before to present strati�ed two-phase sampling and
estimation procedures, some basic notations to be used
in this text are de�ned. Let a population of size N
be divided into L homogeneous strata with Nh units

(h = 1; 2; � � � ; L) such that
LP
h=1

Nh = N .

Notations

N Population size
Nh Population size of hth stratum
YnX Study variablenAuxiliary variable
�Yn�X Population mean of Y nPopulation of

X
�Y hn�Xh Population means in hth stratum
�Y h(1); �Xh(1) Population means of respondents group

in hth stratum
�Y h(2); �Xh(2) Population means of group of

non-respondents in hth stratum

�2
Y h; �

2
Xh Population variances of Y&X

respectively in hth stratum

�2
Y h(1); �

2
Xh(1) Population variances from group of

respondents in hth stratum

�2
Y h(2); �

2
Xh(2) Population variances from group of

non-respondents in hth stratum
CY h(1); CXh(1) Coe�cient of variations for Y&X from

group of respondents in hth stratum
CY h(2); CXh(2) Coe�cient of variation from group of

non-respondents in hth stratum
yhinxhi Reported values on Y and X for ith

unit in hth stratum
YhinXhi True values on Y and X for ith unit in

hth stratum
Uhi=yhi�Yhi Measurement error on the study

variable associated with ith unit in hth
stratum



1570 A. Sanaullah and S. Sabir/Scientia Iranica, Transactions E: Industrial Engineering 31 (2024) 1567{1595

Vhi=xhi�Xhi Measurement error on the auxiliary
variable associated with ith unit in hth
stratum

U�hi=y�hi�Y �hi Measurement error and non-response
on Y associated with ith unit in hth
stratum

V �hi = x�hi �X�hiMeasurement error and non-response
on X associated with ith unit in hth
stratum

�2
Uh(2) &�2

V h(2) Population variances of U and
V respectively from the group of
non-respondents

�Y Xh(1)& Coe�cients of correlation between the
�Y Xh(2) study and auxiliary variables for the

respondent and non-respondent parts
of the population
respectively

Ph =
Nh
N

Weight of hth stratum

n0h First-phase sample size in hth stratum
n00h 2nd-phase sample size in hth stratum

n0 =
LX
h=1

n0h First-phase strati�ed sample size

n00=
LX
h=1

n00h 2nd-phase strati�ed sample size

�0x(st) Sample mean estimator based on
�rst-phase sample

~�00�y(st)n~�00�x(st) Sample mean estimator (for y and
x) based on 2nd-phase sample with
non-response and measurement error.

Now consider,

�Y =
LX
i=1

Ph�Y h �X =
LX
i=1

Ph�Xh;

where:

�Y h =
1
Nh

NhX
i=1

yhi; �Xh =
1
Nh

NhX
i=1

xhi and Ph=
Nh
N
:

The measurement errors U�hi = y�hi�Y �hi and V �hi =
x�hi�X�hi in the presence of non-response associated are
assumed to have their means zero and the variances
�2
Uh(2) and �2

V h(2) for the non-respondent part of the
population.

Unknown population mean of the auxiliary vari-
able is estimated using strati�ed two-phase sampling.
Let (yhi; xhi) be the observed values instead of true
values (Yhi; Xhi) of the two characteristics (Y;X)
respectively associated with ith sample unit of hth

stratum where, ith (i = 1; 2; � � � ; n0h). Now we take
a �rst-phase sample comparatively of large size say

n0h from each hth stratum such that
LP
h=1

n0h = n0 and

information on the variable X is obtained. Now a usual
unbiased mean estimator based on �rst-phase sample
information in strati�ed sampling is de�ned by:

t0u=�0x(st) =
LX
h=1

Ph�0xh where �0xh=
1
n0h

n0 hX
i=1

xhi; (1)

with variances given by:

var (t0u) = �2
Y

LX
h=1

P 2
h�
0
h C

2
Xh: (2)

A sub-sample of size n00h (� n0h) from each stratum

is taken as 2nd-phase sample such that
LP
h=1

n00h = n00

by simple random sampling without replacement and
information on variables Y is taken. Here it is
assumed that measurement error and non-response are
jointly present. It is also assumed that only n00h(1)
sample units respond and n00h(2) =

�
n00h � n00h(1)

�
do

not. Following Hansen and Hurwitz [37] technique,
let rh

�
= n00h(2)

kh ; kh > 1
�

be a sub-sample of the indi-
viduals who do not respond to the survey question(s)
but respond when they are contacted again for their
personal interviews, where kh is the inverse sampling
ratio. It is further assumed that all rh units respond
while interviewing them for the study variable.

Following Hansen and Hurwitz [37] an unbiased
estimator of means is reproduced for Y and X variables
in strati�ed sampling as:

~t�u = ~�00�y(st) =
LX
i=1

Ph~�00�yh; l; (3)

where ~�00�yh=w1(�00yh(1)+�00Uh(1))+w2(�00y(2)kh+

�00U(2)kh), w1=n00h(1)
n00h , w2=n00h(2)

n00h , �00yh(1)= 1
n00h(1)

,
n00h(1)P
i=1

yhi, �00Uh(1)=
1

n00h(1)

n00h(1)P
i=1

Uhi, �00y(2)kh= 1
rh ,

rhP
i=1

y00�hi, �00yh(2)kh= 1
kh

khP
i=1

y00�hi, and

�00Uh(2)kh= 1
kh

khP
i=1

U�hi:

The expression of the variance ~t�u may be de�ned
as,

var
�~t�u� =�2

Y

LX
h=1

P 2
h

�
�2h

�
C2
Y h +

�2
Uh
�2
Y

�
+�2h

 
C2
Y h(2) +

�2
Uh(2)

�2
Y

!!
; (4)
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where, �2h =
�

1
n00h � 1

Nh

�
, �h =

�
1
n0h � 1

Nh

�
, Wh(2) =

Nh(2)
Nh , �2h = Wh(2)(rh�1)

n00h .

Similarly, for the auxiliary variable, sample mean
estimator is:

~�00�x(st)=
LP
i=1

Ph ~�00�xh, where

~�00�xh= w1

�
�00xh(1) + �00V h(1)

�
+

w2

�
�00x(2)kh + �00V (2)kh

�
, w1 = n00h(1)

n00h , w2 = n00h(2)
n00h ,

�00xh(1) = 1
n00h(1)

n00h(1)P
i=1

xhi, �00V h(1) = 1
n00h(1)

n00h(1)P
i=1

Vhi,

�00x(2)kh = 1
rh

rhP
i=1

x00�hi, �00xh(2)kh = 1
kh

khP
i=1

x00�hi, and

�00 ~V h(2)kh = 1
kh

khP
i=1

Vhi.

3. Method of mean estimation in strati�ed
two-phase sampling

In this section, method for estimating population
mean of the study variable is presented under the
assumption, the non-response and the measurement
error are jointly occurring on both variables, the study
variable and the auxiliary variable in strati�ed two-
phase sampling. It is also assumed that population
of the auxiliary variable is not known in prior of
survey; relationship between the study variable and
the auxiliary variable is same in stratum; ratio between
the means in each stratum is approximately equal to
the ratio of the strati�ed means. Method of mean
estimation in strati�ed two-phase sampling is proposed
under three di�erent procedures separately in the three
following sub-sections.

3.1. Procedure I: Proposed class of usual
combined type estimators

Now, for estimation of population mean, three modi�ed
combined type of estimators named as, usual combined
ratio estimator, usual combined exponential ratio esti-
mator, and usual combined regression estimator follow-
ing the assumptions in strati�ed two-phase sampling
are given respectively by:

~t�ra =
~�00�y(st)

~�00�x(st)
�0x(st); (5)

[modi�ed combined ratio estimator]

~t�er = ~�00�y(st) exp

 
�0x(st) � ~�00�x(st)

�0x(st) + ~�00�x(st)

!
; (6)

[modi�ed combined exponential ratio estimator]
and

~t�reg = ~�00�y(st) + w
�
�0x(st) � ~�00�x(st)

�
; (7)

[modi�ed combined regression estimator]
where w is an optimizing constant.

In order to obtain the expressions for the bias
and the MSEs of Eqs. (5){(7), let us consider,

W �Y h=
n00hP
i=1

�
y00�hi � �Y h�, W �Xh=

n00hP
i=1

�
x00�hi � �Xh�,

W �Uh =
n00 hP
i=1

U�hi, W �V h =
n00 hP
i=1

V �hi and WXh=

n0hP
i=1

(x0ih � �Xh).

Now the errors due to sampling are de�ned by:

~e00�y(st) =
1
�Y

LX
h=1

Ph
n00h

(W �Y h +W �Uh) ;

~e00�x(st) =
1
�X

LX
h=1

Ph
n00h

(W �Xh +W �V h) ;

and

e0x(st) =
1
�X

LX
h=1

Ph
n0h

(x0hi � �Xh) ;

and the sample means associated with the sampling
errors assuming the joint presence of non-response and
measurement error are de�ned by: ~�00�y(st)= �Y (1 +
~e00�y(st)), ~�00�x(st)= �X(1 + ~e00�x(st)), and �0x(st)= �X(1 +
e0x(st)), such that E(~e00�y(st))=E(~e00�x(st))=E(e0x(st))=0,

E
�

~e00�y(st)

�2
=

LX
h=1

P 2
h

 
�2h

�
C2
Y h +

�2
Uh
�2
Y

�
+ �2h

 
C2
Y h(2)+

�2
Uh(2)

�2
Y

!!
= ~A00�y(st);

E
�

~e00�x(st)

�2
=

LX
h=1

P 2
h

 
�2h

�
C2
Xh +

�2
V h
�2
X

�
+ �2h

 
C2
Xh(2)+

�2
V h(2)

�2
X

!!
= ~A00�x(st);

E(~e00�y(st)~e
00�
x(st)) =

LX
h=1

P 2
h (�2h �Y XhCY hCXh + �2h

�Y Xh(2)CY h(2)CXh(2)) = ~C 00�xy(st);

E
�
e0x(st)

�2 = E
�

~e00�x(st)e
0
x(st)

�
=

LX
h=1

P 2
h�hC

2
Xh

= A0x(st);

and
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E
�

~e00�y(st)e
0
x(st)

�
=

LX
h=1

P 2
h (�h �Y XhCY hCXh)

= C 0xy(st);

where ~A�x(st)= ~A00�x(st) � A0x(st) and ~C�xy(st)= ~C 00�xy(st) �
C 0xy(st).

3.1.1. Derivation of the biases and MSEs expressions
of the estimators

Now ~t�ra, ~t�er and ~t�reg are given alternatively in terms
of e, s by:

~t�ra =
�Y
�

1 + ~e00�y(st)

�
�X
�

1 + ~e00�x(st)

��X �1 + e0x(st)
�
; (8)

~t�er =�Y
�

1 + ~e00�y(st)

�
exp

0@�X �1 + e0x(st)
���X �1 + ~e00�x(st)

�
�X
�
1 + e0x(st)

�
+�X

�
1 + ~e00�x(st)

�1A ; (9)

and

~t�reg =�Y
�

1 + ~e00�y(st)

�
+w

�
�X
�
1+e0x(st)

� ��X �1+~e00�x(st)

��
; (10)

or alternatively by:

~t�ra � �Y = �Y
�
~e00�y(st) + e0x(st) � ~e00�x(st) + ~e00�2x(st)

�~e00�x(st)e
0
x(st)�~e00�y(st)~e

00�
x(st)+~e00�y(st)e

0
x(st)

�
;(11)

~t�er � �Y = �Y
�

~e00�y(st) +
e0x(st)

2
� ~e00�x(st)

2
+

3
8

~e00�2x(st)

� e02x(st)

8
� ~e00�x(st)e0x(st)

4
� ~e00�y(st)~e00�x(st)

2

+
~e00�y(st)e0x(st)

2

�
; (12)

and,

~t�reg��Y = �Y ~e00�y(st) +w�X
�
e0x(st)�~e00�x(st)

�
: (13)

The expressions of the biases for each of ~t�ra, ~t�er and
~t�reg up to the order O

�
n�1� are given by:

Bias
�~t�ra� = �Y

�
~A�x(st) � ~C�xy(st)

�
; (14)

Bias
�~t�er � = �Y

�
3
8

~A�x(st) � 1
2

~C�xy(st)

�
; (15)

and

Bias
� ~t�reg

�
= 0: (16)

From Eq. (16), we get that the regression estimator
~t�reg is an unbiased estimator while ratio estimator ~t�ra
and exponential estimator ~t�er are biased estimators,
see the Eqs. (14) and (15). Further expressions of the
MSEs for each of ~t�ra, ~t�er and ~t�reg, are obtained up to
the order O

�
n�1� and are given by:

MSE
�~t�ra�=�2

Y

�
~A00�y(st) + ~A�x(st)� 2 ~C�xy(st)

�
; (17)

MSE
�~t�er�=�2

Y

�
~A00�y(st) +

1
4

~A�x(st)� ~C�xy(st)

�
; (18)

and

MSE
�~t�reg�=

�
�2
Y

~A00�y(st) + w2�2
X

~A�x(st)

�2�Y �Xw ~C�xy(st)

�
: (19)

In order to achieve the optimum value of w, Eq. (19)
is di�erentiated partially with respect to w and then
equating the �rst derivative with zero. The optimum
value of w which gives the expression of the minimum
MSE~t�reg is given by wopt = �Y ~C�xy(st)

�X ~A�x(st)
. Substituting the

optimum value of w in Eq. (19), the expression of the
minimum MSE of ~t�reg is given by:

minMSE
�~t�reg�=�2

Y
~A00�y(st)

 
1�

~C�2xy(st)
~A�x(st)

~A00�y(st)

!
; (20)

or after more simpli�cation Eq. (20) is given by:

minMSE (treg) = �2
Y

~A00�y(st)

�
1� �2

xy(st)

�
;

where �2
xy(st) =

~C�2xy(st)
~A�x(st)

~A00�y(st)
: (21)

3.1.2. Theoretical comparisons among the usual
combined type estimators

Now in this section, e�ciency of combined regression
estimator ~t�reg is compared with the e�ciencies of
unbiased ~t�u estimator, combined ratio estimator ~t�ra
and combined exponential estimator ~t�er .

(i) From equation Eqs. (4) and (21) we have:
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MSE
� ~t�reg

��MSE
�~t�u� > 0;

�2
Y

LX
h=1

P 2
h�2hC2

Y h(2)

�
1� �2

Y Xh(2)

�
+ �2

Y

LX
h=1

P 2
h�2h

 
�2
Uh(2)

�2
Y

!
 
�2
Y

LX
h=1

P 2
h�2hC2

Y h
�
1� �2

Y Xh
�

+�2
Y

LX
h=1

P 2
h�2h

 
�2
Uh(2)

�2
Y

!!

� �2
Y

LX
h=1

P 2
h

 
�2h

�
C2
Y h +

�2
Uh
�2
Y

�
+ �2h

 
C2
Y h(2) +

�2
Uh(2)

�2
Y

!!
> 0;

and

�2
Y

LX
h=1

P 2
h�2h

�
C2
Y h +

�2
Uh
�2
Y

�
�2
Y Xh + �2

Y

LX
h=1

P 2
h�2h

 
C2
Y h(2)+

�2
Uh(2)

�2
Y

!
�2
Y Xh(2)>0: (22)

(ii) From Eqs. (17) and (21) we have:

MSE
�~t�reg��MSE

�~t�ra� > 0

�2
Y

 
LX
h=1

P 2
h�2hC2

Y h
�
1� �2

Y Xh
�

+
LX
h=1

P 2
h�2hC2

Y h(2)(1� �2
Y Xh(2))

+
LX
h=1

P 2
h�2h

�
�2
Uh
�2
Y

�
+

LX
h=1

P 2
h�2h

 
�2
Uh(2)

�2
Y

!!

� �2
Y

 
LX
h=1

P 2
h�2hC2

Y h

+
LX
h=1

P 2
h�3h

�
C2
Xh � 2�Y XhCY hCXh

�
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LX
h=1

P 2
h�2h(C2

Y h(2) + C2
Xh(2)

� 2�Y Xh(2)CY h(2)CXh(2))

+
LX
h=1

P 2
h�2h

�
�2
Uh
�2
Y

+
�2
V h
�2
X

�
+

LX
h=1

P 2
h�2h

 
�2
Uh(2)

�2
Y

+
�2
V h(2)

�2
X

!!
>0;

and

�2
Y

 
LX
h=1

P 2
h�3h(CXh � �Y XhCY h)2

+
LX
h=1

P 2
h�hC

2
Y h�

2
Y Xh

+
LX
h=1

P 2
h�2h

�
CXh(2) � �Y Xh(2)CY h(2)

�2
+

LX
h=1

P 2
h�2h�2

Y Xh

�
�2
Uh
�2
Y

�
+

LX
h=1

P 2
h�2h

�
�2
V h
�2
X

�
+

LX
h=1

P 2
h�2h�2

Y Xh(2)

 
�2
Uh(2)

�2
Y

!

+
LX
h=1

P 2
h�2h

 
�2
V h(2)

�2
X

!!
> 0: (23)

(iii) From Eq. (18) and Eq. (21) we have:

MSE
�~t�reg��MSE

�~t�er� > 0;
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P 2
h�2hC2

Y h
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1� �2

Y Xh
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h�2hC2
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�
1� �2
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+
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h=1

P 2
h�2h

�
�2
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�2
Y

�
+
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P 2
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Y

!!
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� �2
Y

 
LX
h=1

P 2
h�2hC2

Y h

+
LX
h=1

P 2
h�3h

�
1
4
C2
Xh � �Y XhCY hCXh
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+
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P 2
h�2h

�
C2
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1
4
C2
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�
+

LX
h=1

P 2
h�2h

�
�2
Uh
�2
Y

+
1
4
�2
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�2
X

�
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h=1

P 2
h�2h

 
�2
Uh(2)

�2
Y

+
1
4
�2
V h(2)

�2
X

!!
> 0;

and

�2
Y

 
LX
h=1

P 2
h�3h

�
1
2
CXh � �Y XhCY h

�2

+
LX
h=1

P 2
h�hC

2
Y h�

2
Y Xh +

LX
h=1

P 2
h�2h

�
1
2
CXh(2) � �Y Xh(2)CY h(2)

�2

+
LX
h=1

P 2
h�2h�2

Y Xh

�
�2
Uh
�2
Y

�
+

LX
h=1

P 2
h�2h

�
1
4
�2
V h
�2
X

�
+

LX
h=1

P 2
h�2h�2

Y Xh(2) 
�2
Uh(2)

�2
Y

!
+

LX
h=1

P 2
h�2h

 
1
4
�2
V h(2)

�2
X

!!
> 0: (24)

From Eqs. (22){(24), it can be easily seen that the
combined regression estimator ~t�reg is more e�cient
than combined ratio estimator ~t�ra, and combined
exponential ratio estimator ~t�er.
3.2. Procedure II: Proposed class of modi�ed

combined regression-type estimators
In this section another procedure of mean estimation
in strati�ed two-phase sampling is presented as a class
of modi�ed combined regression-type estimators. The
proposed class of generalized combined regression-type
estimators is due to some modi�cations in the form of
usual combined regression estimator. The procedure

includes to get a class of modi�ed combined-type
regression tg(i) by replacing ~�00�y(st) with J(i) in Eq. (7).
The proposed estimator tg(i) in the form of a general
estimator is given by:

tg(i)=
�
J(i)+wi1

�
�0x(st)�~�00�x(st)

��
for i=1; 2; 3; (25)

where

J(1) =
~�00�y(st)

2

 
exp

 
�0x(st) � ~�00�x(st)

�0x(st) + ~�00�x(st)

!
+ exp

 
~�00�x(st) � �0x(st)

~�00�x(st) + �0x(st)

!!
;

J(2) =
~�00�y(st)

2

 
�0x(st)

~�00�x(st)
+

~�00�x(st)

�0x(st)

!
;

and

J(3) =
~�00�y(st)

2

 
exp

 
�0x(st) � ~�00�x(st)

�0x(st) + ~�00�x(st)

!
+
�0x(st)

~�00�x(st)

!
:

3.2.1. Derivation of the biases and MSEs of the
modi�ed estimator

Now tg(i) can be given in terms of e, s by:

tg(1) =
�Y
�

1 + ~e00�y(st)

�
20@exp

0@�X �1 + e0x(st)
�� �X �1 + ~e00�x(st)

�
�X
�
1 + e0x(st)

�
+ �X

�
1 + ~e00�x(st)

�1A
+ w11

�
�X
�
1 + e0x(st)

� ��X �1 + ~e00�x(st)

��
; (26)

tg(2) =
�Y
�

1 + ~e00�y(st)

�
20@�X �1 + e0x(st)

�
�X
�

1 + ~e00�x(st)

� +
�X
�

1 + ~e00�x(st)

�
�X
�
1 + e0x(st)

�1A
+ exp

0@�X �1 + ~e00�x(st)

���X �1+e0x(st)
�

�X
�
1+ ~e00�x(st)

�
+�X

�
1+ e0x(st)

�1A1A
w21

�
�X
�
1 + e0x(st)

� ��X �1 + ~e00�x(st)

��
; (27)
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and

tg(3) =
�Y
�

1 + ~e00�y(st)

�
20@exp

0@�X �1 + e0x(st)
�� �X �1 + ~e00�x(st)

�
�X
�
1 + e0x(st)

�
+ �X

�
1 + ~e00�x(st)

�1A
+
�X
�
1 + e0x(st)

�
�X
�
1 + e0x(st)

�!+ w31

�
�X
�
1 + e0x(st)

�
��X

�
1 + ~e00�x(st)

��
; (28)

or alternatively:

tg(1) � �Y = �Y

 
~e00�y(st) +

e02x(st)

8
+

~e00�2x(st)

8

� ~e00�x(st)e0x(st)

4

!
+w11�X

�
e0x(st)�~e00�x(st)

�
; (29)

tg(2)��Y =�Y

 
~e00�y(st)+

e01st2
2

+
~e00�y(st)

2
�~e00�x(st)e

0
1st

!
+ w21�X

�
e0x(st) � ~e00�x(st)

�
; (30)

and

tg(3) � �Y =�Y
�

~e00�y(st) +
3
4
e0x(st) � 3

4
~e00�x(st)

� e02x(st)

16
+

11
16

~e00�2x(st) � 5
8

~e00�x(st)e
0
x(st)

+
3
4

~e00�y(st)e
0
x(st) �3

4
~e00�y(st)~e

00�
x(st)

�
+ w31�X

�
e0x(st) � ~e00�x(st)

�
: (31)

The expressions for the biases and MSEs of tg(i) up to
the order O

�
n�1� are respectively given by:

Bias
�
tg(1)

�
= �Y

~A�x(st)

8
; (32)

Bias
�
tg(2)

�
= �Y

~A�x(st)

2
; (33)

Bias
�
tg(3)

�
= �Y

�
11
16

~A�x(st) � 3
4

~C�xy(st)

�
; (34)

and
MSE

�
tg(1)

�
= MSE

�
tg(2)

�
= (�2

Y
~A00�y(st) + w2

11�
2
X

~A�x(st)

� 2�Y �Xw11 ~C�xy(st)); (35)

MSE
�
tg(3)

�
=�2

Y

�
~A00�y(st) +

9
16

~A�x(st) � 3
2

~C�xy(st)

�
+ w2

31�
2
X

~A�x(st) + 2�Y �Xw31�
3
4

~A�x(st) � ~C�xy(st)

�
: (36)

Now, to get the optimum values of w11, w21, and w31,
Eqs. (35) and (36) are di�erentiated partially with
respect to w11, w21, and w31, and then equating each of
the �rst derivatives with zero. This gives three normal
equations which are then solved simultaneously for the
optimum values of w11, w21, and w31. Finally, the
optimum values are shown by:

wopt11 = wopt21 =
�Y ~C�xy(st)

�X ~A�x(st)

and

wopt31 = ��Y
�

3
4

~A�x(st) � ~C�xy(st)

�
�X ~A�x(st)

: (37)

Substituting the optimum values of w11, w21 and w31
in Eqs. (35) and (36), the expression of the minimum
MSE is obtained. However, it is to mention that the
minimum MSE expression is same for each of the three
estimators, and it is given by:

minMSE
�
tg(i)

�
=�2

Y
~A00�y(st)

 
1�

~C�2xy(st)
~A�x(st)

~A00�y(st)

!
:(38)

3.3. Procedure III: Proposed e�cient and
generalized combined regression-cum-ratio
type estimators

The proposed modi�ed regression estimator tg(i) pre-
sented in the preceding section, can be taken as
an alternate to the regression estimator. However,
the proposed estimator tg(i) can further be molded
into another form of combined regression-cum-ratio
type estimator so as to get more e�cient and more
generalized estimators than usual combined regression
estimator and the modi�ed combined regression esti-
mator presented in the preceding sections.

Therefore, now three new classes of more e�-
cient and generalized combined regression-cum-ratio
estimators ~t�s(i)(�;�), where i = 1; 2; 3 are proposed
for estimating the population mean, and form of the
proposed estimator is given by:
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~t�s(1)(�;�) =

 
~�00�y(st)

 
�
�0x(st)

~�00�x(st)
+ (1� �)

~�00�x(st)

�0x(st)

!
+ ~w�1(1)(�

0
x(st) � ~�00�x(st)) + ~w�2(1) ~�00�y(st)

�
 
�
�0x(st)

~�00�x(st)
+ (1� �)

~�00�x(st)

�0x(st)

!
; (39)

~t�s(2)(�;�) =

 
~�00�y(st)

 
� exp

 
�0x(st) � ~�00�x(st)

�0x(st) + ~�00�x(st)

!
+ (1� �) exp

 
~�00�x(st) � �0x(st)

~�00�x(st) + �0x(st)

!!
+ ~w�1(2)(�

0
x(st) � ~�00�x(st))

+ ~w�2(2) ~�00�y(st)
� 
� exp

 
�0x(st) � ~�00�x(st)

�0x(st) + ~�00�x(st)

!
+ (1� �) exp

 
~�00�x(st) � �0x(st)

~�00�x(st) + �0x(st)

!!
; (40)

and

~t�s(3)(�;�) =

 
~�00�y(st)

 
� exp

 
�0x(st) � ~�00�x(st)

�0x(st) + ~�00�x(st)

!
+ (1� �)

�0x(st)

~�00�x(st)

!
+ ~w�1(3)

�
�0x(st) � ~�00�x(st)

�
+ ~w�2(3) ~�00�y(st)

� 
� exp

 
�0x(st) � ~�00�x(st)

�0x(st) + ~�00�x(st)

!

+ (1� �)
�0x(st)

~�00�x(st)

!
; (41)

or alternatively:

~t�s(i)(�;�) =
�
~�00�y(st)

~H�(i)� + ~w�1(i)(�
0
x(st) � ~�00�x(st))

+ ~w�2(i) ~�00�y(st)
� ~H�(i)� for i = 1; 2; 3; (42)

where

~H�(1)� = �
�0x(st)

~�00�x(st)
+ (1� �)

~�00�x(st)

�0x(st)
;

~H�(1)� = �
�0x(st)

~�00�x(st)
+ (1� �)

~�00�x(st)

�0x(st)
;

~H�(2)� =� exp

 
�0x(st) � ~�00�x(st)

�0x(st) + ~�00�x(st)

!
+ (1� �) exp

 
~�00�x(st) � �0x(st)

~�00�x(st) + �0x(st)

!
;

~H�(2)� =� exp

 
�0x(st) � ~�00�x(st)

�0x(st) + ~�00�x(st)

!
+ (1� �) exp

 
~�00�x(st) � �0x(st)

~�00�x(st) + �0x(st)

!
;

~H�(3)� = � exp

 
�0x(st) � ~�00�x(st)

�0x(st) + ~�00�x(st)

!
+ (1� �)

�0x(st)

~�00�x(st)
;

and

~H�(3)� = � exp

 
�0x(st) � ~�00�x(st)

�0x(st) + ~�00�x(st)

!
+ (1� �)

�0x(st)

~�00�x(st)
;

where � 2 [0; 1] and � 2 [0; 1] are the generalizing
constants whose values are suitably chosen, and ~w�1(i)
and ~w�2(i) are the optimizing constants which are needed
to be estimated such that the optimum values of
~w�1(i) and ~w�2(i) give the minimum MSE value to
each estimator which belongs to the proposed class of
regression-cum-ratio estimators.

3.3.1. Derivation of the biases and MSEs of the
proposed combined regression-cum-ratio
estimators

In order to obtain the expressions for the biases and the
MSEs of the proposed regression-cum-ratio estimators
~t�s(1)(�;�), ~t�s(2)(�;�) and ~t�s(3)(�;�) are given in terms of
e,s respectively by:

~t�s(1)(�;�) =

0@�Y �1 + ~e00�y(st)

� 
�
�X
�
1 + e0x(st)

�
�X
�

1 + ~e00�x(st)

�
+(1� �)

�X
�

1 + ~e00�x(st)

�
�X
�
1 + e0x(st)

�1A
+ ~w�1(1)

�
�X
�
1 + e0x(st)

��
�X
�

1 + ~e00�x(st)

��
+ ~w�2(1)�Y

�
1 + ~e00�y(st)

��
0@��X �1+e0x(st)

�
�X
�

1+~e00�x(st)

�+ (1��)
�X
�

1+~e00�x(st)

�
�X
�
1 + e0x(st)

�1A ; (43)
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~t�s(2)(�;�) =

 
�Y
�

1 + ~e00�y(st)

�
0@� exp

0@�X �1 + e0x(st)
�� �X �1 + ~e00�x(st)

�
�X
�
1 + e0x(st)

�
+ �X

�
1 + ~e00�x(st)

�1A
+ (1� �) exp

0@�X �1+~e00�x(st)

���X �1+e0x(st)
�

�X
�

1+~e00�x(st)

���X �1+e0x(st)
�1A1A

~w�1(2)�X
�
1+e0x(st)

���X �1+~e00�x(st)

��
+ ~w�2(2)�Y

�
1 + ~e00�y(st)

��
0@� exp

0@�X �1 + e0x(st)
�� �X �1 + ~e00�x(st)

�
�X
�
1 + e0x(st)

�
+ �X

�
1 + ~e00�x(st)

�1A+

(1��) exp

0@�X �1 + ~e00�x(st)

���X �1+e0x(st)
�

�X
�

1+~e00�x(st)

���X �1+e0x(st)
� 1A1A ;(44)

and

~t�s(3)(�;�) =

 
�Y
�

1 + ~e00�y(st)

�
0@� exp

0@�X �1 + e0x(st)
�� �X �1 + ~e00�x(st)

�
�X
�
1 + e0x(st)

�
+ �X

�
1 + ~e00�x(st)

�1A
+ (1� �)

�X
�
1 + e0x(st)

�
�X
�

1 + ~e00�x(st)

�1A
+ ~w�1(3)

�
�X
�
1 + e0x(st)

���X �1 + ~e00�x(st)

��
+ ~w�2(3)�Y

�
1 + ~e00�y(st)

��
0@� exp

0@�X �1 + e0x(st)
�� �X �1 + ~e00�x(st)

�
�X
�
1 + e0x(st)

�
+ �X

�
1 + ~e00�x(st)

�1A
+ (1� �)

�X
�
1 + e0x(st)

�
�X
�

1 + ~e00�x(st)

�1A : (45)

Further simpli�cation of the above expressions up to
the �rst order of approximation O(n�1) gives the

expressions, as given by:
~t�s(1)(�;�) � �Y = �Y (~e00�y(st) + 2~e00�x(st) � 2e0x(st)

+ 2�e0x(st) � 2�~e00�x(st) � 2�~e00�x(st) + 2�e0x(st)

� �~e00�2x(st) � 3�e02x(st) + 4�e0x(st)~e
00�
x(st) � �~e00�2x(st)

� 3�e02x(st) + 4�e0x(st)~e
00�
x(st) + ~e00�2x(st) + 3e02x(st)

� 4e0x(st)~e
00�
x(st) + 4��~e00�2x(st) + 4��e02x(st)

+ 8��e0x(st)~e
00�
x(st) + 2~e00�y(st)~e

00�
x(st) � 2~e00�y(st)e

0
x(st)

� 2�e0x(st)~e
00�
x(st) + 2�~e00�y(st)e

0
x(st) � 2�~e00�y(st)~e

00�
x(st)

+ 2�~e00�y(st)e
0
x(st) + ~w�2(1)(1+~e00�y(st) + ~e00�x(st)

� e0x(st) � 2�~e00�x(st) + 2�e0x(st) + �~e00�2x(st) � �e02x(st)

+ ~e00�y(st)~e
00�
x(st) � ~e00�y(st)e

0
x(st) � 2�~e00�y(st)~e

00�
x(st)

+ 2�~e00�y(st)e
0
x(st) + e02x(st) � e0x(st)~e00�x(st)))

� ~w�1(1)
�X(~e00�x(st) � e0x(st) + ~e00�2x(st) � 2�e02x(st)

+ 4�e0x(st)~e00�x(st)); (46)

~ts(2)(�; �)� � �Y = �Y (~e00�y(st)

+ ~e00�x(st) � e0x(st) + �e0x(st) � �~e00�x(st) � �~e00�x(st)

+ �~e00�y(st)e
0
x(st) � �~e00�y(st)~e

00�
x(st) + �~e00�y(st)e

0
x(st)

+ �e0x(st) � ~e00�y(st)~e
00�
x(st) + ~e00�y(st)e

0
x(st)

� �~e00�y(st)~e
00�
x(st)��e

00�2
x(st) + ��e02x(st) � 2��e0x(st)~e

00�
x(st)

+ ~w�2(2)

�
1 + ~e00�y(st) +

~e00�x(st)

2
� e0x(st)

2

� �~e00�x(st) �
~e00�x(st)

8
� 3e02x(st)

8
� e0x(st)~e00�x(st)

4
+
�e00�2x(st)

2

� �e02x(st)

2
� �~e00�y(st)~e

00�
x(st) + �~e00�y(st)e

0
x(st)

� ~e00�y(st)~e
00�
x(st)

2
�� ~w�1(2)�X

�
~e00�x(st) � e0x(st) +

~e00�2x(st)

2

� e02x(st)

2
+ e0x(st)~e00�x(st) + �~e00�2x(st) + �e02x(st)

� 2�e0x(st)~e00�x(st)

�
; (47)
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and

~t�s(3)(�;�) � �Y = �Y
�

~e00�y(st) + 2~e00�x(st) � 2e0x(st)

+
�
2
e0x(st) � �

2
~e00�x(st) � �

2
e0x(st) +

�
2

~e00�x(st)

+ 3~e00�2x(st) + e02x(st) + 4e0x(st)~e00�x(st) � 9
8
�~e00�2x(st)

� 5
8
�e02x(st) +

7
4
�e0x(st)~e00�x(st) +

9
8
�~e00�2x(st)

� 5
8
�e02x(st) +

7
4
�e0�x(st)~e

00�
x(st) � 2~e00�y(st)~e

00�
x(st)

+ 2~e00�y(st)e
0
x(st) +

�
2

~e00�y(st)~e
00�
x(st) � �

2
~e00�y(st)e

0
x(st)

+
�
2

~e00�y(st)~e
00�
x(st) � �

2
~e00�y(st)e

0
x(st)

��
4

~e00�2x(st) +
��
4
e02x(st)

+
��
2
e0x(st)~e00�x(st) + ~w�2(3)

�
1+~e00�y(st) � ~e00�x(st) + e0x(st)

+
�
2

~e00�x(st) � �
2
e0x(st) +

�
2

~e00�y(st)~e
00�
x(st) � �

2
~e00�y(st)e

0
x(st)

� 5
8
�~e00�2x(st) �

�e02x(st)

8
+

3
4
�e0x(st)~e00�x(st)

�
�~w�1(3)�X

�
~e00�x(st)�e0x(st)+~e00�2x(st)+e02x(st)

� 2e0x(st)~e00�x(st) � �
~e00�2x(st)

2
� � e

02
x(st)

2

+ �e0x(st)~e00�x(st)

�
: (48)

The expressions for the biases of ~t�s(1)(�;�), ~t�s(2)(�;�) and
~t�s(3)(�;�) are obtained up to the order of approximation
O(n�1), taking the expectation of Eqs. (46){(48)
respectively. The expressions of the biases are given
respectively by:

Bias(~t�s(1)(�;�)) = �Y
� ~A�x(st) � � ~A�x(st) � � ~A�x(st)

+ 4�� ~A�x(st) + 2 ~C�xy(st) � 2� ~C�xy(st) � 2� ~C�xy(st)

+ ~w�2(1)
�
1 + � ~A�x(st) + ~C�xy(st) � 2� ~C�xy(st)

��
� ~w�1(1)�X( ~A�x(st) � 2� ~A�x(st)); (49)

Bias(~t�s(2)(�;�)) = �Y
�
�� ~A�x(st) + ~C�xy(st)

� � ~C�xy(st) � � ~C�xy(st) + ~w�2(2)

�
�

~A�x(st)

2

�
~A�x(st)

8
+

~C�xy(st)

2
� � ~C�xy(st)

��
+ ~w�1(2)�X

�
� ~A�x(st) �

~A�x(st)

2

�
; (50)

and

Bias(~t�s(3)(�;�)) = �Y
�

3 ~A�x(st) � 9
8
� ~A�x(st)

� 9
8
� ~A�x(st) +

��
4

~A�x(st) � 2 ~C�xy(st)

+
�
2

~C�xy(st) +
�
2

~C�xy(st) + ~w�2(3)�
1 +

�
2

~C�xy(st) � ~C�xy(st) � 5
8
� ~A�x(st)

��
+ ~w�1(3)�X

�
~A�x(st) � �

2
~A�x(st)

�
: (51)

The expressions for the MSEs of ~t�s(1)(�;�), ~t�s(2)(�;�) and
~t�s(3)(�;�) are obtained taking the square of Eqs. (46){
(48) respectively, retaining the terms up to the order
of approximation O(n�1), and then taking expectation.
Finally, general expressions of the MSEs of ~t�s(1)(�;�),
~t�s(2)(�;�) and ~t�s(3)(�;�) are given respectively by:

MSE
�

~t�s(1)(�;�)

�
= �2

Y

�
~A00�y(st) + 4 ~A�x(st) � 8� ~A�x(st)

� 8� ~A�x(st)+ 4�2 ~A�x(st)+4�2 ~A�x(st)+ 8�� ~A�x(st)

+ 4 ~C�xy(st) � 4� ~C�xy(st) � 4� ~C�xy(st) + ~w�2(1)�
2 ~A00�y(st) + 10 ~C�xy(st) � 12� ~C�xy(st) + 6 ~A�x(st)

� 6� ~A�x(st) � 14� ~A�x(st) + 16�� ~A�x(st)

+ 8�2 ~A�x(st) �8� ~C�xy(st)

�
+ ~w�22(1)

�
1 + ~A00�y(st)

+ ~A�x(st) + 2� ~A�x(st) + 4 ~C�xy(st) � 8� ~C�xy(st)

+ 4�2 ~A�x(st)

��
+ ~w�1(1)�

2
X

~A�x(st)

+ 2�Y �X ~w�1(1)
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�
2� ~A�x(st) + 2� ~A�x(st) � 2 ~A�x(st) � ~C�xy(st) + ~w�2(1)�

4� ~A�x(st) � 2 ~A�x(st) � ~C�xy(st)

��
; (52)

MSE(~t�s(2)(�;�)) = �2
Y

�
~A00�y(st) + ~A�x(st) � 2� ~A�x(st)

� 2� ~A�x(st) + �2 ~A�x(st) + �2 ~A�x(st) + 2�� ~A�x(st)

+ 2 ~C�xy(st) � 2� ~C�xy(st) � 2� ~C�xy(st)

+ ~w�2(2)(2A
00
y(st)+ ~A�x(st)+5 ~C�xy(st)�4� ~C�xy(st)

� 6� ~C�xy(st) � � ~A�x(st) + 4�� ~A�x(st)

+ 2�2 ~A�x(st) � 3� ~A�x(st)

�
+ ~w�22(2)(1 + ~A00�y(st)

+ 2 ~C�xy(st) � 4� ~C�xy(st) + 4�2 ~A�x(st)

��
+ ~w�1(2)�

2
X

~A�x(st) + 2�Y �X ~w�1(2)

�
� ~A�x(st)

+ � ~A�x(st) � ~A�x(st) � ~C�xy(st)

+ ~w�2(2)

�
2� ~A�x(st) � ~A�x(st) � ~C�xy(st)

��
; (53)

and

MSE
�

~t�s(3)(�;�)

�
= �2

Y

�
~A00�y(st) + 4 ~A�x(st) � 2� ~A�x(st)

� 2� ~A�x(st) +
�2

4
~A�x(st) +

�2

4
~A�x(st)

+
��
2

~A�x(st) � 4 ~C�xy(st) + � ~C�xy(st) + � ~C�xy(st)

+ ~w�2(3)

�
2 ~A00�y(st) + 10 ~C�xy(st) + 3� ~C�xy(st)

+ 10 ~A�x(st) � 6� ~A�x(st) � 21
4
� ~A�x(st)

� 13
4
� ~A�x(st) +

�2

2
~A�x(st) + �� ~A�x(st)

+2� ~C�xy(st)

�
+ ~w�22(3)

�
1 + ~A00�y(st) + ~A�x(st)

� 9
4
� ~A�x(st)�4 ~C�xy(st)+2� ~C�xy(st)+

�2

4
~A�x(st)

��
+ ~w�21(3)�

2
X

~A�x(st) + 2�Y �X ~w�1(3)

�
2 ~A�x(st)��2 : ~A�x(st)� �2 ~A�x(st)� ~C�xy(st)+ ~w�2(3)�
2 ~A�x(st) � � ~A�x(st) � ~C�xy(st)

��
: (54)

Alternatively, the expressions MSEs of ~t�s(1)(�;�),
~t�s(2)(�;�) and ~t�s(3)(�;�) can be given by the expression
of MSE of ~t�s(i)(�;�), and it is expressed by:

MSE
�

~t�s(i)(�;�)

�
= ~	�0(i) + ~w�22(i)

~	�1(i) + ~w�2(i)
~	�2(i)

+ ~w�21(i)
~	�3(i)+ ~w�1(i)~w

�
2(i)

~	�4(i)+ ~w�1(i)
~	�5(i); (55)

where

~	�0(1) =�2
Y

�
~A00�y(st) + 4 ~A�x(st) � 8� ~A�x(st) � 8� ~A�x(st)

+ 4�2 ~A�x(st) + 4�2 ~A�x(st) + 8�� ~A�x(st)

+ 4 ~C�xy(st) �4� ~C�xy(st) � 4� ~C�xy(st)

�
;

~	�1(1) =�2
Y

�
1 + ~A00�y(st)+ ~A�x(st) + 2� ~A�x(st)+4 ~C�xy(st)

� 8� ~C�xy(st) + 4�2 ~A�x(st)

�
;

~	�2(1) =�2
Y

�
2 ~A00�y(st) + 10 ~C�xy(st) � 12� ~C�xy(st)

+ 6 ~A�x(st) � 6� ~A�x(st) � 14� ~A�x(st)

+ 16�� ~A�x(st) + 8�2 ~A�x(st) �8� ~C�xy(st)

�
;

~	�3(1) = �2
X

~A�x(st);

~	�4(1) = 2�Y �X
�
4� ~A�x(st)�2 ~A�x(st)� ~C�xy(st)

�
;

~	�5(1)=2�Y�X
�
2�~A�x(st)+2� ~A�x(st)�2 ~A�x(st)� ~C�xy(st)

�
;

~	�0(2) =�2
Y

�
~A00�y(st)+ ~A�x(st) � 2� ~A�x(st)

� 2� ~A�x(st)+�2 ~A�x(st)+�2 ~A�x(st)+2�� ~A�x(st)

+ 2 ~C�xy(st)�2� ~C�xy(st) �2� ~C�xy(st)

�
;

~	�1(2) =�2
Y

�
1 + ~A00�y(st) + 2 ~C�xy(st) � 4� ~C�xy(st)

+ 4�2 ~A�x(st)

�
;
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~	�2(2) =�2
Y

�
2A00y(st) + ~A�x(st) + 5 ~C�xy(st)

� 4� ~C�xy(st) � 6� ~C�xy(st) � � ~A�x(st)

+ 4�� ~A�x(st) + 2�2 ~A�x(st) �3� ~A�x(st)

�
;

~	�3(2) = �2
X

~A�x(st);

~	�4(2) = 2�Y �X
�

2� ~A�x(st) � ~A�x(st) � ~C�xy(st)

�
;

~	�5(2) =2�Y �X
�
� ~A�x(st)+� ~A�x(st)� ~A�x(st)� ~C�xy(st)

�
;

~	�0(3) =�2
Y
�
A00y(st) + 4B(st) � 2�B(st) � 2�B(st)

+
�2

4
B(st) +

�2

4
B(st) +

��
2
B(st)

� 4C(st) + �C(st) + �C(st)

�
;

~	�1(3) =�2
Y

�
1+A00y(st) +B(st) � 9

4
�B(st)

�4�11 + 2��11 +
�2

4
B(st)

�
;

~	�2(3) =�2
Y

�
2A00y(st) + 10C(st) + 3�C(st)

+ 10B(st) � 6�B(st) � 21
4
�B(st) � 13

4
�B(st)

+
�2

2
B(st) + ��B(st) + 2�C(st)

�
;

~	�3(3) = �2
XB(st);

~	�4(3) = 2�Y �X
�
2B(st) � �B(st) � C(st)

�
;

and

~	�5(3) =2�Y �X
�

2B(st)��2 B(st)� �2B(st) � C(st)

�
:

Now, to get the optimum values, Eq. (55) is di�er-
entiated partially with respect to ~w�1(i) and ~w�2(i), and
then equating each of the �rst derivatives with zero.
This gives three systems of normal equations, including
two normal equations in each system. For each system
normal equations are then solved simultaneously to get
the optimum values of ~w�1(i) and ~w�2(i). Finally, the
optimum values are shown by:

~w� opt1(i) =
~	�2(i)

~	�4(i) � 2 ~	�1(i)
~	�5(i)

4 ~	�1(i)
~	�3(i) � ~	� 2

4(i)

;

and

~w� opt2(i) =
~	�4(i)

~	�5(i) � 2 ~	�2(i)
~	�3(i)

4 ~	�1(i)
~	�3(i) � ~	� 2

4(i)

: (56)

Substituting the optimum values of ~w�1(i) and ~w�2(i)
in Eq. (55), the expression of the minimum MSE of
~t�s(i)(�;�) is obtained as:

minMSE
�

~t�s(i)(�;�)

�
= ~	�0(i)

�
�

~	�2(i)
~	�4(i)

~	�5(i) � ~	�22(i)
~	�3(i) � ~	�1(i)

~	�25(i)

�
	2

4(i) � 4	1(i)	3(i)
;

for i = 1; 2; 3: (57)

3.3.2. Theoretical comparisons between the modi�ed
combined regression estimator and the
generalized regression-cum-ratio estimators

MSE
�~t�reg��MSE

�
~t�s(i)(�;�)

�
> 0;

�2
Y

~A00�y(st)

�
1� �2

xy(st)

�
> MSE

�
~t�s(i)(�;�)

�
;

�
1� �2

xy(st)

�
>
MSE

�
~t�s(i)(�;�)

�
�2
Y

~A00�y(st)

;

�2
xy(st) < 1� MSE

�
~t�s(i)(�;�)

�
var
�~t�u� : (58)

Remark 1

When only the measurement error is present on the
study and auxiliary variables, and complete response is
available on both of the variables, then modi�cations
to the estimation procedures presented in the preceding
sections are followed by:

~�00�y(st) ! ~�00y(st) =

LP
h=1

~y00hi
n00h

;

and then the expression of the variance is given by:

var
�

~�00y(st)

�
=

LX
h=1

P 2
h

�
�2h

�
C2
Y h +

�2
Uh
�2
Y

��
= ~� 00y(st):

Similarly, sample mean estimator along with the vari-
ance expression can take the forms respectively as given
by:

~�00�x(st) ! ~�00x(st) =

LP
h=1

~x00hi
n00h

;
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and

var
�

~�00x(st)

�
=

LX
h=1

P 2
h

�
�2h

�
C2
Xh +

�2
V h
�2
X

��
= ~� 00x(st):

Expressions for the di�erent covariance terms are re-
produced, and given by:

cov
�

~�00y(st); ~�00x(st)

�
=

LX
h=1

P 2
h (�2h �Y XhCY hCXh)

= ~�xy(st);

cov
�

~�00x(st); �
0
x(st)

�
=

LX
h=1

P 2
h�hC

2
Xh = A0x(st);

and

cov
�

~�00y(st); �
0
x(st)

�
=

LX
h=1

P 2
h (�h �Y XhCY hCXh)

= C 0xy(st);

where ~�x(st)=~� 00x(st)�A0x(st) and ~�xy(st)=~�00xy(st)�C 0xy(st).

The proposed estimators of Eq. (42) are repro-
duced under Remark 1, and can be given by:

~ts(i)(�;�) =(~�00y(st)
~H(i)� + ~w1(i)(�0x(st) � ~�00x(st))

+ ~w2(i) ~�00y(st)) ~H(i)� for i=1; 2; 3; (59)

where

~H(1)� = �
�0x(st)

~�00x(st)
+ (1� �)

~�00x(st)

�0x(st)
;

~H(1)� = �
�0x(st)

~�00x(st)
+ (1� �)

~�00x(st)

�0x(st)
;

~H(2)� =� exp

 
�0x(st) � ~�00x(st)

�0x(st) + ~�00x(st)

!
+ (1� �) exp

 
~�00x(st) � �0x(st)

~�00x(st) + �0x(st)

!
;

~H(2)� =� exp

 
�0x(st) � ~�00x(st)

�0x(st) + ~�00x(st)

!
+ (1� �) exp

 
~�00x(st) � �0x(st)

~�00x(st) + �0x(st)

!
;

~H(3)� = � exp

 
�0x(st) � ~�00x(st)

�0x(st) + ~�00x(st)

!
+ (1� �)

�0x(st)

~�00x(st)
;

and

~H(3)� = � exp

 
�0x(st) � ~�00x(st)

�0x(st) + ~�00x(st)

!
+ (1� �)

�0x(st)

~�00x(st)
:

The expressions of the biases are reproduced for the
estimators, and given respectively by:

Bias
�~ts(1)(�;�)

�
= �Y (~�x(st) � �~�x(st) � �~�x(st)

+ 4��~�x(st) + 2~�xy(st) � 2�~�xy(st) � 2�~�xy(st)

+ ~w2(1)
�
1 + � ~�x(st) + ~�xy(st) � 2� ~�xy(st)

��
� ~w1(1)�X

�
~�x(st) � 2�~�x(st)

�
; (60)

Bias
�~ts(2)(�;�)

�
=

�Y
�
��~�x(st) + ~�xy(st) � �~�xy(st) � �~�xy(st)

+ ~w2(2)

�
�

~�x(st)

2
� ~�x(st)

8
+

~�xy(st)

2
� �~�xy(st)

��
~w1(2)�X

 
�~�x(st) �

~A~�x(st)

2

!
; (61)

and

Bias
�~ts(3)(�;�)

�
= �Y

�
3~�x(st) � 9

8
�~�x(st) � 9

8
�~�x(st)

+
��
4

~�x(st) � 2~�xy(st) +
�
2

~�xy(st) +
�
2

~�xy(st)

+ ~w2(3)

�
1 +

�
2

~�xy(st) � ~�xy(st) � 5
8
� ~�x(st)

��
+ ~w1(3)�X

�
~�x(st) � �

2
~�x(st)

�
: (62)

The MSEs of class of three estimator ~ts(i)(�;�) are
expressed by:

MSE
�~ts(i)(�;�)

�
= ~�0(i) + ~w2

2(i)
~�1(i) + ~w2(i) ~�2(i)

+ ~w2
1(i)

~�3(i)+ ~w1(i) ~w2(i) ~�4(i)+ ~w1(i) ~�5(i); (63)

where

~�0(1) =�2
Y

�
~� 00y(st) + 4~�x(st) � 8�~�x(st) � 8�~�x(st)

+ 4�2~�x(st) + 4�2~�x(st) + 8��~�x(st)

+ 4~�xy(st) � 4�~�xy(st)�4�~�xy(st)

�
;
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~�1(1) =�2
Y (1+~� 00y(st) + ~�x(st) + 2�~�x(st) + 4~�xy(st)

� 8�~�xy(st) + 4�2 ~�x(st));

~�2(1) =�2
Y

�
2~� 00y(st) + 10~�xy(st) � 12�~�xy(st) + 6~�x(st)

� 6�~�x(st) � 14�~�x(st) + 16��~�x(st)

+ 8�2~�x(st)�8�~�xy(st)

�
;

~�3(1) = �2
X ~�x(st);

~�4(1) = 2�Y �X
�
4�~�x(st) � 2~�x(st) � ~�xy(st)

�
;

~�5(1) =2�Y �X (2� ~�x(st) + 2�~�x(st)

� 2~�x(st) � ~�xy(st));

~�0(2) =�2
Y

�
~� 00y(st)+ ~�x(st) � 2�~�x(st) � 2�~�x(st)

+ �2~�x(st) + �2~�x(st) + 2��~�x(st) + 2~�xy(st)

� 2�~�xy(st)�2�~�xy(st)

�
;

~�1(2) =�2
Y (1 + ~� 00y(st) + 2~�xy(st) � 4�~�xy(st)

+ 4�2~�x(st));

~�2(2) =�2
Y (2~� 00y(st) + ~�x(st) + 5~�xy(st)

� 4�~�xy(st) � 6�~�xy(st) � �~�x(st)

+ 4��~�x(st) + 2�2~�x(st) � 3�~�x(st));

~�3(2) = �2
X ~�x(st);

~�4(2) = 2�Y �X
�
2�~�x(st) � ~�x(st) � ~�xy(st)

�
;

~�5(2) =2�Y �X (� ~�x(st) + � ~�x(st) � ~�x(st)

� ~�xy(st));

~�0(3) =�2
Y

�
~� 00y(st) + 4~�x(st) � 2�~�x(st)

� 2�~�x(st) +
�2

4
~�x(st) +

�2

4
~�x(st)

+
��
2

~�x(st)�4~�xy(st)+�~�xy(st)+�~�xy(st)

�
;

~�1(3) =�2
Y

�
1+~� 00y(st) + ~�x(st) � 9

4
�~�x(st)

� 4~�xy(st) + 2�~�xy(st) +
�2

4
~�x(st)

�
;

~�2(3) = �2
Y

�
2 ~� 00y(st) + 10~�xy(st) + 3�~�xy(st)

+ 10~�x(st) � 6�~�x(st) � 21
4
�~�x(st) � 13

4
�~�x(st)

+
�2

2
~�x(st) + �� ~�x(st) + 2�~�xy(st)

�
;

~�3(3) = �2
X ~�x(st);

~�4(3) = 2�Y �X
�
2 ~�x(st) � � ~�x(st) � ~�xy(st)

�
;

and

~�5(3) =2�Y �X
�

2~�x(st) � �
2

~�x(st)� �2 ~�x(st)�~�xy(st)

�
:

The optimum values of ~w1(i) and ~w2(i) from Eq. (63)
are reproduced under Remark 1, and given by:

~wopt1(i) =
~�2(i) ~�4(i) � 2~�1(i) ~�5(i)

4~�1(i) ~�3(i) � ~�2
4(i)

;

and

~wopt2(i) =
~�4(i) ~�5(i) � 2~�2(i) ~�3(i)

4~�1(i) ~�3(i) � ~�2
4(i)

: (64)

Substituting the optimum values of ~w1(i) and ~w2(i)
in Eq. (63), the expression of the minimum MSE of
~ts(i)(�;�) is obtained as:

minMSE
�~ts(i)(�;�)

�
= ~�0(i)

�
�

~�2(i) ~�4(i) ~�5(i) � ~�2
2(i)

~�3(i) � ~�1(i) ~�2
5(i)

�
~�2

4(i) � 4 ~�1(i) ~�3(i)
: (65)

Remark 2

When it is assumed that only non-response is present
on the study and auxiliary variables, but no measure-
ment error exists on the study and auxiliary variables,
then modi�cations in the estimation procedure are

followed by: ~�00�y(st) ! �00�y(st) =

LP
h=1

y�hi
n00h and then

the expression of the variance becomes var
�
�00�y(st)

�
=

LP
h=1

P 2
h

�
�2hC2

Y h + �2hC2
Y h(2)

�
= 
00�y(st).
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Similarly, sample mean estimator for the auxiliary

variable can take the form ~�00�x(st) ! �00�x(st)=

LP
h=1

x00�hi
n00h , and

the expression of the variance can be reproduced as:

var
�

~�00�x(st)

�
=

LX
h=1

P 2
h

�
�2hC2

Xh + �2hC2
Xh(2)

�
=
00�x(st);

and the expressions of the covariance by:

cov
�

~�00�y(st); ~�00�x(st)

�
=

LX
h=1

P 2
h (�2h�Y XhCY hCXh

+ �2h�Y Xh(2)CY h(2)CXh(2))

=#00�xy(st); cov
�

~�00�x(st); �
0
x(st)

�
=

LX
h=1

P 2
h�hC

2
Xh = A0x(st);

and

cov
�
�00�y(st); �

0
x(st)

�
=

LX
h=1

P 2
h (�h �Y XhCY hCXh)=C 0xy(st)

where 
�x(st) = 
00�x(st) � A0x(st) and #�xy(st) = #00�xy(st) �
C 0xy(st).

Following the assumption stated in Remark 2, the
proposed estimators of Eq. (42) are reduced to the form
given by:

t�s(i)(�;�) = (�00�y(st)H
�
(i)� + w�1(i)(�

0
x(st) � �00�x(st))

+ w�2(i)�
00�
y(st))H

�
(i)� for i = 1; 2; 3; (66)

where,

H�(1)� = �
�0x(st)

�00�x(st)
+ (1� �)

�00�x(st)

�0x(st)
;

H�(1)� = �
�0x(st)

�00�x(st)
+ (1� �)

�00�x(st)

�0x(st)
;

H�(2)� =� exp

 
�0x(st) � �00�x(st)

�0x(st) + �00�x(st)

!
+ (1� �) exp

 
�00�x(st) � �0x(st)

�00�x(st) + �0x(st)

!
;

H�(2)� =� exp

 
�0x(st) � �00�x(st)

�0x(st) + �00�x(st)

!
+ (1� �) exp

 
�00�x(st) � �0x(st)

�00�x(st) + �0x(st)

!
;

H�(3)� = � exp

 
�0x(st) � �00�x(st)

�0x(st) + �00�x(st)

!
+ (1� �)

�0x(st)

�00�x(st)
;

and

H�(3)� = � exp

 
�0x(st) � �00�x(st)

�0x(st) + �00�x(st)

!
+ (1� �)

�0x(st)

�00�x(st)
;

Bias
�
t�s(1)(�;�)

�
= �Y

�

�x(st)

� �
�x(st) � �
�x(st) + 4��
�x(st)

+ 2#�xy(st) � 2�#�xy(st) � 2�#�xy(st) + w�2(1)�
1 + � 
�x(st) +#�xy(st) � 2�#�xy(st)

��
� w1(1)�X

�

�x(st) � 2�
�x(st)

�
; (67)

Bias
�
t�s(2)(�;�)

�
= �Y

�
�� 
�x(st) + #�xy(st)

� �#�xy(st) � �#�xy(st) + w�2(2)�
�


�x(st)

2
� 
�x(st)

8
+
#�xy(st)

2
� �#�xy(st)

��
w�1(2)�X

�
� 
�x(st) �


�x(st)

2

�
; (68)

Bias
�
t�s(3)(�;�)

�
= �Y

�
3
�x(st) � 9

8
�
�x(st)

� 9
8
�
�x(st) +

��
4


�x(st) � 2#�xy(st)

+
�
2
#�xy(st) +

�
2
#�xy(st)

+w�2(3)

�
1 +

�
2
#�xy(st) � #�xy(st) � 5

8
� 
�x(st)

��
+ w�1(3)�X

�

�x(st) � �

2

�x(st)

�
: (69)

The MSEs of t�s(i)(�;�) is expressed by:

MSE
�
t�s(i)(�;�)

�
=K�0(i)+w� 2

2(i)K
�
1(i)+w�2(i)K

�
2(i)

+w�1(i)K
�
3(i)+ w�1(i)w

�
2(i)K

�
4(i)+w�1(i)K

�
5(i); (70)
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where

K�0(1) =�2
Y

�

00�y(st) + 4 
�x(st) � 8�
�x(st) � 8� 
�x(st)

+ 4�2 
�x(st) + 4�2 
�x(st) + 8�� 
�x(st)

+ 4#�xy(st) � 4�#�xy(st) �4�#�xy(st)

�
;

K�1(1) =�2
Y

�
1+
00�y(st) + 
�x(st) + 2�
�x(st) + 4#�xy(st)

� 8�#�xy(st) + 4�2
�x(st)

�
;

K�2(1) =�2
Y

�
2
00�y(st) +10C�xy(st)�12�C�xy(st)+6 
�x(st)

� 6�
�x(st)�14�
�x(st)+16��
�x(st)

+ 8�2
�x(st) �8�#�xy(st)

�
;

K�3(1) = �2
X 
�x(st);

K�4(1) = 2�Y �X
�

4� 
�x(st) � 2 
�x(st) � #�xy(st)

�
;

K�5(1) =2�Y �X
�

2�
�x(st)+2�
�x(st)�2
�x(st)�#�xy(st)

�
;

K�0(2) =�2
Y

�

00�y(st)+ 
�x(st) � 2�
�x(st)

� 2� 
�x(st) + �2 
�x(st) + �2 
�x(st)

+ 2��
�x(st)+2#�xy(st)�2�#�xy(st)�2�#�xy(st)

�
;

K�1(2) =�2
Y

�
1 + 
00�y(st) + 2#�xy(st)

�4� #�xy(st) + 4�2 
�x(st)

�
;

K�2(2) =�2
Y

�
2
00�y(st) + 
�x(st) + 5#�xy(st)

� 4�#�xy(st) � 6� #�xy(st) � �
�x(st)

+ 4�� 
�x(st) + 2�2 
�x(st) �3� 
�x(st)

�
;

K�3(2) = �2
X
�x(st);

K�4(2) = 2�Y �X
�

2� 
�x(st) � 
�x(st) � #�xy(st)

�
;

K�5(2) =2�Y �X
�
�
�x(st) + � 
�x(st)

�
�x(st) � #�xy(st)

�
;

K�0(3) =�2
Y

�

00�y(st) + 4 
�x(st) � 2�
�x(st)

� 2�
�x(st) +
�2

4

�x(st) +

�2

4

�x(st)

+
��
2


�x(st) � 4#�xy(st)

+ �#�xy(st) +� #�xy(st)

�
;

K�1(3) =�2
Y

�
1+
00�y(st) + 
�x(st) � 9

4
�
�x(st)

� 4#�xy(st) + 2�#�xy(st) +
�2

4

�x(st)

�
;

K�2(3) =�2
Y

�
2 
00�y(st) + 10#�xy(st) + 3� #�xy(st)

+ 10 
�x(st) � 6�
�x(st) � 21
4
�
�x(st)

� 13
4
�
�x(st) +

�2

2

�x(st) + �� 
�x(st)

+2�#�xy(st)

�
;

K�3(3) = �2
X 
�x(st);

K�4(3) = 2�Y �X
�

2 
�x(st) � � 
�x(st) � #�xy(st)

�
;

and

K�5(3) =2�Y �X�
2
�x(st) � �

2

�x(st) � �

2

�x(st) � #�xy(st)

�
:

The optimum values of w�1(i) and w�2(i) from Eq. (70)
are reproduced under Remark 2, and given by:

w� opt1(i) =
K�2(i)K

�
4(i) � 2K�1(i)K

�
5(i)

4K�1(i)K
�
3(i) �K�24(i)
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and

w� opt2(i) =
K�4(i)K

�
5(i) � 2K�2(i)K

�
3(i)

4K�1(i)K
�
3(i) �K�24(i)

(71)

Substituting the optimum values of w�1(i) and w�2(i)
in Eq. (70), the expression of the minimum MSE of
t�s(i)(�;�) is obtained as:

minMSE
�
t�s(i)(�;�)

�
= K�0(i)

�
�
K�2(i)K

�
4(i)K

�
5(i)�K�22(i)K

�
3(i)�K�1(i)K

�2
5(i)

�
K�24(i)�4K�1(i)K

�
3(i)

:(72)

Remark 3

When there is no non-response and no measurement
error in both the study and auxiliary variables, the
modi�cations to estimation procedures presented in the
preceding sections can be modi�ed accordingly. For
example, a sample mean estimator of the study variable
along with the expression of the variance can take the
form as given by:

~�00�y(st) ! �00y(st) =

LP
h=1

yhi

n00h and var
�
�00y(st)

�
=

LP
h=1

P 2
h
�
�2hC2

Y h
�

= �00y(st).

Similarly, for the auxiliary variable, sample mean esti-

mator is stated as: ~�00�x(st) ! �00x(st) =

LP
h=1

x00hi
n00h , and an

expression of its variance is given by: var
�
�00x(st)

�
=

LP
h=1

P 2
h
�
�2hC2

Xh
�

= �00x(st). The expressions of

the di�erent covariances are reduced to the forms

cov
�
�00y(st)�00x(st)

�
=

LP
h=1

P 2
h (�2h �Y XhCY hCXh)=

�00xy(st), cov
�
�00x(st)�0x(st)

�
=

LP
h=1

P 2
h�hC2

Xh=A0x(st),

and cov
�
�00y(st)�0x(st)

�
=

LP
h=1

P 2
h (�h �Y XhCY hCXh)=

C 0xy(st), where �x(st)= �00x(st) � A0x(st) and �xy(st)=
�00xy(st) � C 0xy(st).

The proposed estimators of Eq. (42) are repro-
duced under Remark 3, and the estimator is given by:

ts(i)(�;�) =
�
�00y(st)H(i)� + w1(i)

�
�0x(st) � �00x(st)

�
+ w2(i)�00y(st)

�
H(i)� for i=1; 2; 3; (73)

where

H(1)� = �
�0x(st)

�00x(st)
+ (1� �)

�00x(st)

�0x(st)
;

H(1)� = �
�0x(st)

�00x(st)
+ (1� �)

�00x(st)

�0x(st)
;

H(2)� =� exp

 
�0x(st) � �00x(st)

�0x(st) + �00x(st)

!
+ (1� �) exp

 
�00x(st) � �0x(st)

�00x(st) + �0x(st)

!
;

H(2)� =� exp

 
�0x(st) � �00x(st)

�0x(st) + �00x(st)

!
+ (1� �) exp

 
�00x(st) � �0x(st)

�00x(st) + �0x(st)

!
;

H(3)� =� exp

 
�0x(st) � �00x(st)

�0x(st) + �00x(st)

!
+ (1� �)

�0x(st)

�00x(st)
;

and

H(3)� =� exp

 
�0x(st) � �00x(st)

�0x(st) + �00x(st)

!
+ (1� �)

�0x(st)

�00x(st)
;

Bias
�
ts(1)(�;�)

�
= �Y

�
�x(st) � ��x(st) � ��x(st)

+ 4���x(st) + 2�xy(st) � 2��xy(st)

� 2��xy(st) + w2(1)(1 + � �x(st) + �xy(st)

�2��xy(st))
��w1(1)�X(�x(st)�2��x(st)); (74)

Bias
�
ts(2)(�;�)

�
= �Y

�
���x(st)

+ �xy(st) � ��xy(st) � ��xy(st) + w2(2)�
�
�x(st)

2
� �x(st)

8
+
�xy(st)

2
� � �xy(st)

��
w1(2)�X

�
��x(st) � �x(st)

2

�
(75)

Bias
�
ts(3)(�;�)

�
= �Y

�
3�x(st) � 9

8
��x(st) � 9

8
� �x(st)
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+
��
4
�x(st) � 2�xy(st) +

�
2
�xy(st) +

�
2
�xy(st)

+ w2(3)

�
1 +

�
2
�xy(st) ��xy(st) � 5

8
��x(st)

��
+ w1(3)�X

�
�x(st) � �

2
�x(st)

�
: (76)

The MSEs of ts(i)(�;�) is expressed by:

MSE
�
ts(i)(�;�)

�
= r0(i) + w2

2(i)r1(i) + w2(i)r2(i)

+w2
1(i)r3(i)+w1(i)w2(i)r4(i)+w1(i)r5(i); (77)

where

r0(1) =�2
Y

�
�00y(st) + 4 �x(st) � 8��x(st) � 8� �x(st)

+ 4�2�x(st) + 4�2 �x(st) + 8���x(st)

+ 4�xy(st) � 4��xy(st)�4� �xy(st)

�
;

r1(1) =�2
Y

�
1 + �00y(st) + �x(st) + 2� �x(st)

+ 4�xy(st) � 8��xy(st) + 4�2�x(st)

�
;

r2(1) =�2
Y

�
2�00y(st) + 10�xy(st) � 12� �xy(st)

+ 6 �x(st) � 6��x(st) � 14��x(st)

+ 16���x(st) + 8�2�x(st)�8��xy(st)

�
;

r3(1) = �2
X �x(st);

r4(1) = 2�Y �X
�
4� �x(st) � 2 �x(st) � �xy(st)

�
;

r5(1) =2�Y �X
�

2��x(st) + 2� �x(st)

� 2 �x(st) � �xy(st)

�
;

r0(2) =�2
Y

�
�00y(st)+ �x(st) � 2��x(st) � 2� �x(st)

+ �2�x(st) + �2�x(st) + 2�� �x(st)

+ 2�xy(st) � 2��xy(st)�2� �xy(st)

�
;

r1(2) =�2
Y

�
1 + �00y(st) + 2�xy(st) � 4� �xy(st)

+ 4�2 �x(st)

�
;

r2(2) =�2
Y

�
2�00y(st) + �x(st) + 5�xy(st)

� 4��xy(st) � 6� �xy(st) � ��x(st)

+ 4���x(st) + 2�2�x(st)�3��x(st)

�
;

r3(2) = �2
X �x(st);

r4(2) = 2�Y �X
�
2��x(st) � �x(st) � �xy(st)

�
;

r5(2) =2�Y �X (� �x(st) + ��x(st) � �x(st)

��xy(st)
�
;

r0(3) =�2
Y ( �00y(st) + 4 �x(st) � 2��x(st)

� 2� �x(st) +
�2

4
�x(st) +

�2

4
�x(st)

+
��
2
�x(st) � 4�xy(st) + ��xy(st)

+ � �xy(st));

r1(3) =�2
Y ( 1+ �00y(st) + �x(st) � 9

4
��x(st)

� 4�xy(st) + 2� �xy(st) +
�2

4
�x(st) ) ;

r2(3) =�2
Y

�
2�00y(st) + 10�xy(st) + 3� �xy(st)

+ 10�x(st) � 6��x(st) � 21
4
��x(st)

� 13
4
��x(st) +

�2

2
�x(st) + ���x(st)

+2��xy(st)
�
;

r3(3) = �2
X�x(st);

r4(3) =2�Y �X
�
2 �x(st)�� �x(st)��xy(st)

�
;

and

r5(3) =2�Y �X
�

2�x(st)��2 �x(st)� �2 �x(st)��xy(st)

�
:
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Figure 1. Mean Squared Error (MSEs) of the all
estimators at di�erent values of k with presence of the
non-response and measurement error.

The optimum values of w1(i) and w2(i) from Eq. (77)
are given by:

wopt1(i) =
r2(i)r4(i) � 2r1(i)r5(i)

4r1(i)r3(i) �r2
4(i)

;

and

wopt2(i) =
r4(i)r5(i) � 2r2(i)r3(i)

4r1(i)r3(i) �r2
4(i)

: (78)

Substituting the optimum values of w1(i) and w2(i)
in Eq. (77), the expression of the minimum MSE of
ts(i)(�;�) is obtained as:

minMSE
�
ts(i)(�;�)

�
= r0(i)

�
�r2(i)r4(i)r5(i)�r2

2(i)r3(i)�r1(i)r2
5(i)

�
r2

4(i)�4r1(i)r3(i)
: (79)

4. Results and discussion

In this section, all of the proposed combined regression
estimators are compared for their e�ciency using the
criterion of absolute MSE. The MSEs of all estimators
are computed by changing the value of k following the
four di�erent situations: (i) when the non-response and
the measurement error are simultaneously present; (ii)
when only the non-response is present; (iii) when only
the measurement error is present; (iv) when neither
the non-response nor the measurement error is present;
and results are presented in Tables 1{4. MSEs of all
the estimators are also expressed by Figures 1 and 2
by changing the value of k. The caption of each table
shows the situation under which the MSEs are com-
puted in the given table. The e�ciency comparisons of
the unbiased sample mean estimator, combined ratio
estimator, and combined exponential ratio estimator
with usual combined regression estimator are computed

Figure 2. Mean Squared Error (MSEs) of the all
estimators with presence of the only non-response.

numerically following the conditions expressed by Eqs.
(22) to (24), and results are presented in Table 5. In
Tables 6{8, the e�ciency comparison of the proposed
generalized combined regression-cum-ratio estimators
with the proposed modi�ed combined regression esti-
mator is given using the condition expressed by Eq.
(57).

To compute the MSE of the estimator, an arti�cial
strati�ed populated is generated using the R-language.
The strati�ed population is generated with arbitrary
parameters of normal distribution. Further description
on parameters, population size and sample size are
shown in Table 9.

stratum� 1! X1 = N (5000; 4; 15) ;

z1 = N (5000; 0; 1) ; Y1 = 50X1 + 15z1;

y1 = Y1 +N (1; 3) ; x1 = X1 +N (1; 3) ;

stratum� 2! X2 = N (5000; 5; 15) ;

z2 = N (5000; 0; 1) ; Y2 = 50X2 + 15z2;

y2 = Y2 +N (1; 3) ; x2 = X2 +N (1; 3) ;

stratum� 3! X3 = N (5000; 6; 15) ;

z3 = N (5000; 0; 1) ;Y3 = 50X3 + 15z3;

y3 = Y3 +N (1; 3) ; x3 = X3 +N (1; 3) :

The MSEs of the estimators are computed, and results
are presented in Tables 1{4.

From Tables 1{4, this can be noted that the two
proposed estimators, usual combined regression estima-
tor ~t�reg, and modi�ed combined regression estimator
~t�g(i) are equally e�cient as these are achieving same
MSE values whereas usual combined ratio estimator
~t�ra, and usual combined exponential ratio estimator
~t�er have their MSEs larger than the MSEs of ~t�reg and
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Table 1. Mean Squared Errors (MSEs) of all estimators with presence of the non-response and measurement error.

(�; �) Estimators
Proposition of revisit sample (1/k)

1=2 1=3 1=4 1=5
E

xi
st

in
g

es
ti

m
at

or
s ~t�u 885.23 1105.39 1325.54 1545.70

~t�ra 464.50 481.27 498.05 514.83
~t�er 528.46 587.66 646.87 706.08
~t�
 452.89 469.29 485.33 501.19

P
ro

p
os

ed
es

ti
m

at
or

s

(0,0)

~t�s(1)(0;0) 450.55 466.93 482.95 498.80
~t�s(2)(0;0) 450.05 466.33 482.25 497.99
~t�s(3)(0;0) 447.99 463.70 479.00 494.08

(0,0.5)

~t�s(1)(0;0:5) 427.76 428.32 424.93 417.90
~t�s(2)(0;0:5) 444.68 457.89 470.21 481.87
~t�s(3)(0;0:5) 446.61 461.58 476.02 490.15

(0,1)

~t�s(1)(0;1) 438.17 446.64 453.18 458.05
~t�s(2)(0;1) 444.66 457.85 470.14 481.76
~t�s(3)(0;1) 446.63 461.61 476.07 490.22

(0.5,0)

~t�s(1)(0:5;0) 452.45 469.24 485.30 500.82
~t�s(2)(0:5;0) 451.32 468.13 484.51 500.66
~t�s(3)(0:5;0) 448.98 465.10 480.85 496.41

(0.5,0.5)

~t�s(1)(0:5;0:5) 435.52 442.71 447.75 450.89
~t�s(2)(0:5;0:5) 446.95 461.77 476.04 489.97
~t�s(3)(0:5;0:5) 447.73 463.23 478.28 493.09

(0.5,1)

~t�s(1)(0:5;1) 443.93 456.95 469.10 480.63
~t�s(2)(0:5;1) 446.94 461.74 476.00 489.91
~t�s(3)(0:5;1) 447.75 463.25 478.32 493.15

(1,0)

~t�s(1)(1;0) 452.85 468.18 481.66 493.42
~t�s(2)(1;0) 452.21 469.10 485.33 501.09
~t�s(3)(1;0) 449.87 466.30 482.37 498.29

(1,0.5)

~t�s(1)(1;0:5) 441.84 454.00 465.18 475.60
~t�s(2)(1;0:5) 448.85 464.84 480.46 495.89
~t�s(3)(1;0:5) 448.75 464.68 480.22 495.58

(1,1)

~t�s(1)(1;1) 448.27 464.15 479.63 494.94
~t�s(2)(1;1) 448.84 464.83 480.44 495.86
~t�s(3)(1;1) 448.76 464.70 480.25 495.62

* Note: ~t�
= ~t�reg=~t�g(1)=~t�g(2) =~t�g(3).
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Table 2. Mean Squared Errors (MSEs) of the all estimators with presence of the only measurement error.

(�; �) Estimators MSE (�; �) Estimators MSE

E
xi

st
in

g
es

ti
m

at
or

s

~tu 665.07

(0.5,0.5)

~ts(1)(0:5;0:5) 407.61

~tra 421.28 ~ts(2)(0:5;0:5) 412.42

t0er 462.64 ~ts(3)(0:5;0:5) 412.87

~t
 416.51 (0.5,1) ~ts(1)(0:5;1) 411.07

P
ro

p
os

ed
es

ti
m

at
or

s

(0,0)

~ts(1)(0;0) 414.11

(1,0)

~ts(2)(0:5;1) 412.42

~ts(2)(0;0) 413.89 ~ts(3)(0:5;1) 412.87

~ts(3)(0;0) 413.01 ~ts(1)(1;0) 416.21

(0,0.5)

~ts(1)(0;0:5) 404.42

(1,0.5)

~ts(2)(1;0) 415.26

~ts(2)(0;0:5) 411.36 ~ts(3)(1;0) 413.87

~ts(3)(0;0:5) 412.38 ~ts(1)(1;0:5) 410.30

(0,1)

~ts(1)(0;1) 408.53

(1,1)

~ts(2)(1;0:5) 413.36

~ts(2)(0;1) 411.35 ~ts(3)(1;0:5) 413.32

~ts(3)(0;1) 412.39 ~ts(1)(1;1) 413.12

(0.5,0)

~ts(1)(0:5;0) 415.41 ~ts(2)(1;1) 413.36

~ts(2)(0:5;0) 414.63 ~ts(3)(1;1) 413.33

~ts(3)(0:5;0) 413.46 { {

~t�g(i). These results are also con�rmed by the required
conditions shown in Eqs. (12){(14), and are also com-
puted numerically in Table 5. Therefore, subsequently
proposed generalized combined regression-cum-ratio
estimators ~t�s(i)(�;�) for i = 1; 2; 3 are compared only
with ~t�reg and ~t�g(i) based on their MSE values. Further
from Tables 1-4, it is observed that the proposed
estimators ~t�s(i)(�;�) for i = 1; 2; 3 are more e�cient
than ~t�reg and ~t�g(i), as the bold �gures in Tables 1-4
indicate, the MSE values of ~t�s(i)(�;�) are smaller than
the MSE values of ~t�reg and ~t�g(i). These results are
also con�rmed as the required conditions shown by Eq.

(40) are met, and the required conditions are computed
numerically in Tables 6{8.

Form Figures 1{2, it is much easier to understand
that MSEs of each estimator is increasing as sub-
sample size of recontact is decreasing which is expected
for each estimator. Sub-group sized is decreased as
the value of k is increased. However, Figures 1{2 are
also clearly indicating that the proposed generalized
combined regression-cum-ratio estimators ~t�s(i)(�;�) for
i = 1; 2; 3 are achieving smaller MSE values than the
MSE of ~t�reg. Whereas MSE of ~t�reg is smaller than
usual combined ratio estimator, and usual combined
exponential ratio estimator.
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Table 3. Mean Squared Errors (MSE) values of all estimators with the only presence of the non-response.

(�; �) Estimators
Proposition of revisit sample (1/k)

1=2 1=3 1=4 1=5
E

xi
st

in
g

es
ti

m
at

or
s t�u 885.22 1105.37 1325.52 1545.67

t�ra 393.91 393.99 394.07 394.15

t�er 510.80 565.83 620.86 675.89

t�
 393.63 393.79 393.92 394.02

P
ro

p
os

ed
es

ti
m

at
or

s

(0,0)
t�s(1)(0;0) 391.15 391.28 391.38 391.45

t�s(2)(0;0) 391.12 391.27 391.38 391.48

t�s(3)(0;0) 390.83 390.96 391.04 391.11

(0,0.5)
t�s(1)(0;0:5) 372.07 358.49 341.70 321.83

t�s(2)(0;0:5) 386.74 384.35 381.53 378.29

t�s(3)(0;0:5) 389.89 389.56 389.16 388.70

(0,1)
t�s(1)(0;1) 380.62 373.81 365.57 355.97

t�s(2)(0;1) 386.72 384.32 381.48 378.22

t�s(3)(0;1) 389.90 389.58 389.18 388.74

(0.5,0)
t�s(1)(0:5;0) 393.32 393.78 393.79 393.36

t�s(2)(0:5;0) 392.46 393.05 393.51 393.85

t�s(3)(0:5;0) 391.30 391.60 391.86 392.11

(0.5,0.5)
t�s(1)(0:5;0:5) 380.27 373.38 365.06 355.37

t�s(2)(0:5;0:5) 389.11 388.27 387.29 386.20

t�s(3)(0:5;0:5) 390.43 390.35 390.23 390.07

(0.5,1)
t�s(1)(0:5;1) 386.77 384.51 381.87 378.90

t�s(2)(0:5;1) 389.10 388.25 387.27 386.17

t�s(3)(0:5;1) 390.44 390.37 390.24 390.10

(1,0)
t�s(1)(1;0) 393.43 391.92 388.65 383.58

t�s(2)(1;0) 393.30 393.77 393.81 393.43

t�s(3)(1;0) 391.72 392.16 392.54 392.89

(1,0.5)
t�s(1)(1;0:5) 386.52 384.21 381.54 378.52

t�s(2)(1;0:5) 390.99 391.15 391.27 391.38

t�s(3)(1;0:5) 390.93 391.06 391.16 391.24

(1,1)
t�s(1)(1;1) 390.97 391.16 391.30 391.43

t�s(2)(1;1) 390.98 391.14 391.26 391.37

t�s(3)(1;1) 390.94 391.07 391.17 391.26
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Table 4. Mean Squared Error (MSE) values of all estimators without presence of the non-response and measurement error.

(�; �) Estimators MSE (�; �) Estimators MSE

E
xi

st
in

g
es

ti
m

at
or

s
~tu 412.75

(0.5,0.5)

~ts(1)(0:5;0:5) 231.39

~tra 251.00 ~ts(2)(0:5;0:5) 234.42

t0er 258.20 ~ts(3)(0:5;0:5) 234.45

~t
 236.01 ~ts(1)(0:5;1) 233.60

P
ro

p
os

ed
es

ti
m

at
or

s

(0,0)

~ts(1)(0;0) 235.52

(0.5,1)

~ts(2)(0:5;1) 234.41

~ts(2)(0;0) 235.32 ~ts(3)(0:5;1) 234.45

~ts(3)(0;0) 234.46 ~ts(1)(1;0) 236.01

(0,0.5)

~ts(1)(0;0:5) 229.88

(1,0)

~ts(2)(1;0) 235.76

~ts(2)(0;0:5) 233.97 ~ts(3)(1;0) 235.10

~ts(3)(0;0:5) 234.07 ~ts(1)(1;0:5) 232.69

(0,1)

~ts(1)(0;1) 232.48

(1,0.5)

~ts(2)(1;0:5) 234.80

~ts(2)(0;1) 233.97 ~ts(3)(1;0:5) 234.79

~ts(3)(0;1) 234.07 ~ts(1)(1;1) 234.51

(0.5,0)

~ts(1)(0:5;0) 235.88

(1,1)

~ts(2)(1;1) 234.80

~ts(2)(0:5;0) 235.57 ~ts(3)(1;1) 234.79

~ts(3)(0:5;0) 234.80 { {

Table 5. E�ciency comparisons of ~t�reg with ~t�u; ~t�ra; ~t�er.

~t�reg vs ~t�u 0:01457 > 0

~t�reg vs ~t�ra 0:00682 > 0

~t�regvs ~t�er 0:00828 > 0

5. Conclusion

In the present study, usual combined regression es-
timator ~t�reg and modi�ed combined regression es-
timator ~t�g(i) for mean estimation in strati�ed two-

phase sampling are concluded to be equally e�cient,
however both types of combined regression estimators
are remained more e�cient than usual combined ratio
estimator ~t�ra and usual combined exponential esti-
mator ~t�er. Another proposed generalized combined
regression-cum-ratio estimators ~t�s(i)(�;�) for i = 1; 2; 3
is found to be the most e�cient class of estimators as all
combined regression-cum-ratio estimators attain least
Mean Squared Error (MSE) values than the MSEs
of all the estimators discussed in the text. Therefore
it is concluded from Tables 1{8, that the proposed
generalized combined regression-cum-ratio estimators
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Table 6. E�ciency comparison of ~t�s(1)(�;�) with ~t�reg.

�2
xy(st) = 0:48839 �2

xy(st) = 0:57544 �2
xy(st) = 0:63386 �2

xy(st) = 0:67574

Estimators 1=2 1=3 1=4 1=5

~t�s(1)(0;0) vs ~t�reg 0:49103 > �2
xy(st) 0:57758 > �2

xy(st) 0:63566 > �2
xy(st) 0:67729 > �2

xy(st)

~t�s(1)(0;0:5) vs ~t�reg 0:51677 > �2
xy(st) 0:61251 > �2

xy(st) 0:67942 > �2
xy(st) 0:72961 > �2

xy(st)

~t�s(1)(0;1) vs ~t�reg 0:50502 > �2
xy(st) 0:59594 > �2

xy(st) 0:65811 > �2
xy(st) 0:70366 > �2

xy(st)

~t�s(1)(0:5;0) vs ~t�reg 0:48888 > �2
xy(st) 0:57549 > �2

xy(st) 0:63388 > �2
xy(st) 0:67599 > �2

xy(st)

~t�s(1)(0:5;0:5) vs ~t�reg 0:50802 > �2
xy(st) 0:59949 > �2

xy(st) 0:66221 > �2
xy(st) 0:70829 > �2

xy(st)

~t�s(1)(0:5;1) vs ~t�reg 0:49851 > �2
xy(st) 0:58661 > �2

xy(st) 0:64610 > �2
xy(st) 0:68905 > �2

xy(st)

~t�s(1)(1;0) vs ~t�reg 0:48844 > �2
xy(st) 0:57645 > �2

xy(st) 0:63663 > �2
xy(st) 0:68077 > �2

xy(st)

~t�s(1)(1;0:5) vs ~t�reg 0:50087 > �2
xy(st) 0:58928 > �2

xy(st) 0:64906 > �2
xy(st) 0:69230 > �2

xy(st)

~t�s(1)(1;1) vs ~t�reg 0:49360 > �2
xy(st) 0:58010 > �2

xy(st) 0:63815 > �2
xy(st) 0:67979 > �2

xy(st)

Table 7. E�ciency comparison of ~t�s(2)(�;�) with ~t�reg.

�2
xy(st) = 0:48839 �2

xy(st) = 0:57544 �2
xy(st) = 0:63386 �2

xy(st) = 0:67574

Estimators 1=2 1=3 1=4 1=5

~t�s(2)(0;0) vs ~t�reg 0:4916 > �2
xy(st) 0:57812 > �2

xy(st) 0:63619 > �2
xy(st) 0:67782 > �2

xy(st)

~t�s(2)(0;0:5) vs ~t�reg 0:49766 > �2
xy(st) 0:58577 > �2

xy(st) 0:64527 > �2
xy(st) 0:68825 > �2

xy(st)

~t�s(2)(0;1) vs ~t�reg 0:49769 > �2
xy(st) 0:5858 > �2

xy(st) 0:64532 > �2
xy(st) 0:68832 > �2

xy(st)

~t�s(2)(0:5;0) vs ~t�reg 0:49017 > �2
xy(st) 0:5765 > �2

xy(st) 0:63448 > �2
xy(st) 0:67609 > �2

xy(st)

~t�s(2)(0:5;0:5) vs ~t�reg 0:4951 > �2
xy(st) 0:58226 > �2

xy(st) 0:64087 > �2
xy(st) 0:68301 > �2

xy(st)

~t�s(2)(0:5;1) vs ~t�reg 0:49512 > �2
xy(st) 0:58228 > �2

xy(st) 0:64091 > �2
xy(st) 0:68305 > �2

xy(st)

~t�s(2)(1;0) vs ~t�reg 0:48916 > �2
xy(st) 0:57562 > �2

xy(st) 0:63387 > �2
xy(st) 0:67582 > �2

xy(st)

~t�s(2)(1;0:5) vs ~t�reg 0:49295 > �2
xy(st) 0:57947 > �2

xy(st) 0:63754 > �2
xy(st) 0:67918 > �2

xy(st)

~t�s(2)(1;1) vs ~t�reg 0:49296 > �2
xy(st) 0:57949 > �2

xy(st) 0:63755 > �2
xy(st) 0:6792 > �2

xy(st)

Table 8. E�ciency comparison of s with ~t�reg.

�2
xy(st) = 0:48839 �2

xy(st) = 0:57544 �2
xy(st) = 0:63386 �2

xy(st) = 0:67574

Estimators 1=2 1=3 1=4 1=5

~t�s(3)(0;0) vs ~t�reg 0:49392 > �2
xy(st) 0:58051 > �2

xy(st) 0:63864 > �2
xy(st) 0:68035 > �2

xy(st)

~t�s(3)(0;0:5) vs ~t�reg 0:49549 > �2
xy(st) 0:58243 > �2

xy(st) 0:64088 > �2
xy(st) 0:6829 > �2

xy(st)

~t�s(3)(0;1) vs ~t�reg 0:49547 > �2
xy(st) 0:58241 > �2

xy(st) 0:64084 > �2
xy(st) 0:68285 > �2

xy(st)

~t�s(3)(0:5;0) vs ~t�reg 0:4928 > �2
xy(st) 0:57924 > �2

xy(st) 0:63724 > �2
xy(st) 0:67884 > �2

xy(st)

~t�s(3)(0:5;0:5) vs ~t�reg 0:49422 > �2
xy(st) 0:58093 > �2

xy(st) 0:63918 > �2
xy(st) 0:68099 > �2

xy(st)

~t�s(3)(0:5;1) vs ~t�reg 0:49421 > �2
xy(st) 0:58091 > �2

xy(st) 0:63915 > �2
xy(st) 0:68095 > �2

xy(st)

~t�s(3)(1;0) vs ~t�reg 0:49181 > �2
xy(st) 0:57815 > �2

xy(st) 0:63609 > �2
xy(st) 0:67763 > �2

xy(st)

~t�s(3)(1;0:5) vs ~t�reg 0:49307 > �2
xy(st) 0:57962 > �2

xy(st) 0:63771 > �2
xy(st) 0:67938 > �2

xy(st)

~t�s(3)(1;1) vs ~t�reg 0:49306 > �2
xy(st) 0:57961 > �2

xy(st) 0:63769 > �2
xy(st) 0:67935 > �2

xy(st)
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Table 9. Strati�ed population: Based on simulated normal distribution.

Stratum Nh �yxh �Y h �Xh �2
Uh �2

V h �2
yh �2

xh

1 5000 0.98 183.62 3.67 9.19 9.32 543610.50 227.16

2 5000 0.98 248.67 4.97 9.19 9.25 583685.70 242.30

3 5000 0.98 301.68 6.04 9.10 9.18 578114.50 240.50

Stratum n0h n00h �2
yh(2) �2

xh(2) �2
Uh(2) �2

V h(2) �yxh(2)

1 500 300 575428.90 230.66 9.15 9.75 0.99

2 500 300 599476.60 239.94 9.14 8.80 0.99

3 500 300 577044.10 230.86 9.32 8.63 0.99

~t�s(i)(�;�) is the most e�cient and more generalized com-
bined estimator of mean than ~t�g(i), ~t�reg, ~t�ra, and ~t�er.
Further, it is also concluded that ~t�s(i)(�;�) performs well
in all of the four situations. Therefore, the proposed
generalized combined regression-cum-ratio estimators
~t�s(i)(�;�) for i = 1; 2; 3 are recommended for their
applications of mean estimation under strati�ed two-
phase sampling when the two components of survey
error, the non-response and the measurement error are
present simultaneously.

This study may be extended for mean estimation
assuming the simultaneous presence of non-response
and measurement error in di�erent sampling designs,
such as multistage sampling, and ranked set sampling.
For estimation of unknown parameter(s) under ranked
set sampling schemes, one can �nd Zamanzade and
Mahizadeh [38], Zamanzade and Wang [39], and Dum-
bgen and Zamanzade [40] worth reading and helpful for
future work.
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