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1. Introduction

In survey sampling, usually, it is presumed that all
the observations of the variables under study are
adequately measured and all units in the sample give
a response. But in reality, such assumption infringes,

Abstract. In this study, three classes of generalized and more efficient combined
regression-cum-ratio estimators are presented to estimate the population mean of the
study variable in stratified two-phase sampling considering non-response and measurement
error are present jointly. The expressions for the bias and mean square error of the
three proposed generalized combined regression-cum-ratio estimators have been obtained.
Optimal conditions which make the proposed generalized regression-cum-ratio estimators
more efficient than modified combined regression estimator are discussed. The performance
of the proposed generalized combined regression-cum-ratio estimators has been compared
theoretically as well as empirically with various combined type estimators in stratified
two-phase sampling including usual combined ratio estimator, usual combined exponential
ratio estimator, usual combined regression estimator, and modified combined regression
estimator. An empirical study shows that the proposed generalized combined regression-
cum-ratio estimators perform more efficiently than all combined type ratio, exponential
ratio, and regression estimators discussed in the study.
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because not all units respond and also measurement
errors may arise due to the difference between the
recorded and true values. Hence with these reasons the
statistics are not error-free. In practice, it is therefore,
researchers may need to deal with the problem of non-
response and measurement errors if present jointly.
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Generally, non-response and measurement error are
debated separately using supportive information.
Sanaullah et al. [1] proposed the “generalized
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exponential-type ratio-cum-ratio and product-cum-
product estimators in the presence of non-response
under stratified two-phase sampling. Sanaullah et
al. [2] taking inspiration from Samiuddin and Hanif [3]
and Sanaullah et al. [4], proposed the generalized
exponential-type estimators in the presence of non-
response under stratified random sampling by using
two auxiliary variables. Saleem et al. [5] taking
inspiration from Koyuncu and Kadilar [6], proposed
the generalized estimators in stratified sampling us-
ing two auxiliary variables in the presence of non-
response. Saleem et al. [7] suggested the general
class of estimators in the presence of non-response
using two auxiliary variables. Shabbir et al. [§]
extended Grover and Kaur [9] difference type estimator
and suggested a generalized class of estimators for
finite population mean in two-phase sampling using
two auxiliary variables in the presence of non-response.
Khare and Jha [10] advised six classes of different
ratio-type estimator of mean in stratified sampling
assuming the existence of the non-response. Some more
studies are available for estimation of mean considering
the presence of the non-response. One can see for
example, Singh and Usman [11], Unal and Kadilar [12],
Sanaullah and Hanif [13], Ehsan and Sanaullah [14],
Sanaullah et al. [15], Wu et al. [16], and Varshney and
Mradula [17] among many other.

Cochran [18] is supposed to be the first who
suggested an unbiased estimator assuming the occur-
rence of measurement error only. Many researchers
following Cochran [18] have studied the problem of
mean estimation considering the measurement errors
only. Singh and Karpe [19] provided different separate-
type and combined-type ratio and product estimators
in stratified sampling assuming the existence of the
measurement error. Shukla et al. [20] taking moti-
vation from Manisha and Singh [21], proposed a dual
to ratio estimator of mean in the presence of mea-
surement error. Masood and Shabbir [22] suggested
a generalized regression type estimators for estima-
tion of finite population variance of study variable
using multivariate supportive information under multi-
phase sampling scheme taking measurement error on
the study variable. Khalil et al. [23] suggested a
generalized combined regression-cum-ratio estimator in
stratified sampling using scrambled responses in the
presence of measurement error. Shalabh and Tsai [24]
presented ratio and product estimation procedures
keeping the correlated measurement error in their
consideration. Khalil et al. [25] highlighted the issues
when measurement error can be present in the survey,
and then provided a generalized estimator of mean
using auxiliary variable. Keeping the presence of the
measurement error in view as one component of survey
error, there exist several studies for estimation of mean
using auxiliary variable in simple random sampling and

stratified random sampling as well. For more detail,
one can see for example Singh et al. [26], Yaqub and
Shabbir [27], and Singh et al. [28] including many
other.

After having a careful review of the existing
studies for the estimation of mean, it can be noted
that the individual components of the survey error
have been well documented in the literature, however
relatively little is known about the intersection of
these components of survey error. The researchers
who have studied the measurement errors as individual
component of error for estimation mean, have ignored
the non-response as another possible component of
survey error similarly those who have studied the
non-response, have ignored the possibility of existence
of the measurement errors, whereas in many real-
situations both components of the survey errors may be
present. One may have to deal with while estimation
of mean if these both types of errors, non-response and
measurement errors are existing jointly. Consequently,
ignoring the existence of any component of error will
yield the estimate(s) with a relatively larger amount of
the bias. A few numbers of researchers have debated
the estimation of mean in simple random sampling
assuming the joint existence of the non-response and
the measurement error, such as, Azeem [29] studied
the problem of mean estimation considering the joint
influence of the non-response and measurement error;
Kumar et al. [30] proposed the exponential ratio-
type estimator in the presence of non-response and
measurement error; Kumar [31] extended the work
of Azeem [29] and provided a class of more efficient
estimators to estimate the population mean; Azeem
and Hanif [32] suggested different types of estimators
including dual to chain ratio estimator, a ratio-cum-
dual to ratio-type exponential estimator, and ratio-cum
dual to exponential ratio estimator; Irfan et al. [33]
provided an optimum class of estimators for mean in
simple random sampling. Sabir and Sanaullah [34]
revisited Kumar [31] estimator and, hence provided a
note on correct usage of Kumar’s [31] for estimation
of mean if the wo components of errors are present
simultaneously.

A few more studies have been presented the
studies in stratified random sampling. Zahid and
Shabbir [35] suggested a class of estimators for mean
estimation whereas Kumar et al. [36] suggested a
ratio-cum-product exponential type estimator of the
population mean in the joint existence of non-response
and measurement error using two auxiliary variables.
However in both of the studies seprate type estimator
in stratified random sampling are advised for mean
estimation when the two components of error are
existing simultaneously.

After having a very careful review, it is felt
that only a few research studies have discussed the
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estimation of mean in stratified random sampling but
these studies provide only separate-type estimators
of mean. It is also observed that mean estimation
is discussed under simple random sampling whereas
estimation in some other sampling designs such as
stratified sampling and multi-stage sampling design is
completely ignored. Another thing can also be felt
that most of the existing estimators in simple random
sampling and in stratified random sampling as well,
are proposed under the assumption if population mean
of the auxiliary variable is readily availble. However
in many real situations such auxiliary information
may not be readily avaiable and use of two-phase
sampling is one of the possible alternates in such situ-
ations. Otherwise existing estimators can not be made
useful for mean estimation unless they are modified
accordingly. Hence many gaps are found to work
on. Therefore assuming the situation when population
mean of the auxiliary variable is not readily available,
this study is motivated to present some combined-type
estimators for mean estimation in stratified two-phase
sampling.

Now in order to fill some of the gaps as stated in
previous text, the objective of this study is to provide
some generalized classes of more efficient combined
type estimators for estimating the population mean of
study variable following few assumptions such as:

(i) The two components of survey errors, the non-
response, and the measurement error are simultane-
ously present;

(ii) Population mean of the auxiliary variable is not
ready available in prior of the survey;

(iii) Units of the population under observation are
not homogeneous;

(iv) Relationship between the study variable and the
auxiliary variable is same in each stratum;

(v) Ratio between the means of the study variable
and the auxiliary variable in each stratum is approx-
imately equal to the ratio of the stratified means so
as to get combined type estimators.

The study is then prompted to get such condi-
tions which make each of the proposed generalized
classes of the combined type estimators more efficient
than combined-regression estimator. Furthermore, the
study is motivated to evaluate the proposed class
of efficient combined type estimators for its perfor-
mance with the combined ratio estimator, combined
exponential-type ratio estimator and combined regres-
sion estimator in stratified two-phase sampling. In
the present study it is discussed that the proposed
combined estimators can be molded into three different
situations of real-life which are given separately as three
remarks. In the following sections, some notations and

sampling procedure for estimation of mean with the as-
sumption of simultaneous existence of the non-response
and the measurement error are discussed along with
some results which will be helpful for observing the
properties of an estimator. An attempt has also been
made to compare the Mean Square Errors (MSEs)
of the proposed estimators with the MSEs of the
existing estimators. A simulation study is performed
to compute MSFEs of all the estimators discussed in
the text. The simulation results are also demonstrated
through the graphs to have a quick understanding with
the performance of all the estimators by changing the
non-response proportion.

2. Notations and stratified two-phase sampling

Before to present stratified two-phase sampling and
estimation procedures, some basic notations to be used
in this text are defined. Let a population of size N
be divided into L homogeneous strata with N, units

L
(h=1,2,---,L) such that > N, = N.
h=1

Notations

N Population size

Ny, Population size of Ath stratum

nx Study variable\Auxiliary variable

wy\ftx Population mean of Y'\Population of
X

Ly B\ILX Population means in hth stratum

Ky h(1)s HXh(1)
My h(2)s KX h(2)
U%fhv Ug(h

0%(1)#’%@(1)
Jf’h(z)v Jg{h(?)
Cyn(1), Cxn(1)
Cyn(2) Cxn(2)

yhi\ﬂﬁ hi
Yii\ X ni

Uhi =Yni —Yhi

Population means of respondents group
in hth stratum

Population means of group of
non-respondents in Ath stratum

Population variances of Y&X
respectively in Ath stratum

Population variances from group of
respondents in hth stratum

Population variances from group of
non-respondents in hth stratum

Coefficient of variations for Y& X from
group of respondents in hth stratum

Coeflicient of variation from group of
non-respondents in Ath stratum

Reported values on Y and X for ith
unit in Ath stratum

True values on Y and X for ith unit in
hth stratum

Measurement error on the study
variable associated with ¢th unit in Ath
stratum
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Vii=xn;—Xp; Measurement error on the auxiliary
variable associated with ¢th unit in Ath
stratum

Measurement error and non-response
on Y associated with 4th unit in hth

stratum

Upi=Yni—Yn;

Vi, = a),; — X},;Measurement error and non-response
on X associated with ¢th unit in hth

stratum

U%h@) &U%/h@) Population variances of U and
V respectively from the group of
non-respondents

Py xn(1)& Coefficients of correlation between the
PY X h(2) study and auxiliary variables for the
respondent and non-respondent parts
of the population
respectively
Np, .
P, = N Weight of hth stratum
nj, First-phase sample size in Ath stratum
nj 2nd-phase sample size in Ath stratum
L
n = Z n';,  First-phase stratified sample size
h=1
L
n' = Z n";,  2nd-phase stratified sample size
h=1
I (st) Sample mean estimator based on

first-phase sample

st)\N”; sy Sample mean estimator (for y and
z) based on 2nd-phase sample with
non-response and measurement error.

Now consider,

L L
py=> Pupyn  px=Y Puixn,
=1 1=1
where:
Np, Np

Ny,
Hyn = N, th“u)(h N, thl and Ph_ﬁ.

The measurement errors U}, = y;, =Y, and V), =
z;,— X}, in the presence of non-response associated are
assumed to have their means zero and the variances
U?]h(z) and U%,h(z) for the non-respondent part of the
population.

Unknown population mean of the auxiliary vari-
able is estimated using stratified two-phase sampling.
Let (yni,zni) be the observed values instead of true
values (Y3, Xn;) of the two characteristics (Y, X)
respectively associated with ith sample unit of hth

stratum where, ith (¢ = 1,2,---,n}). Now we take

a first-phase sample comparatively of large size say
L

nj, from each hth stratum such that 3 n', =n' and

h=1
information on the variable X is obtained. Now a usual

unbiased mean estimator based on first-phase sample
information in stratified sampling is defined by:

L n'y,

t;::U/’z(st) :thula:h where u//rh_ thﬂ
h=1

with variances given by:
L

v PN, Cxi (2)

h=1

var (t',) =

A sub-sample of size n} (Cn'y) from each stratum

L

is taken as 2nd-phase sample such that > n"), =n"
h=1

by simple random sampling without replacement and

information on variables Y is taken. Here it is

assumed that measurement error and non-response are

jointly present. It is also assumed that only ”Z@)

sample units respond and ng(z) = (n”h — n”h(l)) do
not. Following Hansen and Hurwitz [37] technique,
let rp, ( o Lk, > 1) be a sub-sample of the indi-

viduals who do not respond to the survey question(s)
but respond when they are contacted again for their
personal interviews, where kj, is the inverse sampling
ratio. It is further assumed that all r, units respond
while interviewing them for the study variable.

Following Hansen and Hurwitz [37] an unbiased
estimator of means is reproduced for Y and X variables
in stratified sampling as:

T ~//X 2 : ~ 1%
tu y(st Ph/j/ yh,7 ’ (3)
S~k "
where fi" ), =w: (4' yh(1)+ﬂ "uny)Fw2 (B 2k, +
"
" n' 71(1) _n 71(2) _ 1
© U(z)k,,,)v w=—, s, W=, ' yh(l)— PRI
71”71(1) 1 n”h(l) 1
/i _ o, _ 1
; pris Honn= gy 2 Ukio My =

Th "h
1 "
Z y" hm I yh(z)k,, % > ¥, and
=1
kn

w2 Ui
=1

The expression of the variance £ may be defined

NIZ,ITIL(Z)/ch:

as,

L 2
~ a
var (£) =i 3 P2 (m (c%h + ﬂfgh)
Y

h=1
Uh(g) )) | @
NY

+031, (CY h2) t
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_ (1 1 (1 1 _
where, \yj, = (n - ), An = (n’h ~, )7 Whi2) =
N2 _ Wh(z)(’“h—l)

N;, 92h — n',

Similarly, for the auxiliary variable, sample mean
estimator 1s

ﬂ”; (st)— E Py :u a:h,v where
i = w (N wh(1) + 1 Vh(l)) +

" "
' h(1) N h(2)

" n —_ —
w2 ('U/ z(2)ky, thu V(Q)kh>’ wr = n''y W2 = n'’y,

n' h(l) n' h(l)
" —_
1 on(y = e Z This W' vh) = 5 ,(1) 21 Vi,
= —
" _ 1% _ 1%
184 ( kh - Th ZI hi» N’J;h(z)kh - Ivh ZI his Il
" kh
" _ — 1 .
K G h2)k, = %n _Zlvhz'
iz

3. Method of mean estimation in stratified
two-phase sampling

In this section, method for estimating population
mean of the study variable is presented under the
assumption, the non-response and the measurement
error are jointly occurring on both variables, the study
variable and the auxiliary variable in stratified two-
phase sampling. It is also assumed that population
of the auxiliary variable is not known in prior of
survey; relationship between the study variable and
the auxiliary variable is same in stratum; ratio between
the means in each stratum is approximately equal to
the ratio of the stratified means. Method of mean
estimation in stratified two-phase sampling is proposed
under three different procedures separately in the three
following sub-sections.

3.1. Procedure I: Proposed class of usual
combined type estimators
Now, for estimation of population mean, three modified
combined type of estimators named as, usual combined
ratio estimator, usual combined exponential ratio esti-
mator, and usual combined regression estimator follow-
ing the assumptions in stratified two-phase sampling
are given respectively by:
I ﬁ”'Z(St)

tra = ﬁ,,$( 5 N’;(st)7 (5)

[modified combined ratio estimator]
= I /J’Ix(st) - ﬂlljc(st)
to=p" exp | ———— ], 6
er a v(st) P (/J/ac(st) + ,u”;(st) ( )

[modified combined exponential ratio estimator]
and

E:e ~” y(st) +tw (:u’x(st) - ﬁ”;(st)) ) (7

~—

[modified combined regression estimator]
where w is an optimizing constant.

In order to obtain the expressions for the bias
and the MSEs of Egs. (5)—(7), let us consider,

" "
n h n_ h

Wyn= 21 (?J”Zi - NYh>a Win= 21 (97”21' - NXh)a
1= 1=

" "
n o p n h

Wiy = 21 Upiy, Wi, = 21 Vi, and Wxp=
1= 1=

i
np

> (@ — pxn)-
i=1
Now the errors due to sampling are defined by:

L

« 1 P,
e :—E Wy + W,
y(st) 'UIthnL( Yh Uh)
L
X 1 P,
é”xs =—E W, + W
(st) HXhlnh(Xh Vi)
and
L
1 Py,
:r(st = ZTL xhi_uXh)7

and the sample means associated with the sampling
errors assuming the joint presence of non response and
measurement error are defined by: i,

py (1 +
élly(st)) z(st)_ px(l+é a:(st))7 and 'U’ac(st)_ :UX(
€'o(st)), such that E@" ) )=E@" () =E(€ s(s1) =0

. 2 Lo . o?
E (é”g‘/(st)) = Z P;f ()\Qh (C;Z/h + MU%/}L)
h=1

. 0-2 ~ s
+ Osp, (C}Z/h(Q)—’— U};(Q))) :A”'Iy(st)a
My

< 2 2 U%/h
= th )\Qh (CXh + 2)
Wx

)

E (é”z(st))z

h=1
)\ e
+ 625, (Cih(z)-l—u%()) :Allg'c(st)v
L
E(é//lj(st)é”;(st)) = Z Pi(N2h py xnCynCxn + an
h=1

pYXh(z)CYh CXh ) O”* y(st)>

L
E(elw(st)>2 —E (é”j;(st)ela:(st)) = Z P}?)\hoih

z(st)s

and
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L

E (é”;;(st)e/ac(st)) ZPf (An oy xnCynCxn)
h=1
= O;y(st)’
where A*(St):A”;(st) — A'x o) and ny(st) é//;y(st) —
C;y(st

8.1.1. Derivation of the biases and MSEs expressions
of the estimators

Now t},, ¢, and ¢, are given alternatively in terms
of e, s by:
o (1)
t:a = . nx (1 + elx(st)> ) (8)
(1 +e :r(st))

tN:T =iy (1 + él’;(st))

) (9)

px (14 € oiary) —pix (1 + 5"i(st))
exp
I

X (1 + 6,1.(‘90) + X (1 =+ é”:‘(st))

and

Freg =nv (148"

+w (px (L+€'o(st) —1x (1+é/,;(st)>) (10

or alternatively by:

trg =ty = py (€

~11%2

”Z(st) + elw(St) x(st) te z(st)

~I%

— & € e (st) = sty & (st) FE y(s)€ 2(st)) (1)

! /I><
€ z(st) € (st) 3«2

y(st) + 2 9 86 z(st)

~I %

ter — 1y = py (6

2 ~pE ~p) % ~p)E
B elw(st) B e”:c(st)e’ac(st) _ e”y(st)e”z(st)
8 4 2
él/* elz s
+ 7““)2 ( t)), (12)

and,

breg—ly =y (o Hwpx (elas(st)_é”a*:(st)) - (13)

The expressions of the biases for each of ¢, !, and
tr., up to the order O (n™') are given by:
Bias (EZa) = Hy (A;(st) C;y(st)) (14)

. T 3 A * %
Bias (tér) = py <8Ax(st) ny(st)> (15)
and
Bias (t;,.,) = 0. (16)

From Eq. (16), we get that the regression estimator
t;eg is an unbiased estimator while ratio estimator ¢,

and exponential estimator £, are biased estimators,
see the Eqgs. (14) and ( 5). Further expressions of the
M SEs for each of ¢ and £*__, are obtained up to

the order O (n™') and are given by:

Ta’ ET reg)

MSE (E;a) :/j’% ( ~I’:;(Si) + Aa:(st 2Cfcvy(st ) (17)

e p AN* 1 A S
MSE (tET) l’&/ (A y(st) + EAz(st) - Czy(st)) ) (]‘8)

and

MSE( reg) (I’LYA” (st) +w :u’XAz(st)

—2MY#Xwé;y(st)) . (19)

In order to achieve the optimum value of w, Eq. (19)
is differentiated partially with respect to w and then
equating the first derivative with zero. The optimum
value of w which gives the expression of the minimum
MSEE;,, . Substituting the

“Yéfm )
A?(w)
optimum value of w in Eq. (19), the expression of the

minimum MSE of i¥_, is given by:

reg

is given by wep =

o 6*2
min MSE (Teg) uf/A”Z(St) (1—”) , (20)
:v(st) y(st)

or after more simplification Eq. (20) is given by:
min MSE (treg) = 13 A5 ) (1 _ piy(st)) ,

sz
< zy(st)
piy(st) = A* y~ 1 . (21)
m(st)

where

3.1.2. Theoretical comparisons among the usual
combined type estimators

Now in this section, efficiency of combined regression

estimator theg is compared with the efficiencies of

unbiased ! estimator, combined ratio estimator #,

and combined exponential estimator £, .

(i) From equation Eqgs. (4) and (21) we have:
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MSE ( MSE (it) > 0,

TEg)

L
u%/ Z P,feghOf/h(g) (1 - pngh(Q))

L Th(2

h=1 Y

L
( Z P} )‘ZhCYh p%’Xh)

L i 2)
+uy ZP}%% ( Nz( ))

h=1 Y

L 2
. g
i Y (v (0 )

h=1 Y

o2
e ) ) s,
5%

L 2
. a
13 E PZ Ao, (Ci%h + MLQL> PY xn + 1y
h=1 Y

+ 05y, (C{ih(g) +

and

- ‘712Jh(2)
ZPff)%(C?/h(z)‘F 2 )p§/Xh(2)>0'
Y

h=1

(ii) From Egs. (17) and (21) we have:

MSE (t.,) — MSE (t;,) >0

Teg)

- PZYXh)

L
15 (Z PixanCiy (1

h=1

L

+ Z P£92hc}2/h(2)(1
h=1

- p?/Xh@))

+2Ph/\2h( ) ZPh92h< Uf;(z)

L
— uy ( > PidanCyy,

h=1

L

+ Z Pian (Cxn — 20y xnCynCxn)
h=1

Transactions E: Industrial Engineering 31 (2024) 1567-1595

L
+ Z B0 (CYp) + Cxnga)

— QPYXh Cyh(z CXh(Z))
+ ZP A ( U”)
h \2h +

NX

Vh(2) 0,
13 1%

L
(Z Asn(Cxn = py xnCyn)*

+ ZPhe%(

and

L
+ Z PG rpy xn
h=1

L
+ Z P26sn (Cxngo)

Z Py Xonpyr xn ( [éh>
Hy

L 2
o
+ E P Xop (?)
h=1 'U/X

L U%h(?)
+ ZPﬁ92hP§/Xh(2) ( 2 )

h=1 Y

L o2
+5 PRy, | 52 ) | > 0.
h=1 ix

(iii) From Eq. (18) and Eq. (21) we have:
MSE (t}.,) — MSE (t;,) > 0,
L
i (z PRARCE, (1= o)
h=1
L
)) + Y Pi021.C ) (1 - Pf/Xh(z))
h=1

L 2
Z . o
" Pidan ( N%h>

h=1 Y

+ ZPhBZh ( U};(Q)))

2
- pYXh(z)CYh(z))

1573

(23)



1574 A. Sanaullah and S. Sabir/Scientia Iranica, Transactions E: Industrial Engineering 31 (2024) 1567-1595

L
- MQY (Z P;f)\2hC}2/h

L
1
+ hZ:l P2z (4C§(h - pYXhCYhCXh>

L
. 1
+ Y Pi6a (C}Z/h(z) + ch(h@)
h=1

- PYXh(Q)CYh(Q)CXh('z))

lo
+ th/\Qh (uUh + Vh)

he1 Y 4NX

L 0.2 1 0.2
3 P, | 2l 2 D) ) s,
h=1 K 4 K

Y X

and
L ) 2
1"y ( > Pidsn (20Xh - pYXhCYh>
h=1
L L
+ Z PEMCYnpy e + Z Py6sp
h=1 h=1
1 2
(QCXh(2) - PYXh(2)CYh(2)>
+ Zpif/\zhﬂff)(h <U2vh>
he1 My

+2Ph)\zh< ) tha%pYXh( 2)

U?fh(2) L 1 U%/h(2)
( : >+Z P26y, (4 . )) > 0. (24)
Hy Pyt Hx

From Eqgs. (22)—(24), it can be easily seen that the
combined regression estimator tTeg is more efficient

than combined ratio estimator #7,, and combined
exponential ratio estimator 7,

3.2. Procedure II: Proposed class of modified
combined regression-type estimators

In this section another procedure of mean estimation
in stratified two-phase sampling is presented as a class
of modified combined regression-type estimators. The
proposed class of generalized combined regression-type
estimators is due to some modifications in the form of
usual combined regression estimator. The procedure

includes to get a class of modified combined-type
regression t,(;) by replacing ,u”(‘st) with Jg;) in Eq. (7).
The proposed estimator ¢,(;) in the form of a general
estimator is given by:

o= Fwin (o =) for i=1,2.3, (25)

where
"’//X ! ~ 1%
s Hoz(st) — :U/x s
Ty =Pt (e (Hotet) ~ Falen
2 H z(st) + Mw(st)
ﬁ;_f*s - H’,z st
+ exp <~,,E i n <t )
z(st) ,U/ z(st)
~ 1% ~//4<
7. :N’y(st) lj’lx(st) + m(st)
(2) 9 ﬁgzst) x(st) )
"'I/y ! AES
s How(st)y = Ha(st z(s
J(3) = il exp / 0 ~/,£ ) + ~//f 2
2 oz (st) + lj’:c(st) z(st)

3.2.1. Derivation of the biases and MSEs of the
modified estimator

Now #,(;) can be given in terms of e, s by:
1%
(1 + ey(st))
tg(l) - 2

x (L4 €40s)) — nx (1 + ég?st))
px (14 € o)) + px (1 + egést))

exp

+wyr (px (14 € o)) —px (1 + eg(*st))) +(26)

, wy (1+20)
9(2) = 2
(1 + lelést))

X (1 + elx(st)) +
x (14 €a(er)

I
[ix (1 n é;”(*st))

(1 +egfst)>_NX (1+€a(an)

nx <1+ egést)) +ux (1+ elw(st))

+ exp

war (x (14 €ain) —nx (1+E)), (27)
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and

o (L48)

tos) = 5
x (L €aen) = nx (14+0,)

x (L4 €4ey) + 1x (1 + e;’z‘st))

115'¢ (1 + e’z(st)) ( ’
R kS 1+ e s
X (1 +e’z(st)) w31 | kX ( € a( t))

I
exp
Iy

—nx (1+E)) (28)

or alternatively:

e’aeny | @l
_ 11 z(s z(s
tor) = by = pty (6 wis) T g 8

~II* !
€ z(st)e I(St)

1 )+w11MX (elz(st)_~l1;p(st)) (29)

2 'éll*
t ~
to(2) — 1y =y (ey(st)+ St y(;) eg(sw@lst)

+wapix (elz(st) - é;f?st)) ) (30)

and

~II

1 3
to(3) — My =My (6;'(51;) + Ze’z(st) :r(st)

2
lz(st) 11 N,/ <2

5
16 16550 7 g

Erlst)€ a(st)
3 ~15% 3~//* ~Il%
+t1 Eyisty€ a(st) T2 (st)

+ waipix (e = ) - (31)

The expressions for the biases and MSEs of t,(;) up to
the order O (n™') are respectively given by:

ias (i) =y 22, (52)
B. A (st) 33
as (to2)) = v —5— (33)
. 11 3 -
Bias (ty(3)) = py ( Ab(sty — 4Czy(st)> (34)

and

MSE (tg(1)> =MSE <t9(2)>

= (ngfigfst) + w%lru’%("i;(st)
= 2py pxwin Gy or)); (35)

1% % 3 Sk
MSE (ty5)) = (A (s) 16Aw(st> 2Cmy(st))

+ w%lﬂ?xfi:(st) + 2py pxws:

3 e ok
(4 z(st) Czy(st)) . (36>

Now, to get the optimum values of wyy, wey, and wsy,
Eqs. (35) and (36) are differentiated partially with
respect to wi1, we1, and wz, and then equating each of
the first derivatives with zero. This gives three normal
equations which are then solved simultaneously for the
optimum values of wiyy, wsoy, and ws;. Finally, the
optimum values are shown by:

opt __ opt __ 'MYC:?J(St)
Wy =Wy = =
wxA

z(st)

and
wy (34200 = Clyn)
wg{)t - _ ( t)* y(st) . (37)
NXAx(st)

Substituting the optimum values of wyq, wo; and ws;
in Egs. (35) and (36), the expression of the minimum
MSE is obtained. However, it is to mention that the
minimum MSFE expression is same for each of the three
estimators, and it is given by:

1 é’;Z(St)

my Ayl |1 RN -(38)

z(st)  y(st)

3.3. Procedure III: Proposed efficient and
generalized combined regression-cum-ratio
type estimators

The proposed modified regression estimator ¢,;) pre-
sented in the preceding section, can be taken as
an alternate to the regression estimator. However,
the proposed estimator t,(;) can further be molded
into another form of combined regression-cum-ratio
type estimator so as to get more efficient and more
generalized estimators than usual combined regression
estimator and the modified combined regression esti-
mator presented in the preceding sections.

Therefore, now three new classes of more effi-
cient and generalized combined regression-cum-ratio
estimators ts(l)(a ) where ¢ = 1,2,3 are proposed
for estimating the population mean, and form of the
proposed estimator is given by:

min M SE (tg(i )
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W (st Fit{sy
t~; . — ﬂ”*s a= CC*St + 1 Oé) x(st
(1)(a,8) ( u(st) ( A ( ot

+ 07 (1) (W a(st) = Fiy(sey) + @3(1)ﬂg(st))

ulz s [L/m’xs
Bl 4 (1 gy e (39)
ur(st) NI(St)

~, . :ula:(st) - ﬁ;’fst)
tonas = By | aexp | —————>
(2)() ( u(st) ( Wt ¥ Pl
ﬂ;’*s - le s
+(1—-a)exp N,,ﬁt)—,(t)
I’Lr(st) + 1% z(st)
+ 07 0y (W a(st) = Fpst))

/J/Ix(st) - ﬂg?st))

+ W) [l s Bexp —
5(2) iy t))( Wt TR

/1;’*5 - /J’lz s
+(1—B)exp (””) ) (40)

I’Lr(st) + N’Iz(st)

and
~, T /'l’lgc(st) - lﬁ“”;(st)
tasyas) = | By | aexp | ————r—
(3)(a,p) ( y(st) ( /‘l’/z(st) +lu”z(st)
W a(st) -
+ (1 —a)=5 ) + Wy (/J’I:t(st) - ﬂ”é(g))
Kz (st)

. W a(st) _/1”*( t)
—l—UNJ;(g)l]”q‘;(st)) <6eXp (M’x(st)"‘ﬁ”*(t))

Wast)
+ (1 - ﬁ) ~ % > ) (41)
Kz (st)

or alternatively:

~ 1% )

* s l* * ~ !
Ftiyes) =(y(sn Hina + 0100 (W a(or) = Bi(sr)

by i ) Hip for i=1,2,3, (42)

where
2 :u’/z st 'ﬂ”z/*st
Al = a4 (1-a) 20
:U/I(St) 184 x(st)

F T :u”:r s ﬂ;lys
H(Il)ﬁ:ﬁwuf t)+(1_5) /(t)7
uz(st) H z(st)

N’Iz(st) - ﬂg?st))

Jip o =Qexp —
(2) <ulx(st) + :U/g(st)

ﬂg*s - :U’,z s
+ (1 — «a)exp (W) ,

'uac(st) + :u,;z:(st)

~ :ulr(st) - ﬁgzst)
Hiyg =Pexp | —————
(z)ﬁ (:u’/a:(st) + ug(st)

ﬂg*s - ulz st
+ (1= fB)exp (W )
/j’m(st) + H x(st)

!
B (st)
hES pAZES ?

- ﬂ’gxs Ix s
, (t>>+(1_a)ﬂ<t>
K a(st) T Ha(s) 2(st)

ﬁ(*3)a = qexp (

and

lj’lz(st) - ﬂg*st :ulr st
— ) (1 8) S,

:u’a:(st) + /’LI(St) 'uz(st)

H{zs = Bexp (

where @ € [0,1] and 3 € [0,1] are the generalizing
constants whose values are suitably chosen, and o} 0
and 12);‘(1.) are the optimizing constants which are needed
to be estimated such that the optimum values of
u?l*(i) and ;. give the minimum MSE value to
each estimator which belongs to the proposed class of
regression-cum-ratio estimators.

3.8.1. Derivation of the biases and MSEs of the
proposed combined regression-cum-ratio
estimators

In order to obtain the expressions for the biases and the

MSEs of the proposed regression-cum-ratio estimators

oy E;(zi(aﬁ) and t}3), 5 are given in terms of

e,s respectively by:

I ~ Hx (1 + ela:(st)>
t: wd) = | by {1+ e”*s (a
(1)(a,8) ( y( t)) lx (1 4 ég(*st))

x (1 + é'z'z‘st))

+(1—-«a
( ):uX (1 + e’z(st))

+ @) (px (14 € o) —
nx (1 + éi!?st))) + )iy (1 + égaﬂ))

Bx (1+égz.st))

nx <1+elac(st))
px (L4 €agsr)

T (1+err,,) —

, (43)
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ts(2)(a.8) = (MY (1 + é%t))

px (14 €agan) = nx (1 + ff;'(lt))

x (L egen) +ax (1+E27,,))

Q exp

Hx (1+€gfst))—lix (1+e’x(st)>

(1+€;’<1t>) —pix (14e€'s(ar))

+(1—a)exp

wl*(z)liX (1+e’x(st)> —HX (1+ég(*st)))
+ Wyz) by (1 + ég(*st)))

wx (1+ €)= (14820,
(1 + Ngfst))

px (1 + é;’fst)) —tix (14€a(s)
x

B exp
x (T+en) +

(1—p) exp ,(44)
(1+ N;'Zst)) —px (1+€2(s)
and
Ee) ) = (NY (1+ei)
i (14 €agan) = px (1 + @Z(*st))
a exp -
x (L egen) +ix (1+€2,,))
PNYE S Gt )]
ux (1+200,,)
@G5y (1x (L4 eaen) —x (1420))
+ Wiy (1+8))
125¢ (1 + elac(st)) — Ux (1 + ~g(st))
ﬂexp ! JES
X (1 te z(St)) (1 + eac(st))
1 ,Z S
+(1-8) M (45)

px (140

Further simplification of the above expressions up to
the first order of approximation O(n~!) gives the

expressions, as given by:

*

te) e — v = py (B + 2600 — 2500

+ 2046;(515) 20ze$ 25%(3,5) + 2f€!, (st)

— ae"(*ft) — 3046;2(5,5) + 4ae;(5t)é'z'(st ﬂégxz

= 3Bel o) + AP ) Criety F Er(Sy + 3 o)

—del el + 4aﬁez'(st + 404[3@;2(“)

+8aBel () €ilar) + 28(an)8a(st) — 265(st)Cr(et)
= 20 (51) 8o (st) F 208y (o) €u(st) ~ 288y (51) 80 (st)

+ 288, (1) €h(sty T W1y (1HE (e + Exlar

— €ory = 208000y + 28€l oy + BEL Ty — Bell o

+ Ey(st)€a(st) — Eylon)Ca(st) — 2BE(s)& (1)

+ 288 1€ a(st) + €mtaty = € a(st)Prisr)

— @7 (1) X (E){ o) = €hsr) + Euliry — 20€%1)

+ 466 ~Iz?st)> (46>

ts(2)(a, B)" — py = py (&)

~I1% ~I1%

+Ela) = €atsr) +€o(st) — QL) — BE ()

+ aéz;st)e;(st 6~/le Ngzst + 66;(515 )Cx(st)

~I1% ~I % !

+ ﬁe (st) — ~”E;t)ea:(st) + ey(st) z(st)

~I%

a8yl ErlaBel(Zy + aBel 4 — 2ape, €l

é"? )
1 ) z(st) z(s
+w2()< +€(St)+ 9
_ge ég(*st) _ 36;2(515) _ e’x(st)ég(*st) + 562:(*320
z(st) 8 8 4 2
66’272 st %~
- 2( ) —ﬁe;’(st) gst) "’5@ st)e z(st)
é”*st ég*st ~ ] éla_{x.;zt
u )2 (3 W)X (elz’<st) —€a(st) + (2 )
2
E(ZSt) + € u(st)€(st) T 5&2(%) + 56;2(50
_ 2ge/x(st)ég(*st)> , (47)
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and

tis)(aup) — By = By (é;'(*sw + 28 (st) — 2€'a(st)

a ! a ~/I>k /B 6 NH*
+ 5€a(st) T 5C(st) T 5 € a(st) + €2 (st)

~I1%2

9
*2
+ 3800 + €alor) +4€a(en 8ty — 3G

5 P 7 * *
- gae'f(st) + zaelx(st)é;’(st + /36” 2

~[/u<

7 * ~II%
/3€z(st) + zﬁeé(st)eg(st) (st Caist)

~I% ~/I>< ~Il* ~//*
+ 2850 €(st) T 58050 € (st) ~ 5 8y(s0)%(s0)

5 ~Il>|< ~/’>ﬂ /B ~II><

ap o OB
+ =2 5 y(st) st) — 1152 /2

9 y(st) a:(st) 4 r(st)+ 4 x(st)

Ckﬁ ~I1% U ol
+ jela:(st)eg(st) + W53 )<1+e;’(st) = &ty T € aat)

6»«//* 6 ! 6~/Ix ~I1% 6~/I>:<

+ gex(st) - 56 a:(st) 2ey(st)em(st) — gey(st)e’r(st)

2
D o2 e; (st) ~H*
- gﬁer(st) - g T ﬁ a(st)€a(st)

~I%2

—0y (3) X (ééc'(*sw € (st) ooty T €ist)

é”*2 612
— 92 Six x(st) g x(st)
€ 2(st)€x(st) B 9 672
+ Bel ~I1% (48)
o(st)€x(st) | -

?‘he expressions for the biases of f:(l)(aﬁ), fi(z)(a,ﬂ) and
t:(B)(aﬁ’) are obtained up to the order of approximation
O(n™1), taking the expectation of Eqs. (46)—(48)
respectively. The expressions of the biases are given
respectively by:

BZCLS( s(1)(a, 5)) = py (A;(st) - O[A;(st) - 6‘;1;(5’5)

my(st

2ﬁé:y(st)

BY;QS(ET;(Q)(O(,Q)) = Uy (aﬁ"z{;(st) + CN’;U(y(st)

*

~ x(st
aC:cy(st ﬁc:ry(st + w2(2) (ﬂ 2( )
z(st) zy(st)
% T A:(st)
+ Wy ix | BAG (o) — 5 ) (50)

and

BZG/S( ( Y(,B ))

9 e
- gﬁAz(st) +

+ O; (st) + BCJ: (st) +w2(3)

B A
8ﬁAz(st)>>
B

+ Wy (z)Hx (f‘i;(st) - 2!‘12(%)) . (51)

B . ~
<1+ Crytsty = Cayoy =

The expressions for the MSEs of fj(l)(a”@), ti(?)(aﬂ) and
ﬁ(g)(a,,@) are obtained taking the square of Eqs. (46)—
(48) respectively, retaining the terms up to the order
of approximation O(n~1), and then taking expectation.
Finally, general expressions of the M SFEs of tj(l)(a’ﬁ)7

£§(2)(a,ﬁ) and f:(?))(a’ﬂ) are given respectively by:
MSE =u3 (A, +4A%, —8aA:
e ) = 1y (Ao + 44500 =8y
- 86Ax st)+ 40'/2"4* (st) +4ﬂ2Ax st) + 8aﬂAr(st

+4C 4aC'* —4BC*

zy(st) — zy(st) zy(st) + w;(l)

A1 * Sk e
(2 y(st) + 100;vy st) 1260zy(st) + 6Am(st)

2 Ax ok *
+ 887 Ao _8a0zy(st)) + B30 (1 + A

+A;(St + QﬂA (st) +4C* 860* (st)

zy(st) —
z(st) 1(1)P X x(st)

+ 20y px Wi ()
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(2041‘11(51&) + 2847 ) — 245 ) — Chyar) + T

(4@‘1;(“) — 243, - ~;y(st)>)7 (52)

MSE(E(2)(a,5)) = 1Y (AZ(*“) + ALy — 2045
— 2045 ) + P AL ) + B AL ) + 20847
+ 2Czy(st) 20!6‘ y(st) — 260zy(st)

+1T);(2)(2A’ (st)+A (st)+5cry(st) 4aczy(st)

r(st) —
+26% A% ) — 351‘12(50) + 3% (1+ Ay
+2C7 00y = 48CT 0 + 4321‘1;(%)))

+ wl*(g)uﬁ(ﬁj:(st) + 2y 1ex W (o) (a/ﬁ:(st)

+ /31‘1;(“) - ~;*c(st

C* y(st)

+ W3y <2ﬁA:(st) — A —

é;y(st)> >a (53)

and
MSE ( s(3)(a ﬂ)) 1y ( Lo + 4450 — 2045,
* a2 es 62 es
- 25‘41(515 Az(st) + Z z(st)
4 9B 4 .
A:U(st) 40 zy(st) + aczy(st + ﬁczy(st
+ g ( Al 41007, (o) + 307
e 1 21 1
+ ]'OAI(st) - 6aAa:(st) - ZﬁAz(st)
13 32

- A;(st) A;k:(st) + aBA;
+20[C;y st ) + w;(QB) <1 + Agést) + A;(st)

9 A ik Sy ﬁQ e
- ZﬂAr(st) _4Cacy(st) +260xy(st) +4Ar(st))>

+ Wi Ty Al ) + 20y px B ()

a4 B * * ~ %
(2Ar(st 5 x(st)_ z(st) ny(st)+w2(3)

(2450 = BA ey = Ciyien) ) - (54)

Alternatively, the expressions MSFEs of £§(1)(a,5)7
f§(2)(a”@) and E:(B)(a,,()’) can be given by the expression
of MSE of f:(i)(a ) and it is expressed by:

MSE ( e )) .

+ W57 Uh o)+ B (03

* ~ %2 % ~ % T, %

o(i) T Waiiy Py + Wiy Yo
U+ W5y (55)
where

U5y =15 (AZZ‘“) + 447 ) — 8aAl ) — 8BAL
+ 4a2A:’(st + 4624:(.%) + 80[6‘4:’(51‘,)

+4C, ) —4aCly 4/30%(“)7

W) =n (HAy'(stﬁfia*:(st) + 2045 HCT e

= 88C; () + 452143(5“) ’

Ty = (24} +1000, 00 — 1280200

+ 16046%1;(50 + 8521‘12(50 8acry(st))
‘i/§(1) = M_%(A;(st)’
@2(1) =2uypx (4651;’?(5t —24; a(st) ™ ry(st))
5 =2nviix (204} )+ 2845 =245 = Cl )
Uio) =t (A Al — 2045,

- 261‘1;(575)‘}'@214;(315)+62A;(St) 4'2‘3‘5’49*6(875)

+ 2Czy(st) 2aczy(st 260zy(st )

4ﬁéfv*y(st)

zy(st)

T o) =13 (1 + A, + 208

+ 4/32142(5,5))7
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i’;( 2) H’Y (2A y(st) + Aa:(st + 5Cacy(st)

— 4066 y(st) — 660 — OCA;(St)

zy(st)

+ 406!‘1;(5” + 2/3214;(5@ _3[314;(316)) )

U5y = 13 ALty

i) = 2nypx (25A;(5t) = Ass) — C:y(st)> ;

A;(st) - C;y(st)) )

— 28B4

‘i/;(g) :2/1/YI/LX (Oézzi;(st) +6A;(st) —
Wiy =hy (A" y(st) +4B(ar) = 20B(ar

o’ 3 af
+ 7 Beo + B + 5 By

—4Ca) + aC(a) + 5C(st)> ,

9
7ﬁB(st)

@7(3) =13 (1+A”y(st) + Bty — 1

/62
—41)11 + 2/61)11 + 4B(st)) 3

@3(3) =13 (QA"y(st) + 10C sty + 36C 1)

13
fOéB(St)

21
+ 1OB(5t) — GOcB(St) — ZﬁB(St) ~

62
+ ?B(st) +aBBs) +2aC ) |,

iIE(B) = /‘L:ZXB(st)v

@2(3) =2py px (2B(st) — BBst) — Csty)

and
P =2 0B, - B, -Cp C
5(3) T 4HY X (st)_§ (st)_§ (st) — U(st) | -

Now, to get the optimum values, Eq. (55) is differ-
entiated partially with respect to wj i) and i)g(iy and
then equating each of the first derivatives with zero.
This gives three systems of normal equations, including
two normal equations in each system. For each system
normal equations are then solved simultaneously to get
the optimum values of 1[)1*(1.) and d);(i). Finally, the
optimum values are shown by:

vont Yo i — 2% Ya

1(2 - * ~>'< N*‘ ?
“ 40 Wh ) — Ui

and
ot — Vit Vi) — 2V )‘I’§(> (56)
20) CARAn -
4%y Ty, — b2

1(2) 73(3) 4(3)

Substituting the optimum values of u?f(i) and w;(i)
in Eq. (55), the expression of the minimum MSE of
f:(i)(aﬁ) is obtained as:

min MSE (Fya.0) = Vo

* T, % *2 * Ty *2
_(2<z)‘1’<>‘1’<> Uiy B — U b))
Vi = 4%10) a0 ’
for 1=1,2,3. (57)

3.8.2. Theoretical comparisons between the modified
combined regression estimator and the
generalized regression-cum-ratio estimators

MSE (f,,) - MSE ( S(i)(e ﬁ)) >0,
M%’A;ﬁst) (1 - piy(St)) > MSE (ﬁ(i)(a,ﬁ)) 7

MSE (i*(.)(a ))

(1 - piy(st)) > A;’(*st ;
MSE ( s()(a, ﬂ))

piy(”) <1l- var (t*)

Remark 1

When only the measurement error is present on the
study and auxiliary variables, and complete response is
available on both of the variables, then modifications
to the estimation procedures presented in the preceding
sections are followed by:

Zzﬂ{l
~ 1%
sy = By = *55—

and then the expression of the variance is given by:

o -
var (uy st ) Z Ph (/\Zh <CYh /jﬁ)) = T;,,(st)'
y

Similarly, sample mean estimator along with the vari-
ance expression can take the forms respectively as given
by:
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and

i o .
var (,u;’(st)) th ()\2h (OXh M‘Z)) = To(st)-

Expressions for the different covariance terms are re-
produced, and given by:

cov (,uy(st) [y st ) Z Py (Aan py xnCynCxn)

= Tey(st)s

L
cov (ﬂg(st),u St)) Z PIN,C%), = A;;(st)

and
L
cov (ﬂg(st),u St)) ZP (An Py xnCynCxn)
h=1

=

zy(st)

— Al

where %r(st):% z(st)

"
z(st)

and ﬁxy(st):ﬁ'gy(st) -’

zy(st)

The proposed estimators of Eq. (42) are repro-
duced under Remark 1, and can be given by:

E(iy(o,8) =(y(any Hiya + 010 (1 sty = Ba(ary)
+ Dogiyfly o)) Hiyg  for i=1,2,3, (59)
where
ﬁ(l)a — M:(st) ( ) Ia:(st) ’
(st) z(st)
TS ’a/III S
—6~,,(t +(1-p8)
(st) 14 z(st)

H = aexp —M’z(St) _ ﬂg(m +(1-a) i C0)
(3)a :U’Im(st) +l~1;’(st) ﬁ/;’ )

and
oo = Bexp sty = Py (ot - p) I a(st)
®)9 W sty + By (o) B oy

The expressions of the biases are reproduced for the
estimators, and given respectively by:

Bias (ts(1)(a,0)) = iy (Fa(st) = OTa(st) = Ba(sr)

+ 40P Fe( et + 2ay(st) — 20 my(st) — 2BFay(er)
+ Wa1) (L4 B7u(st) + Fay(st) — 268 Fay(st)))
— Wy x (Fast) — 2687(st)) » (60)

Bias (ts(2)(a,5)) =

wy (aﬁ%z(st) + ﬁ—:ry(st) - aﬁ—:ry(st) - ﬁﬁ—ry(st)

- ﬂfrwy(st)) >

Afw(st)
- 61
0 ) (61)

~ %IS %IS ﬁ-$5
gy (70 - T T

Wy(2) X <ﬁﬂc(st)
and

. 9
BZQS( s(3) (e, )) = Ky (37-23(515) - z (st) — ﬂTm(st

E

+%% t) — 27T t"‘gff t) T 5 Tay(st
1 Te(st) = 2ay(st) T 5 Fay(st) T 5 Fay(en)
. B - 5,

+w2(3) (1 + 5 Tey(st) — Tay(st) — gﬁrx(st)

gﬁwm) . (62)

The MSEs of class of three estimator I?S(i)(awg) are
expressed by:

MSE (t(i)(a.p))

+ W3y x (ﬁ(st) -

= (:)0 (7) + wz( )@1( + wz(@)@z

+w1( )93( )1 (i) Wa(i)Oa(i) +W1(5) Os(i), (63)

where

(:) 0(1) NY( y(st) + 4T:v(st) - 8a7—w (st) — 867—33 st)
+ 4a27-z(st) + 4627-z(st) + Saﬁfx(st)

+ 47Txy(st) - 40[7sz st) 467Txy(st )
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(:)1(1) :MY(1+T (st) + Tw(st + 267— st) + 47rzy(st)
- 8ﬁﬁ—ry(st) + 4ﬁ2 %z(st))v
Os(1) =1y (2%;’@@ + 107y (st) = 12BTay(st) + 67a(st)

- 6a7-x(st) - 1467-x(st) + 160467-z(st)
+ 8ﬂ27-$(st)_8a7~rxy(st)> )

(:)3(1) = M%{ %z(st)a
Ou(ry = 20y 1ix (ABFu(sty = 2Fu(st) = Tay(st)) »
Os1) =2y fix (200 Fo(sty + 2BFa(st)

= 27a(st) = Tay(st))s

Oo(2) =H3 ( Fotst) T Ta(st) = 20Tu(st) = 2BT(st)

+ Oé27~_x(st) + 627’:x(st) + 20467:x(st) + 27?xy(st)
- 2a7rxy st) 267sz(st )

91(2) _/'LY(]- + T (st) + 27T1y st 4ﬁ7rzy st)
+ 452713:(50)7

Oa(z) =13 (27 wr) + Tu(st) + 5y (s)

- 4O[ﬁry(st) - 667?9024(315) - O”N-oc(st)
+ 4(1/37’:w(st) + 2ﬂ2%w(st) - 3/67’:z(st))7
O30y = X7

3(2) = MXxTa(st)>
Ou(2) = 21ty pix (2BFu(st) = Fa(st) = Tay(st))

Os(2) =20y pux (O Fo(ery + BTa(et) — Ta(st)

- 7~I-avy(st))v

Og(s) =H¥ ( y(st) T 4Ta(st) — 20T (st)

042 2
- Qﬁ%z(st) =+ I’T—z(st) + Z%m(st)

ab . _ - .
+ 77}(31&) _47rxy(st) +a7rxy(st) +67Txy(st)) )

~ . ~ N 9 .
61(3) :Ni/ <1+Té/(st) + Tm(st) - zﬁ’]—z(st)

52
— 47}Iy(st) + Qﬁﬁ-zy(st) + 47~—z(st)) )

@2(3) = 'U’%/ (2 7~-z;,(st) + 107Nracy(st) + 367~I'xy(st)

- - 21 13 .
+ ]-OTz(st) - GaTz(st) ZﬂTm(st) - ZaTI(st)
B - -
+77—m(st) + aﬁ TCL’(St) + 2aﬂ_zy(st) 9

O3(3) = i Ta(st)»

Ou(zy = 21ty ix (2Fu(st) = B Fa(st) — Fay(st)) »
and
~ 5 a ﬁ B B
65(3) :2:U’Y/J’X (2T$(st) - 5 Tz(st)_27—z(st)_7r:ry(st)) .

The optimum values of @y (;) and wy(;) from Eq. (63)
are reproduced under Remark 1, and given by:

Os(i)Oa(i) — 201(1)Os(s)

Byl = — 5 = B 7
0T 48,30 - 63,
and
gort — 9u)O5() = 2029 Os(s)

- (64)
207 6,640 - 02,

Substituting the optimum values of w;(;) and 1wy
in Eq. (63), the expression of the minimum MSE of
ts(i)(a,) is Obtained as:

min MSE (ts(i)(a,5)) = CH 0(1)

(92@)@4( )Os(i)

2
o)

(0 Os) — 01002, )
4@1 195(i) .

(65)

Remark 2

When it is assumed that only non-response is present
on the study and auxiliary variables, but no measure-
ment error exists on the study and auxiliary variables,
then modifications in the estimation procedure are
L
Il>'< hz=:1 yZi
y(st) = Mylay = and then

the expression of the variance becomes var (uy(st)) =

hgl P}f ()\2}10%/]1 + 92hC%/h(2)> QIyIZSt)

followed by: j!
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Similarly, sample mean estimator for the auxiliary
L
>y

variable can take the form 77 ) — pul(,="57m—, and

the expression of the variance can be reproduced as:

L
var (ﬂgfst)) = Z P ()‘%C?(h + ezhcg(h(z)) :Qg(*st)v
h=1
and the expressions of the covariance by:

cov (uy(st) [y st ) th A2npy xnCynCxn

+ 62100y x1(2)Cyn(2)Cxn(2))

=0}y (st)» COV (:U“x(st) 1 (st ))

L
= Z PgAhOi'h = Alw(st)v
and

L
cov (Ny(st r(st) > P O oy xnCynCxn)=Clyay
h=1

QI/

m(st) A’

w(st) and ¥*

19/!

where O wy(st)

Cl
zy(st

P)‘ollowmg the assumption stated in Remark 2, the
proposed estimators of Eq. (42) are reduced to the form
given by:

z(st) — zy(st) —

® _ 115 * * / 11
to(i)a,B) = (:U’y(st)H(i)a + w1(i)(ﬂ x(st) u;z:(st))
Fwy it Hyy  for i=1,2,3, (66)
where,
Ml Il*
* x(st x(st
H(l)a_ I/»E ) +(].—Oé) ,( )a
'ux(st) x(st)
% :u’:r st /J’fr’*st
H(Il),(a’zﬁ //»E ) +(1_ﬁ)#7
Mz(st) H z(st)

’“L’z(st) - p’;’(xst)
:u’lr(st) + Ng(xst)

I’L;’*‘; - :u’/z st
+ (1 —a)exp ”(xt)—,() ,
lj’z(st) +u z(st)

. lj’lx(st) - Mg?st)
Hiyg =pexp | ————
2 (N'mt) + 1o

:ulzl*s - lu’;r st
+(1_ﬁ)eXp //it) / il ’
:U/z(st) + 14 z(st)

H(*Q)oz = exp (

I 1 !
« o(st) — Ha(st) oz (st)
Hiy, =aexp | ———— | + (1 —a) ——,
@ ( Wast) +“¥(st>> Has)

and

:LLIZ st) :u’zlig /z s
H(z)5 = Bexp M +(1-5) Mmf 2,
Ko (st) + 'U’z(st) 'U’z(st)

(Q;(st)

Bms( s(1)(a, ﬂ))

- O{gzzzi(st) - 69;(.%) + 4a69:(5t)
+ Qﬁ;y st) 20[19;;;(315) 2ﬁ,l9zy(st + w;(l)

(”ﬁgi sty Tay(sty = 200ay(st) ))

— wi(1)ix (Qi(st) - 25Q§(st)) ; (67)

Bms( S(2)(a, m) = ny (aﬁgz(st) +Vay(a)

aﬁ;y st) 519;11(515) + w§(2)

ar ax 9
z(st) z(st) zy(st) *

- +

0
_ z(st) > 7 (68)

* 9 *
Bias ( s3)(a 6)) = py (3%(50 — g Mo

. af
6Qz(st 4 Qz(st 219317:L;(st
. B .
+ 219wy st) + 5 9 "y (st)
B . 5 .
+w2( 3) (1 +35 /lgry(st) zy(st) - gﬁﬂz(st)
T Wi Hx { Ha(sn) = 5 asr) | - (69)

The MSEs of t:(i)(aﬁ) is expressed by:
* * 2 * * *
MSE (t:(sa,0)) =Ko +0ath Ki +wie K

i) Ka) + wig wao K +wio Kz, (70)
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where Ki) = 2uy px (25 Qasty — Do(oty — ﬁ;y(st)) )

K1) =Hy ( w(st) T 4D — 8a () — 880 )
A . . K5y =2py px (oo + B Qs
+4a? Q) ) +48% Q) +8aB 5(2) ( (s) (st)

* - ; st) 19; s ’
+ 419my(st) 40é’l9zy(st) 4619zy(st)) (st) y( t))

, . y ; K; M FAQE 2000
KI(l) :/1/%/ (1+QZZst) + Q (st) + 269z(st + 419xy(st °@ = ( v wen ()

2 2
. . =280 () 0; a(st) T 64 a(st)
- 8519 y(st) + 45 Qr(st

af .
+ = 2 m(st) 4191y(st)
K3 =i} (2ng(*st)+1oc*y(st — 12807, +6 0

+ CY19 y(st) +6 ﬁzy(st )

— GQQI(St 14ﬁﬂl‘(st +16aﬂﬂ;(st)
) , . 9 o
+862Q ) —8m9;y(st)) ) Kig) = (1+Q”(st) + Wosr) — 172
§ 2 y * * 62 *
Kg(l) = Ux Q;(st)7 419;1:1/ st) + 261913/(51&) + Qz(st))’
Ki) = 2 (49 o =200 = Vi) Ky =1 (2900 + 1002, 0 + 389500
K5y =2y px (2a92(5t)+259§(st) _ZQ;(st)_ﬁzy(st)) ; 109 (o) — 68l () — B )
13 32
* * * _704025 +7Q:s +a69;5
Ko) = (Qy'(st)Jr Q(st) = 20 Q51 4 (st) T Ty Ma(st) (s1)
— 2/3 Q:(st) + Oé2 Q:(st) + 62 Q:(st) +20“9zy(st )

+ 2080,y + 20 =200 20 00) K = # Qo).

K* — 2 1+ 11 +219 . . y
1(2) Ky < y(st) zy(st) K4(3) = 2/,Ly/j,x (29 6Qm(st - ﬁwy(st)) ’

45 /lga:y(st + 452 Q;(st)) ) and

K53y =20y px
2(2) _I’LY (2Q (st) + Qx(st + 519my(st

(QQi(st) z o(st) — gQ;(st) - ;y(st)) :
— 4oy (o) — 680,y — Q)
The optimum values of wy ;) and wj ;) from Eq. (70)
+4ap Q;(St) 12432 Q:(st) -38 Q;(st)) ; are reproduced under Remark 2, and given by:
orort = 2% ~ Eipkse
K§(2) = M%{Q;(st)v 0 4KT(i)K;(i) N Kﬁi)
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and
wrort — SaXae ~ 2KV<> 300 (71)
KK — K

Substituting the optimum values of wl*(i) and wg(i)
in Eq. (70), the expression of the minimum MSE of
tﬁ(i)(a ) is obtained as:

minMSE ( () (e, g)) (*J(i)

* * * * * *2
- (K0 Koo Ko —K57 Koo K1 K3
K‘I

4(4) _4K1(i)K3(i)

(72)

Remark 3

When there is no non-response and no measurement
error in both the study and auxiliary variables, the
modifications to estimation procedures presented in the
preceding sections can be modified accordingly. For
example, a sample mean estimator of the study variable
along with the expression of the variance can take the
form as given by:

hLES " . h=1

/'I’y(st) - 'uy(st) - n''y,

L
> PP (AanCy) = 77”(st)~
h=1 Y

and var (N”;;(m&)) =

Similarly, for the auxiliary variable, sample mean esti-
L
> 2
h=1

mator is stated as: ﬂg?st) — ,u’z'(st) = *=7— and an

expression of its variance is given by: var (u” z(st)) =

ZP (M2nC%,) = ;’(St)

the different covarlances are reduced to the forms

Cov ( y(st) I(st)): Z Ph ()\Qh pYXhCYhCXh):
h=1

The expressions of

L
lmly(st)7 cov (/J’Ha:(st)ulz(st)) :hgl Plg/\hcg(h:A;(sty

L
and cov (u”y(st),u’l,(st)): hzl P? (M py xnCyinCxn)=
! B

zy(st)
/!

2y(st) ~ Cay(st):
The proposed estimators of Eq. (42) are repro-

duced under Remark 3, and the estimator is given by:

where 1),(s1)= ng(st) - A;:(st) and  @gy(st)=
!

ts(i)(a,8) = (:U’”y(st)H(i)a + W1(s) (I’L/z(st) - M”z(st)>
=+ w2(i)/,blly(st)> H(l)ﬁ fOI' Z.:];72737 (73)

!

H z(st)

1 as
" + (1 - CY) (1) )
1% z(st) H z(st)

! "
H(l)ﬁ _ 6 /j/”x(st) + (1 . 6) :u,x(st)
B g (st) B (st)

’ o
H(z)a —aexp Boa(st) = K z(st)
x(st) + z(st)

1 oty = B a(s
+ (1 —a)exp —”(t) ,(t) ,
/L z(st) + /L z(st)

:u/z(st) - IJ’”z(st)
H =fexp | —————
(2)3 (:u/a:(st) I’L”z(st))

/j’”z st) :U’,a: s
+ (1 - B)exp # )
B g (st) +u z(st)

I "
H(3)a —aexp < x(st) x(st))
x(st) + z(st)

!

H z(st)

"

+(1-«a ,
( ):U’ z(st)

and

M/z(st) - N/lz(st)
Hgy =fexp |~ = =D
(3)3 (:u/a:(st) + I’L”z(st)

Koz (st
+ (1 - 5) ,, (<) )
B g (st)
Bias (L(1)(c.))
= py (nm(st) C”?z st) 577:(51‘,

+ 4aﬁnx(st) + 2¢zy(st) - 2a¢aoy(st)
- 26¢xy(st) + wz(l)(l + ﬁnm(st) + ¢xy(st)

_26¢xy(st))> —Wi1)Ux (nm(st) _2677x(st))7 (74>

Bias (ts(g)(a’ﬁ)> =y (aﬁnz(st)

+ ¢zy(st) - a¢zy(st) - B¢my(st) + w?(?)

nm(st) nz(st) ¢z st)

nI S
Wy (2) X (ﬁm(st) - %) (75)

. 9
Bias (t5(3)(0¢a5)> = My <3nz(st) 80”7x st) — ﬁnz(st)
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04[3 B
+ (st) — 2¢wy (st) + 5 ¢wy (st) + 5 ¢xy (st)

1 V1(2) :/1’%/ <1 + nlly(st) +2 ¢xy(st) - 46 (bzy(st)

B 5 2
+ w2(3) (]— + 5 ¢zy(st) _¢zy(st) - 85771(51‘,))) + 46 nw(“))’

_ .2
+ Wy3)Ux (nm(st) - gndﬁ)) . (76) VZ(Z) =Hy <2nlly(5t) + TNa(st) + 5¢my(st)

The MSEs of t,(;)(a,p) is expressed by: — 40 Qry(st) — 68 Pay(st) — ANa(st)

MSE (tyiy(,3) = Vo) + Wiy Vig) + W) V() + 4o fBng sty + 25277m(st)—3377x(st)>,

+wf(i)v3(i)+w1(i)w2(i)v4(i)+w1(i)v5(i)7 (77) Va(2) = Wx Na(st)s
where V4(2) = 2MY/J’X (Qﬁnz(st) - nz(st) - ¢zy(5t)) )

V0(1) ::uif (n”y(st) + 477z(st) - 80“7:5(515) - 85 nz(st) V5(2) ZQNYlLX (O[ nz(st) + ﬁnz(st) - nm(st)

+ 40427713(5,5) + 462 Nz (st) + 80467790(%) _gbzy(St)) ’

Vo) =3 ( 0"y sty T 4Ma(st) — 20070(s1)
+4 ¢xy(st) —4a (bxy(st) _46 ¢xy(st)> s
Oé2 2
- 26 Nz (st) =+ Z Nz (st) + z Nz (st)

Viq) =u3 <1 + 0" y(st) T Na(st) T 28 Nast)
+4 ¢xy(st) - Sﬁ(bzy(st) + 46277:r(5t)) )

V2(1) ::u%’ (Znny(st) + 10 ¢ry(st) - 126 ¢zy(st)
+ 6nz(st) - 60“723(515) - 14577:r(st)

+ 16aﬂnz(st) + 8ﬁ2771(st)_804¢xy(5t)>7

v3(1) = /'lj( nr(st)a

Vi) = 20y px (48 0a(st) = 2Ma(st) — Day(st)) »

Vi) =2py pex (QOém(st) + 285 (st

-2 nz (st) — ¢Iy st )

Vo) =ty (nl’y(st)+ Ne(st) — 20 Ne(st) — 2B Nu(st)

+ aznm(st) + 62nz(st) =+ 2056 Nz (st)

+2 ¢xy(st) - 2 ¢zy(st)_26 ¢xy(st)> 3

af
+ 7 Ne(st) — 4 ¢ry(st) + o ¢ry(st)

+ ﬂgbzy(st))?
Viey =ty (140" sty + Na(st) — ﬁnx(st)
2

B
- 4¢my(st) + 26 ¢1y(st) + an(st) ) )

V2(3) :/1’5/ (277’,y(5t) + 10¢zy(st) + 35 ¢zy(st)

+ 10771‘(325) 60”/:2(515 57790 (st)
13 3

- Zanz(st) + ?nm(st) + aﬂnz(st)

+2a¢xy(st)) )

V3(3) = M%{nm(st)a

Vaz) =2y 1x (2 0a(st) = BNa(st) = Pay(st)) »

and

Vis3) =20y ix (2%(315) -5

B
nx(st)_gnx(st)_(ﬁxy(st) .
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Normal distribution

1580 . Variable
oty
—a trg
1400 " 4 Ter
i A g
1200 > t:3(0,0)
=) o t51(0,0.5)
n v t.2(0,0.5)
= 1000 g —+— £.5(0,0.5)
. & ta2(0,1)
800 ==
A
600
500
400
2 3 A 4 5

Figure 1. Mean Squared Error (MSEs) of the all
estimators at different values of k£ with presence of the
non-response and measurement error.

The optimum values of wy(;) and wsy(;) from Eq. (77)
are given by:

opt _ Vo) Va(i) = 2Vi(5) Vs(y)

W,y = y
H Vi) Vaei) — Vi(i)

and

Vi) Vs — 2Va) Vs .
4V 15 Vi) — Vi

opt __

Woiy =

(78)

Substituting the optimum values of wi(;) and wy()
in Eq. (77), the expression of the minimum MSE of
ts(i)(a,p3) 18 Obtained as:

minM SE (ts(i)(a”@')) = Vo)

(V20 Va0 Vit =V Va0~ Vi Vi)
Vi =4Vie) Vae

)

. (79)

4. Results and discussion

In this section, all of the proposed combined regression
estimators are compared for their efficiency using the
criterion of absolute MSE. The MSFEs of all estimators
are computed by changing the value of k following the
four different situations: (i) when the non-response and
the measurement error are simultaneously present; (ii)
when only the non-response is present; (iii) when only
the measurement error is present; (iv) when neither
the non-response nor the measurement error is present;
and results are presented in Tables 1-4. MSEs of all
the estimators are also expressed by Figures 1 and 2
by changing the value of k. The caption of each table
shows the situation under which the MSFEs are com-
puted in the given table. The efficiency comparisons of
the unbiased sample mean estimator, combined ratio
estimator, and combined exponential ratio estimator
with usual combined regression estimator are computed

Normal distribution
1600

o [ Variable

1400 " ot
e - t7
12001 e = Ter
-— At
o —»— t41(0,0)
glooo e £.2(0,0)
« v t.3(0,0.5)
800 —e— t,3(0.5,0)
e — = t,1(0.5,0.5)
6001 e Jeab * ,5(0.5,0.5)
4 1,5(0.5,0.5)
4001 * —— ts1(1,0.5)
< teo(1,1)
200 : L
2 3 4 5

Figure 2. Mean Squared Error (MSEs) of the all

estimators with presence of the only non-response.

numerically following the conditions expressed by Eqgs.
(22) to (24), and results are presented in Table 5. In
Tables 6-8, the efficiency comparison of the proposed
generalized combined regression-cum-ratio estimators
with the proposed modified combined regression esti-
mator is given using the condition expressed by Eq.
(57).

To compute the MSE of the estimator, an artificial
stratified populated is generated using the R-language.
The stratified population is generated with arbitrary
parameters of normal distribution. Further description
on parameters, population size and sample size are
shown in Table 9.

stratum — 1 — X7 = N (5000,4,15);
2 = N (5000,0,1); Vi = 50X, + 1521

y1=Y1+N(1,3), 1 :A)(l-f-]\f(L?))7

stratum — 2 — Xy = N (5000, 5,15) ;
9 = N(5000,0, ].) ; Y2 = 50X2 + 152’2;

stratum — 3 — X3 = N (5000,6,15) ;
23 = N (5000,0,1);Y; = 50X5 + 1525
ys=Y3+ N (1,3); w3 = X3+ N(1,3).

The MSEs of the estimators are computed, and results
are presented in Tables 1-4.

From Tables 1-4, this can be noted that the two
proposed estimators, usual combined regression estima-
tor fjeg, and modified combined regression estimator
tNZ(i) are equally efficient as these are achieving same
MSE values whereas usual combined ratio estimator
t* ., and usual combined exponential ratio estimator

Ta’

t* . have their M SEs larger than the M SEs of fﬁeg and
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Table 1. Mean Squared Errors (MSEs) of all estimators with presence of the non-response and measurement error.

(a, B) Estimators Proposition of revisit sample (1/k)
9

1/2 1/3 1/4 1/5

. % i 885.23  1105.39 1325.54  1545.70

g *g ’E:“ 464.50  481.27  498.05  514.83

5 2 i, 528.46  587.66  646.87  706.08

¢ i*® 452.89  469.29  485.33  501.19

t51)(0,0) 450.55  466.93  482.95  498.80

0,0) #2000y 450.05  466.33  482.25  497.99

£23)(0,0) 447.99  463.70  479.00  494.08

tr1)0,05) 42776  428.32 424.93  417.90

(0.05)  £3)0,05)  444.68 457.89 470.21  481.87

ths)0,05  446.61 461.58 476.02  490.15

5101 438.17 446.64 453.18  458.05

01 o0 444.66 457.85 470.14  481.76

g ts3)00,1) 446.63 461.61 476.07  490.22
2

= £ 1)(0.5,0) 452.45  469.24  485.30  500.82

- (0.5,0) £ 3)0.5.,0) 451.32  468.13  484.51  500.66

g £ (3)(0.5,0) 448.98  465.10  480.85  496.41
2
a9

ti1)0.5,05) 435.52 44271 447.75  450.89
(0.5,0.5) £ 0505 446.95 46177  476.04  489.97
Tosy(0.5,05) 44773 463.23  478.28 493.09

t21)(0.5,1) 443.93 456.95 469.10 480.63
(0.51)  £22y00.5.1) 446.94  461.74  476.00 489.91
t3(s)(0.5.1) 447.75  463.25  478.32 493.15

£ a0 452.85  468.18  481.66  493.42
(LO) 21,0 45221 469.10  485.33  501.09
£ a0 449.87 46630  482.37  498.29

Tr1y105  441.84 454.00 465.18  475.60
(1.05) #2105 44885 46484  480.46  495.89

£ 5y01,0.5) 44875 464.68 48022  495.58

o 1y(1,1) 44827  464.15  479.63  494.94
(LY oy 448.84  464.83  480.44  495.86
L3 8)(1,1) 44876  464.70  480.25  495.62

* LR QR Pk % _F* T
Note: % @= &y  =t* | =% ) =17 4.
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Table 2. Mean Squared Errors (MSEs) of the all estimators with presence of the only measurement error.

(a,8) Estimators MSEFE

(ayB) Estimators MSE

ty 665.07
w 4
=2 O - .
2R tra 421.28
2 g
o R~ ,
S tl, 462.64
t® 416.51
t5(1)(0,0) 414.11
00 £250.0 413.89
ts(3)(0,0) 413.01
n
-
(=]
= ~
g t5(1)(0,0.5) 404.42
o (0,0.5) ts(2)(0,0.5) 411.36
3 B
8 t5(3)(0,0.5) 412.38
o,
o
-t
[a W
53(1)(0,1) 408.53
O1) £, 2y0000) 411.35
ts(3)(0,1) 412.39

t5(1)(0.5,0) 415.41
(05‘0) 55(2)(0.5,0) 414.63

55(3)(0.5,0) 413.46

ts(1)(0.5,0.5) 407.61
(0'5’0'5) zs(z)(o.s,o.s) 412.42

£S(3)(0.5,0.5) 412.87

(0.51)  tsa1y0.5,1)  411.07

to(2)(0.5,1)  412.42
(1,0) fosy(0.51) 412.87

to1y,00  416.21

to(2)(1,0) 415.26
(1’0'5) 53(3)(1’0) 413.87

to(1)(1,05) 410.30

is(z)(l,o.s) 413.36
(1,1) fasy1,05) 413.32

toy1,1y  413.12

to(2)(1,1) 413.36

tosya,1y  413.33

tNZ(i)' These results are also confirmed by the required

conditions shown in Eqgs. (12)—(14), and are also com-
puted numerically in Table 5. Therefore, subsequently
proposed generalized combined regression-cum-ratio
estimators f:(i)(aﬂ) for ¢« = 1,2,3 are compared only

with % and f;(i) based on their M SE values. Further

reg
from Tables 1-4, it is observed that the proposed
estimators t:(i)(a 3) for i = 1,2,3 are more efficient

than ¢, , and t ), as the bold figures in Tables 1-4

indicate, the MSE values of f;‘(i)(aﬂ) are smaller than
the MSE values of #*. and f;(i). These results are

reg
also confirmed as the required conditions shown by Eq.

(40) are met, and the required conditions are computed
numerically in Tables 6-8.

Form Figures 1-2, it is much easier to understand
that MSFEs of each estimator is increasing as sub-
sample size of recontact is decreasing which is expected
for each estimator. Sub-group sized is decreased as
the value of k is increased. However, Figures 1-2 are
also clearly indicating that the proposed generalized
combined regression-cum-ratio estimators f:(i) @) for
1 = 1,2,3 are achieving smaller MSE values than the
MSE of fﬁeg. Whereas MSE of fjeg is smaller than
usual combined ratio estimator, and usual combined
exponential ratio estimator.
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Table 3. Mean Squared Errors (MSE) values of all estimators with the only presence of the non-response.

Proposition of revisit sample (1/k)

(o, 3) Estimators

1/2 1/3 1/4 1/5
. g th 885.22  1105.37 1325.52  1545.67
2 g th, 393.91  393.99  394.07  394.15
;5 E tr, 510.80  565.83  620.86  675.89
¢ t*® 393.63  393.79  393.92  394.02
t2(1)(0,0) 391.15  391.28  391.38  391.45
0,0) #2200 39112 391.27  391.38  391.48
t2(3)(0,0) 390.83  390.96  391.04  391.11
t2(1)(0,0.5) 372.07 358.49 341.70 321.83
(0,0.5)  £25)(0,0.5) 386.74 384.35 381.53  378.29
t2(3)(0,0.5) 389.89  389.56  389.16  388.70
ts(1)(0,1) 380.62 373.81 365.57 355.97
(0,1) X0 386.72 384.32 381.48  378.22
t203)(0,1) 389.90  389.58  389.18  388.74
£201)(0.5,0) 393.32  393.78  393.79  393.36
(0:5,0)  23)0.5,0) 392.46  393.05  393.51 393.85
t2(3)(0.5,0) 391.30  391.60  391.86  392.11
0
g
g t51y(0.505) 380.27 373.38 365.06  355.37
g= (0.5,05) 250505 38911 38827  387.29 386.20
.:.,: tisy(0.5,05) 39043 390.35  390.23  390.07
o
E t01)(0.5,1) 386.77 384.51 381.87 378.90

(051)  t22y00.5.1) 389.10  388.25  387.27 386.17
t(3)(0.5,1) 390.44  390.37  390.24 390.10

t01)(1,0) 39343 391.92  388.65  383.58
(1,0) 5210 393.30  393.77  393.81 39343
th3)(1,0) 39172 39216 392.54  392.89

tia),05  386.52 38421 38154  378.52
(1,0.5)  t25 1,05 390.99  391.15  391.27  391.38
thsy,0s  390.93  391.06 39116  391.24

ti)a,n) 390.97 39116  391.30  391.43
(L,1) £y a 390.98 39114 391.26  391.37
ths)(1,1) 390.94 39107  391.17  391.26




A. Sanaullah and S. Sabir/Scientia Iranica, Transactions E: Industrial Engineering 31 (2024) 1567-1595 1591

Table 4. Mean Squared Error (MSE) values of all estimators without presence of the non-response and measurement error.

(ay8) Estimators MSE

(y B) Estimators MSEFE

tu 412.75
0 G
s 9 -
2 g tra 251.00
2 g
" = ,
A = t., 258.20
t® 236.01
t~s(1)(o,o) 235.52
(0,0) Es(z)(o,o) 235.32
fs(s)(o,o) 234.46
2]
-
[=]
+ ~
g ts(1)(0,0.5) 229.88
e -
3 (0,0.5) ts(2)(0,0.5) 233.97
T 3
3 t5(3)(0,0.5) 234.07
=)
@]
-
Y
ts(1)(0,1) 232.48
(0,1) ts(2)(0,1) 233.97
fs(s)(0,1) 234.07

ts(1)(0.5,0) 235.88
(050) £, 0.0y  235.57

ts(3)(0.5,0) 234.80

to(1)(0.5,05) 231.39
(0'5’0'5) t~s(2)(0.5,0.5) 234.42

Es(3)(0.5,0.5) 234.45

to(1)(0.5,1) 233.60

to(2)(0.5,1) 234.41

(0'5’1) 53(3)(0,5’1) 234.45

ts(1)(1,0) 236.01
Es(z)(l,o) 235.76
(L,O)  Z 51,0 235.10

to(1)(1,0.5) 232.69

Es(z)(l,o.s) 234.80

(1,0.5) £, 5105 23479

ts(1)(1,1) 234.51
Es(z)(l,l) 234.80
LY s 234.79

Table 5. Kfficiency comparisons of f:eg with £, 45,15,

lreg Vs 1, 0.01457 >0
tregvs Trg 0.00682 > 0
tregus to, 0.00828 > 0

5. Conclusion

In the present study, usual combined regression es-

timator theg and modified combined regression es-

timator f;(i) for mean estimation in stratified two-

phase sampling are concluded to be equally efficient,
however both types of combined regression estimators
are remained more efficient than usual combined ratio
estimator ¢, and usual combined exponential esti-
mator #. Another proposed generalized combined
regression-cum-ratio estimators Ez(i)(a,g) fori=1,2,3
is found to be the most efficient class of estimators as all
combined regression-cum-ratio estimators attain least
Mean Squared Error (MSE) values than the MSEs
of all the estimators discussed in the text. Therefore
it is concluded from Tables 1-8, that the proposed
generalized combined regression-cum-ratio estimators
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Table 6. Efficiency comparison of ﬁu)(mﬁ) with £;,.

2 —
P2y (st) = 0.48839

2 _ 2 —
Ply(sty = 0.57544  p2 ., = 0.63386

2 —
P2y(st) = 0.675T74

Estimators

1/2

1/3

1/4

1/5

T501)(0,0) VS Treg
f§<1>(o,o.5) vs gjfeg

Ea1y(0,1) VS treg
ti(l)(o&,o) vs gjfeg
t~§(1)(0.5,0.5) vs fjeg
f§<1>(o.5,1) vs E:feg

T3 1)(1,0) VS Treg
5:(1)(1,0.5) vs E:feg

53(1)(1,1> vs ﬁeg

0.49103 > p2, .1y
0.51677 > p2, 1)
0.50502 > p2, .1y
0.48888 > p2 .1y
0.50802 > p2, .1y
0.49851 > p2, .1
0.48844 > p2 )
0.50087 > p2, .1y

0.49360 > p2, .1y

0.57758 > p2,cr)
0.61251 > p2,(p)
0.59594 > p2, (1)
0.57549 > p2, (1)
0.59949 > p2 (1)
0.58661 > p2, ()
0.57645 > p2, (1)
0.58928 > p2 (1)

0.58010 > p2, (.

0.63566 > p2, .1
0.67942 > p2 .1y
0.65811 > pZ, .1y
0.63388 > p2, .1y
0.66221 > p2, .1y
0.64610 > p2, .1y
0.63663 > p2, .1y
0.64906 > p2, .1

0.63815 > p2 .y

0.67729 > p2, (1)
0.72961 > p2, (1)
0.70366 > p2, ()
0.67599 > p2, (1)
0.70829 > p2, (1)
0.68905 > p2, (1)
0.68077 > p2, (1)
0.69230 > p2, (1)

0.67979 > p2, .1y

Table 7. Efficiency comparison of f:@)(a’m with ..

2 —
P2y (at) = 0.48839

2 _ 2 —
Py(ety = 0.57544  p2 ., = 0.63386

2 —
P2y ety = 0.67574

Estimators

1/2

1/3

1/4

1/5

f:(z)(o,o) vs iﬁeg
f:(z)(o,o.&;) vs E:eg

f:(z)(og) vs iv*“eg
52(2)(0.5,0) vs E:eg
£:(2)(0.5,0.5) vs ﬁeg
52(2)(0.5,1) vs f:eg

g:(2)(1,0) vs iieg
52(2)(1,0.5) vs E:eg

to(2)(1,1) VS treg

0.4916 > p2 (o1
0.49766 > p3, (o)
0.49769 > p2, (o)
0.49017 > p2 (o)
0.4951 > p2 (o
0.49512 > p2 (o)
0.48916 > p3 (.1
0.49295 > p2 (.1

0.49296 > p3_ (o)

0.57812 > p2, .
0.58577 > p (o)
0.5858 > p2 (1)
0.5765 > p2, (1)
0.58226 > p2, .4
0.58228 > p2, .
0.57562 > p2, .
0.57947 > p2 .

0.57949 > p2

0.63619 > p2, (o)
0.64527 > p2 (o)
0.64532 > p2 (o)
0.63448 > p2 (.
0.64087 > p2, (o)
0.64091 > p2 (.
0.63387 > p2, (o)
0.63754 > p2 (.

0.63755 > p2 (o)

0.67782 > p2, .
0.68825 > p2, .
0.68832 > p2, .
0.67609 > p2, (.
0.68301 > p2, .
0.68305 > p2, .
0.67582 > p2, .
0.67918 > p2, .

0.6792 > p2 (1)

Table 8. Efficiency comparison of s with f:eg.

2 —
P2, (s1) = 0.48839

2 _ 2 o
pmy(st) = 0.57544 Pmy(st) = 0.63386

2 —
P2y(et) = 0.67574

Estimators

1/2

1/3

1/4

1/5

g:(s)(o,o) vs 5:69
E:(S)(O,Oﬁ) vs fjeg
f:(s)(og) vs E:eg
2‘i(s)(o.s,o) vs fjeg
52(3)(0.5,0.5) vs tyieg
2‘i(s)(o.s,l) vs fjeg
f:(s)(l,o) vs f;‘eg
1?:(3)(1,0.5) vs E:eg

f:(s)(m) vs fieg

0.49392 > p2_ (.
0.49549 > p2 .1
0.49547 > p2 1)
0.4928 > p2 (o1
0.49422 > p3 (.
0.49421 > p2 (.1
0.49181 > p2 .1y
0.49307 > p2,(a)

0.49306 > p2, (o)

0.58051 > p2, .
0.58243 > p2, .
0.58241 > p2
0.57924 > p2
0.58093 > p2, .
0.58091 > p2, .
0.57815 > p2, .
0.57962 > p2 .

0.57961 > p2, .

0.63864 > p2_ (o)
0.64088 > p2 (o)
0.64084 > p2 (.
0.63724 > p2 (.1
0.63918 > p2_ (.
0.63915 > p2_ (.
0.63609 > p2, (o)
0.63771 > p2, (o)

0.63769 > p2, (o)

0.68035 > p2, .
0.6829 > p2 .y
0.68285 > p2, .
0.67884 > p2 .
0.68099 > p2, .
0.68095 > p2, .
0.67763 > p2, .
0.67938 > p2, .

0.67935 > p2, .
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Table 9. Stratified population: Based on simulated normal distribution.

Stratum  INp

2 2 2 2
OUR

Py=zh HYh PXh OVh Oyh Ozh
1 5000  0.98 183.62 3.67 9.19 9.32 543610.50 227.16
2 5000  0.98 248.67 4.97 9.19 9.25 583685.70  242.30
3 5000  0.98 301.68 6.04 9.10 9.18 578114.50  240.50
Stratum  n}, ny Uih(z) crf,h(z) a?,h@) O"Z/h(z) Pysh(2)
1 500 300 575428.90  230.66 9.15 9.75 0.99
2 500 300 599476.60  239.94 9.14 8.80 0.99
3 500 300 577044.10  230.86 9.32 8.63 0.99

f:(i)(aﬁ) is the most efficient and more~generalized com-

bined estimator of mean than EZ(i)’ bregs tr,, and ¥ .

Further, it is also concluded that ts(i)(a,,s) performs well
in all of the four situations. Therefore, the proposed
generalized combined regression-cum-ratio estimators
~:(i)(a7ﬁ) for i = 1,2,3 are recommended for their
applications of mean estimation under stratified two-
phase sampling when the two components of survey
error, the non-response and the measurement error are
present simultaneously.

This study may be extended for mean estimation
assuming the simultaneous presence of non-response
and measurement error in different sampling designs,
such as multistage sampling, and ranked set sampling.
For estimation of unknown parameter(s) under ranked
set sampling schemes, one can find Zamanzade and
Mahizadeh [38], Zamanzade and Wang [39], and Dum-
bgen and Zamanzade [40] worth reading and helpful for
future work.
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