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Abstract. The 0{1 knapsack polyhedron as the most basic relaxation of a 0{1 integer
program has attracted the attention of many researchers over the years. We present a very
fast method that is guaranteed to generate one facet for the 0{1 knapsack polyhedron.
Unlike lifting of cover inequities, our method does not require an initial minimal cover or a
predetermined lifting sequencing, and its worst-case complexity is linear in some variables.
Therefore, with minimal computational burden, it can be used to generate a potentially
strong valid inequality based on any 0{1 relaxation of a general (Mixed) Integer Program
(M)IP. Such valid inequalities can be added to the (M)IP problem prior to solving, or given
their low computational cost, can be generated during solving the (M)IP, checked to see if
they separate the incumbent fractional solution, and added to the problem if they do.
© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

The 0{1 knapsack polyhedron as the most basic re-
laxation of a 0{1 Integer Program (IP) has attracted
the attention of many researchers over the years. In
particular, developing facets for the 0{1 knapsack
polyhedron has been extensively addressed over the
past several decades see [1{16] among many others.
Most of the work in this direction has been focused
on the characterization of facets arising from lifting of
the so-called minimal cover inequalities. Properties of
the formal lifting procedure presented in [1,3,6,17{20]
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and its resulting facets have been studied in several of
the aforementioned references. The lifting procedure
is dependent on an initial minimal cover inequality,
and in most cases, the sequence of the variables
chosen for lifting. Zemel [5] showed that for a 0{1
knapsack problem with n variables, given a minimal
cover inequality of s variables, and a sequence of
the n{s variables to lift, this lifting procedure can
be performed in O(ns) time. Del Pia et al. [21]
proposed a new approach to generate valid inequalities
for a special multiple knapsack set, called the Totally-
Ordered Multiple Knapsack Set (TOMKS). Bazzi et
al. [22] address the issue of relaxation of exponential
size and obtain LP relaxations of quasi-polynomial size
that are at least as strong as that given by the knapsack
cover inequalities. Vitor and Easton [23] proposed
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both approximate and exact merged knapsack cover
inequalities for knapsack and multiple knapsack IP.
The approximate merged knapsack cover inequalities
can be performed in O(n log n) time. Bienstock et
al. [24] show an algorithm for e�ciently separating
inequalities with coe�cients in f0; 1; :::; �g for any �xed
� up to an arbitrarily small error. The main con-
tribution of the study is developing approximate sep-
aration oracles for valid inequalities and generalizing
for MinKnap. Shim et al. [25] identi�ed strong facets
de�ning inequalities for the master knapsack polytope.
Their computational experiments interestingly show
that 1=k-facets for small values of k (k � 4) are strong
facets for the knapsack polytope. Chopera et al. [26]
also focus on 1=k-inequalities for k dividing 6 or 8.
They obtain a concise characterization of the super-
additive version of knapsack inequalities which allows
us to e�ciently separate the inequalities. Letchford
and Souli [27] show how one of the earliest lifting
procedures, due to Balas, can be improved to yield
both stronger and more general lifted cover inequalities.
Furthermore, Letchford and Souli [28] used lifting and
presented two approximate procedures based on mixed-
integer rounding and superadditivity. In addition, the
proposed procedures that can yield non-trivial facet-
de�ning inequalities. From the practical perspective of
solving 0{1 programs, a fast method that is guaranteed
to generate a facet-de�ning inequality for any given
0{1 knapsack set, and is free of choosing an initial
cover inequality or the lifting sequence, is of signi�cant
interest. In this paper, we present such a method. Our
method is very fast (its worst case complexity is O(n)),
and therefore, with minimal computational burden, can
be used to generate a potentially strong valid inequality
based on any 0{1 relaxation of a general (Mixed)
Integer Program (M)IP. Such valid inequalities can be
added to the (M)IP problem prior to solving, or given
their low computational cost, can be generated during
solving the (M)IP, checked to see if they separate
the incumbent fractional solution, and added to the
problem if they do.

2. Facet generation method

Let X be the set of 0{1 points in the knapsack problem
de�ned as:

X =
�

(x1; x2; :::; xn) :
Xn

j=1
ajxj � b;

xj = 0; 1; j = 1; 2; :::; n
�
: (1)

Without loss of generality, we assume 0 < b <
Pn
j=1 aj ,

and 0 < a1 � a2 � ::: � an. Note if the 0{1 knapsack
set is de�ned by a � constraint, it can be converted to
the set X.

Now, let k1 and k2 be the minimum numbers
satisfying

Pk1
j=1 aj � b and

Pn
j=n�k2+1 aj � b. If

k1 = k2 = k, then the sum of every k of co-
e�cients aj , j = 1; :::; n, is equal to or greater
than b and hence the set X can also be written
as f(x1; x2; :::; xn):

Pn
j=1 xj � k;xj = 0; 1; 2; :::; ng. In

other words, in this case, the inequality
Pn
j=1 ajxj � b

can be replaced with the cover and stronger inequalityPn
j=1 xj � k. In addition, conv(X) = f(x1; x2; :::; xn) :Pn
j=1 xj � k; 0 � xj � 1; j = 1; :::; ng, where conv(X)

denotes the convex hull ofX. As a result, the inequalityPn
j=1 xj � k is the only non-trivial facet of conv(X).

However, in general k1 > k2. In this case, we
present a method which uses the de�ning inequality:Xk1

j=1
aj � b: (2)

To �nd at least one facet-de�ning cover inequality of
X. De�ne

�x j ; j = 1; :::; n, as complement of xj , i.e.,
�xj = 1 � xj . For any t 2 f1; :::; ng, the term at

�xt
can be added to the left-hand side of Inequality (2),
to obtain a valid relaxation of Inequality (2), i.e.,Pn
j=1;j 6=t ajxj � b�at for X. Now for this new relaxed

inequality, de�ne k1 and k2 just as de�ned above. If
k1 = k2 the valid cover inequality has been obtained,
else we repeat this process until k1 = k2. Then setting
k = k1(= k2) the �nal inequality is:Xk1

j=1;j =2S xj � k; (3)

where S is the set of t's for which at
�xt has been added

to the left-hand side of Inequality (2). It can be seen
that in the worst case complexity of this method is
O(n); however, it may terminate after adding much
fewer at

�xt terms than n.
The terms at

�xt can be added to the left-hand side
of Inequality (2) in di�erent orders; hence, di�erent
valid cover inequality may be obtained. For the priority
rule of \smallest aj �rst", we show that the resulting
cover inequality de�nes a facet of conv(X).

Proposition 1. In generation of Inequality (3), if the
\smallest aj �rst" priority rule is followed, then the
resulting inequality either de�nes a facet of conv(X),
or is an implicit equality for X, which can be used to
�x k variables.

Proof. Suppose, using this priority rule, we have
obtained the inequality

Pn
j=T+1 ajxj � b � PT

j=1 aj
and hence, the resulting valid cover inequality is:Xk1

j=T+1
xj � k: (4)

Note that if k = n�T , then Inequality (4) is satis�ed at
equality by all points inX, and therefore, Inequality (4)
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Figure 1. Matrix G.

becomes and implicit equality for X and we can �x
�x j ; j = T +1; :::; n and reduce the problem to a smaller
problem.

Now, we consider the case where 1 � k � n�T�1.
Note that, during the process of determining k, k1, k2,
and k2 are non-increasing. Therefore, since k1 > k2,
in the last iteration for determining k, it is k1 that is
decreased, and k2 does not change. Therefore, we have:Xn

j=n�k+1
aj � b�XT�1

j=1
aj : (5)

Now we derive a lower bound on the number of points
in X that are on the hyperplane of cover inequality
(4), i.e., the points in X that satisfy

Pn
j=T+1 xj = k.

To this end, consider two sets of points (x1; :::; xn) in
X: The �rst set contains T points. For i = 1; :::; T ,
construct the point i in this set by de�ning Pi =
f1; :::; Tgnfig and then setting xj = 1, j 2 Pi; xj = 1,
j = n�k+ 1; :::; n; and xj = 0 for all other j. For each
of these points, we have

Pn
j=T+1 xj = k, and also:Xn

j=1
ajxj =

X
j2Pi

aj +
Xn

j=n�k+1
aj

�X
j2Pi

aj + b�XT�1

j=1
aj ; (6)

where the last inequality is based on (5). Since a1 �
a2 � ::: � an, we have

P
j2Pi aj �

PT�1
j=1 aj , and hence

Inequality (6) implies
Pn
j=T+1 ajxj � b, i.e. all points

in the �rst set are in X.
The second set of points are constructed as

follows: Construct point i in this set by selecting
a subset of size k of fT + 1; :::; ng, named Qi, and
setting xj = 1, j = 1; :::; T ; xj = 1, j 2 Qi; and

xj = 0 for all other j. Now since k1 = k, we havePT+k
j=T+1 aj � b�PT

j=1 aj . Also, since a1 � a2 � ::: �
an, we have

P
j2Qi aj �

PT+k
j=T+1 aj . Therefore, for

each point i in the second set we have
Pn
j=1 ajxj =PT

j=1 aj +
P
j2Qi aj �

PT
j=1 aj + b �PT

j=1 aj = b,
hence the points in X. For each of there points, we
also have

Pn
j=T+1 xj = k. The number of points in

the second set is equal to the number of Qi's, which

is
�
n� T
k

�
. The sum of number of points in the

aforementioned two sets, i.e.,
�
n� T
k

�
+T , is a lower

bound on the number of points in X that are on the
hyperplane

Pn
j=T+1 xj = k. Since 1 � k � n�T�1, we

have
�
n� T
k

�
+T = (n�T )!

k!(n�T�k)! +T � n�T+T = n.

Therefore, we have at least n points in X on the
hyperplane of the valid cover Inequality (4).

Now, since the set X is full dimensional, to prove
that Inequality (4) de�nes a facet for conv(X), it is
su�cient to show that, in the above two sets of points,
there are at least one set of n linearly independent
points. For this purpose, de�ne a matrixGn�n in which
each column is a point selected from these two sets of
points, as described below: Denote the gth column of
G by Xg = [xg1; x

g
2; :::; xgn]. The �rst T columns of G are

all the points in the �rst set arranged such that Xg
g =

0; g = 1; :::; T . For g = T + 1; :::; n, the vector Xg is se-
lected from the points of the second set. Each Xg from
the second set has k ones in the rows T + 1; :::; n and
since 1 � k � n�T �1, the point Xg has at least one 1
and one 0 in these rows. The T vectors of the �rst set
of points and the n�T selected vectors from the second
set and their arrangement in G are shown in Figure 1.
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We show that the n points in matrix G are linearly
independent by proving that G is invertible. Consider
the partitioning of shown in Figure 1. If we multiply
each row i, i = T + 1; :::; n by � 1

k and add it to every
one of the �rst T rows of G, we obtain the matrix
�
G =

� �I 0
� A

�
. Therefore, G is invertible if A is

invertible.
Based on Figure 1, is invertible if B and C are

invertible. However, it is easy to see that B and C
are both invertible. Therefore, G is invertible, which
concludes the proof. �

3. Conclusion

In this paper, we've introduced a new method for
generating facets for the 0{1 knapsack polyhedron. Un-
like traditional approaches, our method doesn't require
initial minimal covers or predetermined sequences,
simplifying the process signi�cantly. Our method is
highly e�cient, with linear worst-case complexity in
some variables, making it suitable for integration into
solving procedures for general (Mixed) Integer Pro-
grams (MIPs). It swiftly generates potentially strong
valid inequalities, enhancing problem-solving e�ective-
ness. Through rigorous analysis, we've demonstrated
the reliability and e�ectiveness of our method. It
o�ers a practical solution for e�ciently deriving facet-
de�ning inequalities for 0{1 knapsack sets, addressing
optimization needs e�ectively. Future research can
explore extensions and re�nements to tackle more
complex problems, enhancing its utility in real-world
optimization scenarios.
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