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Abstract. This paper puts forward a framework for optimal mitigation of regional risk to
enhance the resilience of civil infrastructure. To meet this objective, probabilistic models,
methods, and software are developed and applied. The work is conducted within a new
reliability-based approach, in which reliability methods compute risk. This contrasts several
contemporary approaches for risk analysis. Risk, in this context, denotes the probability
of exceeding monetary loss. Evaluating such probabilities requires probabilistic models for
hazards, response, damage, and loss. This motivates the following contributions in this
paper. First, a new computer program is developed that is tailored to conduct reliability
analysis with many interconnected probabilistic models. It orchestrates the interaction
of models through an object-oriented architecture. Second, a library of probabilistic
models for regional seismic risk analysis is developed. The library includes new models
for earthquake location and magnitude and building response, damage, and loss. Third,
probabilistic methods for multi-hazard risk analysis are developed and applied in a large-
scale regional analysis. The results are cost exceedance probabilities and insights into
the seismic risk of the region. Finally, sensitivity measures are developed to identify the
buildings whose retro�t yields the most reduction in regional risk, i.e. the most resilience
of the region.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

This paper targets the area of risk mitigation and
resilience in structural and earthquake engineering.
New probabilistic models, methods, and software are
developed and applied to evaluate and optimally miti-
gate the risk to civil infrastructure. Risk, in this con-
text, means the probability of exceeding a measure of
utility, such as economic loss. Infrastructure resilience
is achieved by reducing the risk, e.g. reducing the
uncertain loss of earthquakes. In turn, this reduction
in risk is achieved by retro�t actions. The present
research addresses one of the main challenges faced
by a modern society: Allocation of limited resources
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must be prioritized in order to achieve the maximum
reduction in risk and hence, the maximum resilience
of infrastructure. As a result, the infrastructure
components must be prioritized for retro�t actions. To
this end, one needs to �rst evaluate the risk to civil
infrastructure and thereafter, employ the risk estimates
for mitigation decisions.

In this study, a new approach for risk analysis
is employed, in which reliability methods are imple-
mented to compute exceedance probabilities. Reliabil-
ity methods have been developed over the last three
decades and include �rst- and second-order reliability
methods (FORM and SORM) [1] and a variety of
sampling schemes. Reliability methods are suited for
risk analysis, because they are tailored to compute the
probability of rare events. Such events are particularly
important in risk analysis applications, especially in
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seismic risk, because they typically have dramatic
impacts, e.g. high monetary loss.

In a reliability analysis, random variables describe
the uncertainty and a limit-state function de�nes the
event for which the probability is sought. In classical
structural reliability, the limit-state function is de�ned
in terms of the demand and capacity of the structure.
To extend the usage of reliability methods to risk
analysis, the present study expresses the limit-state
function in terms of the consequence under consid-
eration, here, seismic loss. In this case, the limit-
state function de�nes the event that the loss exceeds a
prescribed threshold. The loss depends on the damage,
which in turn depends on the structural response,
earthquake intensity, location, and magnitude. Each
of these phenomena is represented by a model in this
approach. These models are probabilistic and they
describe the uncertainty by random variables. In the
course of a reliability analysis, the limit-state function
and possibly its gradient are repeatedly evaluated. In
each evaluation, the models receive the trial realization
of the random variables as input and output physical
responses, such as the earthquake intensity or the
repair cost of a building. These responses enter another
model \downstream" as input, or directly enter the
limit-state function. In summary, risk analysis with
reliability methods requires a host of probabilistic mod-
els. This contrasts the classical structural reliability
problems in which the limit-state function is often an
explicit function of the underlying random variables.

Orchestrating a reliability analysis with multiple
models requires software tools. The �rst objective in
this study is to develop a computer program for this
purpose that addresses the challenge of coordinating
many models. The program should have an object-
oriented design to readily facilitate the implementation
of new models and analysis algorithms. To e�ciently
evaluate the gradient of the limit-state function, the
program should be capable of computing direct di�er-
entiation response sensitivities [2] and communicating
them between multiple models. Finally, to compute
the risk when several hazards are present, multi-
hazard analysis methods should be implemented in the
program with hazard combination capabilities.

The second objective is to develop a library of
probabilistic models. The use of reliability methods
requires the models to meet a number of conditions
that are enumerated by Mahsuli and Haukaas [3].
An important condition is that the uncertainty in
the models should be described by random variables,
and the model should output a physical measureable
quantity, not a probability. Therefore, conditional
probability models, such as fragility models, are not
suited for use in reliability analysis. The new library
of models is intended for regional seismic risk analysis
applications. The scope of these models is limited to

earthquakes and buildings. In particular, the objective
is to develop the following models:

1. Earthquake location model for arbitrary-shaped
line and area sources, which produces realizations
of the rupture location;

2. Earthquake magnitude model, which accounts for
the uncertainty in the seismic parameters of the
earthquake source, such as the maximum magni-
tude that the source can generate;

3. Building response models, which output the peak
drift and acceleration response given the earth-
quake intensity and building characteristics, such
as height, age, material, and load bearing system;

4. Building damage models, which output the struc-
tural and non-structural damage given the re-
sponses and building characteristics, including the
irregularities of the structure;

5. Building loss models, which output the total repair
cost given the damage and building characteristics,
including the occupancy type and area of construc-
tion.

Items 1 and 2 aim at explicit modeling of the
location and magnitude of earthquakes. This contrasts
the traditional risk analysis approaches, where the
uncertainties in the location and magnitude are implicit
in a \hazard curve." An important goal in items
3, 4, and 5 is to develop building models that take
surveyed data as input. Such data are gathered by
visual inspection of buildings, and also through satellite
imagery and municipal databases.

The third objective is to develop probabilistic
methods for risk analysis of a region under multiple
hazards. These methods together with the library
of models are implemented in the computer program.
They are applied to assess the seismic risk to the
portfolio of 622 buildings in the Vancouver campus of
the University of British Columbia in Canada, hereafter
called the UBC campus. This region is subject to
seismicity from several sources. The primary results are
\exceedance probability curves", which show the prob-
ability of exceeding di�erent cost values. Other insights
are obtained from the analysis, such as identi�cation of
the most vulnerable building types in the region, and
comparison of the relative share of structural and non-
structural damage in seismic losses.

The fourth and �nal objective addresses the risk
once it is evaluated, i.e. once the �rst three objectives
are accomplished. To achieve infrastructure resilience,
risk is mitigated by taking retro�t actions. In fact, this
objective addresses the problem of allocating limited
resources for retro�t. Sensitivity measures are devel-
oped to prioritize infrastructure components for retro�t
actions. This measure identi�es the components whose
retro�t yields the largest reduction in the infrastructure
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risk. It is noted that while the presented methodology
and computer program are broadly applicable to vari-
ous infrastructures, buildings are the primary focus in
the analyses of this paper.

The next section provides an overview of the lit-
erature in the �eld of civil infrastructure risk analysis.
Thereafter, four sections successively address the four
objectives that are enumerated above.

2. Background

The �rst e�orts to carry out probabilistic analysis
in structural and earthquake engineering date back
to the late 1960s. The seminal paper by Cornell
[4] pioneered the �eld of probabilistic seismic hazard
analysis. The results of this work were diagrams
that showed the peak ground acceleration versus the
mean return period. This is a form of conditional
probability and is commonly referred to as \hazard
curve". Since then, many researchers have contributed
to this �eld. The early studies in this �eld were
focused on developing hazard curves for peak ground
motion parameters, such as peak ground acceleration
and velocity. These parameters purely depended on
the hazard characteristics and were independent of
structural properties. In the 1970s, ground motion
equations and seismic hazard curves were developed
directly for spectral ordinates [5,6]. This introduced
an elastic measure of structural response, e.g. the
spectral acceleration, in the risk analysis. McGuire [7]
presented an overview of the evolution of probabilistic
seismic hazard analysis. The models developed in
this �eld were in the form of conditional probabilities,
e.g., they produced the probability of exceeding a
spectral acceleration given a magnitude and a distance.
Probabilistic hazard analysis was the �rst step towards
the development of risk analysis methods.

In the 1980s, researchers aimed at going beyond
structural response in risk analysis. ATC-13 [8] pro-
posed a methodology to compute damage in the struc-
ture. The method employed empirical relationships
to compute damage conditioned upon the modi�ed
Mercalli intensity scale. The result was a mean damage
factor, de�ned as the mean cost of repairing the
structure divided by the replacement cost. According
to the de�nition adopted in this paper, the replacement
cost is what it costs to replace a building with a similar
type of construction. In contrast, the repair cost is
what it costs to restore the building to its undamaged
condition.

In the late 1990s, analytical models for seismic
damage estimation became more common. A new
loss estimation methodology was developed by the
U.S. Federal Emergency Management Agency (FEMA)
and the U.S. National Institute of Building Sciences
(NIBS) [9]. The methodology was implemented in

the HAZUS® computer program. The methodology
computes an expected damage factor and thus, an
expected loss using \fragility curves". Such curves
provide the conditional probability of exceeding various
damage states given a measure of intensity. The notion
of fragility has become popular within the earthquake
engineering community. The FEMA-NIBS fragility
curves were developed for the global response of the
structure. However, many studies have focused on
developing fragility curves for individual components
of a building, such as columns [10].

In early 2000s, the Paci�c Earthquake Engineer-
ing Research (PEER) Center put forward a method-
ology for seismic risk assessment. This methodology
was originally proposed by Cornell and Krawinkler [11].
Later, it was presented in more detail by Moehle and
Deierlein [12]. The result of this approach is the
probability distribution of the repair cost. The models
in this methodology have the format of conditional
probability. At the core of this approach, the theorem
of total probability is employed in the form of a triple
integral, known as PEER framing equation. Nearly
a decade later, Yang et al. [13] proposed a sampling-
based approach to evaluate the integral. Several other
research institutions have developed similar formula-
tions, such as the Mid-America Earthquake Center [14]
among others. In contrast to these approaches, the
risk analysis approach in this paper employs reliability
methods in conjunction with many probabilistic mod-
els.

The central theme in the aforesaid studies is
the formulation of probabilistic models in the form of
conditional probabilities. In parallel with these devel-
opments, structural reliability has been a signi�cant
�eld of research, which focuses on the development
and application of reliability methods. These methods
provide a means of evaluating the probability that an
event of interest occurs. In the late 1960s, the �rst
formulation of the reliability index was put forward by
Cornell [15]. Cornell formulated the reliability index as
the ratio of the mean to the standard deviation of the
limit-state function. This reliability method is known
as the mean-value �rst-order second-moment method.
In the 1970s, the so-called \invariance problem" that
is associated with this method was addressed by de-
veloping FORM [16,17]. In the 1980s, SORM was
developed that increased the accuracy of the computed
failure probability [18,19]. In addition, many re-
searchers have worked on developing various sampling
schemes to compute event probabilities. Ditlevsen and
Madsen [20] provided a comprehensive description of
reliability methods.

The research on structural reliability in the early
stages was mainly concentrated on developing relia-
bility algorithms. Simple probabilistic models were
often employed to demonstrate these algorithms. A
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coupling of the reliability methods with �nite-element
analysis has been the �rst step towards reliability-based
risk analysis. Finite element reliability analysis was
pioneered by Der Kiureghian and Taylor [21]. Using
reliability methods, they computed the probability that
the structural response, e.g. displacement, exceeded a
certain threshold. Koduru and Haukaas [22] went be-
yond responses by computing the seismic loss probabili-
ties for a high-rise building in Vancouver, Canada. The
methodology for risk analysis in this paper builds upon
the developments in the �eld of structural reliability.
The proposed methodology couples reliability methods
with a multitude of interacting probabilistic models
to conduct large-scale risk analysis of infrastructure
systems.

3. Software

A computer program is developed for infrastructure
risk analysis with the methodology described earlier.
The program is named Rt and is freely available online.
Rt conducts reliability, sensitivity, and optimization
analyses with multiple interacting probabilistic models.
In the context of classical structural reliability software,
the new multi-model computer program is the �rst of
its kind. Rt orchestrates the communication of models
by a new object-oriented software architecture, that
is, parameters, models, and analysis algorithms are
represented by objects. As a result, Rt is readily
extended by implementing new model objects and
new analysis objects, without the need to modify
the existing code. Rt is parameterized with speci�c-
purpose objects, which include: 1. Random variable
objects for use in reliability analysis; 2. Decision
variable objects for use in sensitivity and optimization
analysis; 3. Response objects that are outputs of
models; and 4. Time objects for modeling time-varying
phenomena. Rt is capable of computing direct dif-
ferentiation response sensitivities and communicating
them between multiple models. Two complementary
analysis options for multi-hazard reliability analysis are
implemented. One employs sampling and accommo-
dates the inclusion of time-varying phenomena. The
other, which is presented later in this paper, couples
FORM, SORM, and importance sampling with the
load coincidence method [23] and is a computationally
e�cient approach.

Figure 1 shows the user-interface of Rt. This
graphical user interface is designed to promote the
proposed multi-model reliability analysis in academia
as well as in engineering practice. Di�erent panes
of Rt's user interface are indicated with arrows in
Figure 1. The Objects Pane views and manages all
objects, which include parameters, functions, models,
and analysis algorithms. The user may instantiate
new objects through this pane. The Properties Pane

views and edits the properties of the object that is
selected in the Objects Pane. For instance, the user
may set the mean and standard deviation of a random
variable object through this pane. The Output Pane
displays the text output of the analysis, including
results and possible errors. Finally, the Visualization
Pane demonstrates the graphical output of Rt. Four
instances of such outputs are shown in Figure 1. They
include a 
owchart of the models that are employed in
the risk analysis on top-left, an OpenGL view of the
�nite element model of a building under consideration
on top-right, a diagram that shows the results of a
\histogram sampling" analysis on bottom-left, and a
Google Maps® view of the region under consideration
in a risk analysis on bottom-right.

Rt has a growing library of probabilistic models.
A part of this library is seen in the Objects Pane of
Rt under the branch \Model" in Figure 1. Models are
implemented for the occurrence, magnitude, location,
and intensity of hazards, performance of structures
and infrastructure, and the ensuing consequences, such
as economic, socioeconomic, and environmental conse-
quences. The user can also implement new models |
without any recompilation of the program { by several
means, including a scripting option. Furthermore, Rt
interfaces with several external computer programs,
which include OpenSees [24], ANSYS [25], Abaqus [26],
SAP2000 [27], USFOS [28], and EMME [29]. The �rst
four are sophisticated �nite-element analysis programs.
USFOS is an o�shore structural analysis program and
EMME is a transportation network analysis program.
In an Rt analysis, each of these programs may serve
as a model amongst many other probabilistic models.
Further information on Rt is available in [30].

4. Models

A library of probabilistic models is developed for pre-
diction of seismic risk. It is speci�cally intended for use
with reliability methods to compute event probabilities,
such as seismic loss probabilities. Models are proposed
for earthquake location and magnitude, building re-
sponse, building structural and non-structural damage,
building repair cost, and building retro�t cost. These
models are implemented in Rt. Several other models
are available in Rt, while the scope of the analyses in
this paper is limited to models pertaining to regional
seismic risk.

Several modeling techniques are available to de-
velop probabilistic models suitable for reliability anal-
ysis. One approach is the development of linear
models by Bayesian inference, as described by Box and
Tiao [31]. Gardoni et al. [32] applied this approach to
reinforced concrete members in the context of seismic
risk. This approach is appealing because the resulting
models meet the conditions required for use in a relia-
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Figure 1. User interface of Rt.

bility analysis. In fact, model uncertainty is explicitly
included by means of random model parameters. Each
of the following sections presents one of the proposed
models.

4.1. Earthquake location model
It is usual in the literature to compute the probability
distribution of the distance between the earthquake
location and the site of interest, R [33]. In contrast, the
new location models in Rt model the random rupture
location of a seismic event. The models take random
variables as input and output a realization of the lati-
tude, longitude, and depth of the rupture location [3].
Once the rupture location is known, the distance to
any building site is readily computed. Using these
models, the sources of seismicity that a�ect the UBC
campus are modeled. The geometry of seismic sources
is obtained from Adams and Halchuk [34], and shown
in Figure 2 in reference to the City of Vancouver. Five
sources of seismicity a�ect this region. CASR (Cas-
cade Mountains, regional), JDFF (Juan de Fuca plate

bending, o�shore), and JDFN (Juan de Fuca plate
bending, onshore) are area sources for shallow crustal
earthquakes, GSP (Georgia Strait/Puget Sound) is an
area source for deep subcrustal earthquakes, and the
Cascadia fault is modeled as a line source capable of
producing megathrust subduction earthquakes.

4.2. Earthquake magnitude model
The magnitude of earthquakes is commonly repre-
sented by a bounded exponential random variable [35].
The probability distribution of this random variable
is based on the Gutenberg-Richter law [36] and the
probability density function is:

f(m) =
b0 � exp [�b0 � (m�Mmin)]

1� exp [�b0 � (Mmax �Mmin)]
for

Mmin � m �Mmax; (1)

where m is moment magnitude, b0 the parameter that
depends on the relative occurrence of di�erent magni-
tudes, Mmin magnitude lower bound taken as 5.0 in
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Figure 2. Seismic sources that a�ect the UBC campus,
visualized in Rt's Google Maps® interface.

this paper, and Mmax magnitude upper bound. In this
study, m is modeled as a random variable with random
parameters. In particular, the parameters of the
distribution of m, namely b0 and Mmax, are uncertain
and modeled as lognormal random variables. Such a
model employs the concept of \probability transforma-
tion", as described by Mahsuli and Haukaas [3], and is
implemented in Rt. The mean and standard deviation
of b0 and Mmax are computed using their lower, best,
and upper estimates from Adams and Halchuk [34]
together with their weights. The resulting properties
of these random variables were presented by Mahsuli
and Haukaas in [37].

4.3. Ground shaking intensity model
The regional analysis in this study employs models
that produce a scalar intensity measure. Speci�cally,
models are adopted that take earthquake location
and magnitude as input and return the elastic 5%-
damped spectral acceleration, Sa, for given periods,
Tn, and shear wave velocities, VS30, at speci�c sites.
For the CASR, JDFN, and JDFF crustal sources,
the ground motion prediction equation by Boore and
Atkinson [38] is employed. For the GSP subcrustal
source, the intra-slab equation from Atkinson and
Boore [39] is employed. For subduction earthquakes,
the relationship for interface events proposed by Atkin-
son and Boore [39] is adopted. All these models
are \smoothed" for this study [3] to be utilized in
gradient-based reliability analyses, such as FORM. In
addition, VS30 is modeled as a random variable using a

comprehensive database of VS30-measurements for the
City of Vancouver. Although the numerical example
in this paper considers only one intensity model for
each seismic source, the analysis framework and the
computer program are capable of employing multiple
ground motion prediction equations to account for the
model uncertainty in predicting the earthquake inten-
sity. In this case, the intensities predicted by di�erent
equations are combined by user-de�ned weights similar
to the well-known \logic tree" method.

4.4. Building response model
Building response models make probabilistic predic-
tions of the peak drift ratio, �p, and peak acceler-
ation response, Ap. These responses are deemed to
govern the structural and non-structural damage [9].
The information that is input to the building models
presented in this paper is gathered by visual inspection,
satellite imagery, and municipal databases. The infor-
mation includes the building material; load bearing sys-
tem; occupancy; year of construction; state of retro�t;
number of stories; footprint area; plan irregularity, IPI ;
vertical irregularity, IV I ; soft story, ISS ; short column,
ISC ; and pounding, IP .

Response models are developed for 13 building
types that are identi�ed by the construction material
and load bearing system, as described by Mahsuli
and Haukaas [3]. The capacity spectrum method [40]
described in FEMA-NIBS [9] is employed to generate
data for the Bayesian regression analysis. The �rst
attempt was to model �p and Ap in terms of observ-
able building properties, but it provided a poor �t.
Therefore, a stronger emphasis on structural dynamics
was introduced and the following parameters were
considered in the model: natural period of vibration,
Tn; strength-to-weight ratio, V ; yield drift ratio, �y;
ductility capacity, �; ultimate drift ratio, �u; and
degradation factor, �. Sub-models are established for
these parameters separately for each of the 13 types.
In turn, the six parameters Tn, V , �y, �, �u, and �
are utilized as regressors to model �p and Ap for all
building types. A number of di�erent model forms
were tried. Each model was assessed by plotting the
model predictions against the data and the model
residuals against the regressors. In this process, some
model forms exhibited inadequate predictions and some
su�ered from heteroscedasticity. In conclusion, the
models that best predict �p and Ap are:

ln(�p) = �1 + �2 �ln(�y) + �3 �ln(�u)� �4 �ln (V (1 + v))

� �5 �ln(�) + �6 �ln(Sa) + �7 �Sa+ "; (2)

ln(Ap) = �1 � �2 �ln(�y) + �3 �ln(V )� �4 �ln(�)

+ �5 �ln(�) + �6 �ln(Sa) + "; (3)
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where �i are model parameters and " model errors.
The second-moment information for the model param-
eters is obtained from a linear regression analysis and
presented by Mahsuli [41]. The models in Eqs. (2)
and (3) originally included damping and overstrength
as regressors, but they were omitted in a stepwise
modeling process as described by Gardoni et al. [32].
The parameter v in the response model is a decision
variable that indicates the amount of increase in the
lateral strength of the building as a result of seismic
retro�t. This parameter will later be employed to
prioritize buildings in a portfolio for retro�t actions.

4.5. Building damage model
Given the responses �p and Ap, this section addresses
the ensuing damage. Damage is here expressed as
the ratio of the repair cost to the replacement cost
of the building. Four damage ratios are developed:
1. Structural damage, �S ; 2. Non-structural drift-
sensitive damage, �ND; 3. Non-structural acceleration-
sensitive damage, �NA; and 4. Content damage, �C .
The �rst two factors depend on �p, while the last
two depend on Ap. Data for the regression analysis
is generated using the fragility curves from FEMA-
NIBS [9]. To account for the increased damage due
to building irregularities, the building scoring system
of ATC-21 [42] is employed.

For all models, a smooth increase in damage
from 0 to 1 due to increasing building responses is
sought. Therefore, polynomial, trigonometric, and
logit functions were tested, but the standard normal
cumulative distribution function, �, turned out to
provide the best �t. The building irregularities are
included in the structural damage model by means
of an exponential function. This function produces a
factor to increase the damage if irregularities exist. It
yields the following model for structural damage:

�s =�
�
�1 + �2 �ln(�p) + �3 �ln(H)� �4 ��

�
�exp�

�5 �IV I+�6 �IPI+�7 �ISS+�8 �ISC+�9 �IP
�

+";
(4)

where � represents the construction quality and is
determined from the year of construction and state of
retro�t of the building in accordance with Table 1. In
particular, � = 1 for buildings that are built prior
to seismic standards, � = 2 for low code, � = 3

for moderate code, and � = 4 for the building built
with high seismic standards. The second-moment
information for the model parameters, �i, for each
of the 13 building types is presented by Mahsuli [41]
and implemented in Rt. The other damage models
are considered independent from the building type and
irregularities:

�ND = � (�1 + �2 �ln(�p)) + "; (5)

�NA = � (�1 �ln(Ap)� �2 ��) + "; (6)

�C = � (�1 �ln(Ap)� �2 ��) + ": (7)

The negative sign of the �i parameters associated with
� in Eqs. (4), (6), and (7) correctly indicates that
the damage decreases as the quality of construction
increases. The model in Eq. (4) suggests that taller
buildings incur more damage at the same level of drift
ratio. Furthermore, amongst the �i parameters that
correspond to irregularities, i.e. �5 to �9 in Eq. (4),
regression yields the highest mean for �7 for most
building types. This implies that soft-story irregularity
is the most detrimental type of irregularity. Conversely,
�9 has the lowest mean for most building types, which
indicates that pounding imposes the least damage
compared with other irregularities.

4.6. Building repair cost model
Provided a damage ratio, the associated repair cost is
computed by multiplying it with the building replace-
ment cost per unit 
oor area and the building 
oor
area. Summation of structural, non-structural, and
content yields:

cr=
�
�s �Cs+�ND �CND+�NA �CNA+�C �CC

�
�A � ";(8)

where �i are damage ratios from the previous section,
Ci the corresponding replacement costs per unit 
oor
area which depend on the building occupancy, A the
total 
oor area determined from the number of stories
and the footprint area, and " model error which is
a normal random variable with unit mean and 10%
coe�cient of variation.

4.7. Building retro�t cost model
The model that predicts incremental construction cost
associated with retro�t is:

co = v �(
 �Cs �A)�
�

7� �
4

�
�"o; (9)

Table 1. Building code levels.

Era of construction Unretro�tted Retro�tted

Before 1940 � = 1: Pre-code � = 3: Moderate-code
From 1940 to 1975 � = 2: Low-code � = 3: Moderate-code
After 1975 � = 3: Moderate-code � = 4: High-code



1968 M. Mahsuli/Scientia Iranica, Transactions A: Civil Engineering 23 (2016) 1961{1974

Figure 3. Map of the UBC campus and the 622 buildings
that are modeled in this study.

where 
 represents ratio of the cost of the lateral
force-resisting system to the total structural cost, CS
structural cost per unit 
oor area, A total 
oor area,
� code-level factor that expresses the strength of the
building prior to retro�t, and "o model error factor. In
Eq. (9), the term (7 � �)=4 implies that the buildings
built with high standards cost 25% less to retro�t than
the moderate code level, while pre-code buildings cost
50% more to retro�t than the moderate code level.

Each of the 622 buildings on the UBC campus are
modeled with a building response model, a building
damage model, a building repair cost model, and a
building retro�t cost model. Figure 3 pinpoints this
region in the Google Maps® interface in Rt. The
markers in the zoomed map of the UBC campus
identify the 622 considered buildings.

5. Methods

The essence of a reliability analysis is random variables
collected in the vector x, and limit-state functions,
gi(x). Both physical variables, such as magnitude, and
model variables, such as model error, are included in x.
The subscript i in gi denotes the ith hazard. That is,
for each hazard, a limit-state function is formulated in
the presented methodology. This fosters a multi-hazard
risk analysis framework. The primary objective of a
reliability analysis with one limit-state function is to
determine the probability that the limit-state function
will take on negative outcomes. This probability is
denoted by pi = P [gi(x) � 0]. In other words, the
limit-state function identi�es the event for which the
probability is sought. The limit-state function:

gi(x) = ct � ci(x); (10)

is central in this study because it yields the probability
that the total cost when the ith hazard occurs, ci(x),

is greater than the threshold, ct. Two costs are
considered: (1) Cost of repair due to earthquake-
induced damage, cr; and (2) Cost of construction due
to a priori retro�t actions, co. It is emphasized that
the evaluation of ci(x) requires a host of probabilistic
models of the type presented in the previous section.

Any reliability method evaluates gi and perhaps
the gradient vector @gi=@x several times, for di�erent
realizations of x, to obtain an estimate of pi. The
FORM analysis is an appealing method because it
requires only a handful of evaluations of gi and @gi=@x
to yield an estimate. FORM also provides valuable
insight into the relative importance of each random
variable. As described by Der Kiureghian [1], FORM
includes a search for the \design point," which is the
most likely realization of x associated with gi = 0 in
the space of standard normal variables. The result of
the search is the reliability index �i, which is related
to the sought probability by the equation:

pi = �(��i): (11)

FORM produces a good estimate of pi depending on
the topology of the limit-state surface near the design
point. This result may be inaccurate if the limit-
state function is strongly nonlinear in the space of
standard normal variables. Under such circumstances,
the SORM and importance sampling are utilized to
improve the FORM result; see details in [1-20].

The problem under consideration has several
limit-state functions of the form of Eq. (10) because
several sources of seismic hazard are present. Speci�-
cally, the region is subjected to crustal, subcrustal, and
subduction earthquakes, as described before. Because
each of these sources is associated with di�erent loca-
tion and magnitude models, they are modeled as di�er-
ent hazards with di�erent occurrence rates. As a result,
multi-hazard analysis is necessary when analyzing the
seismic risk for the UBC campus. Two multi-hazard
analysis methods are available in Rt. One that is
employed here is based on the load coincidence method
described by Wen [23]. It was originally proposed for
load combination and in this paper, it is extended to
loss analysis applications. It employs the Poisson pulse
process and accounts for the possible coincidence of two
or more hazards. However, the formulation is simpli�ed
in the seismic-oriented case study in this paper because
the probability of the coincidence of two earthquakes is
negligible. This implies that the Poisson point process
is employed to model the hazards, each with a rate of
occurrence denoted by �i; i = 1; 2; 3; :::; N , where N is
the total number of hazards.

Suppose a reliability analysis is carried out for
each hazard, so that �i and pi are known for all hazards.
Consequently, the rate of exceeding the cost threshold
ct is �i �pi for each hazard. The combined rate that
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includes all hazards is the sum of the individual rates,
and the well-known Poisson distribution provides the
probability of exceedance within a time period, T :

p = 1� exp

 
�T �

NX
i=1

�i �pi
!
; (12)

where p is the probability that the total cost, c(x),
exceeds the threshold, ct, when all hazards are consid-
ered. In the context of FORM analysis, it is common to
employ a generalized reliability index, �, as a surrogate
measure for p:

� = ���1(p); (13)

where ��1 represents standard normal inverse cumu-
lative distribution function.

A risk analysis is carried out to obtain the
probability distribution of the total seismic costs for
the UBC campus. This analysis includes 4389 model
instances, 8097 model responses, and 281 random
variables. The analysis is conducted for the current
state of the buildings, i.e. v = 0 for all buildings.
Figure 4 shows the cost exceedance probability curve
for a time span of 50 years, i.e. T = 50. It is noted that
the exceedance probabilities diminish rapidly as the
cost threshold increases. For example, the probability
of exceeding $100M is 0.0365, while the probability of
exceeding $500M is 0.0071.

To get further insight from this analysis, the con-
tribution of structural and non-structural components
of the UBC buildings to overall losses is illustrated
in Figure 5. A logarithmic scale is employed to
highlight the tail probabilities. Figure 5 shows that
the probability of exceedance for non-structural losses,
i.e. the sum of acceleration- and drift-sensitive losses,
is higher than that of structural losses. This has been
observed in several studies, see e.g. FEMA-NIBS [9].

Figure 4. Cost exceedance probability curve.

Figure 5. Structural and non-structural loss probabilities.

Figure 6. Damage ratio probabilities for di�erent
building types.

In turn, non-structural drift-sensitive components con-
tribute more to the loss probabilities than acceleration-
sensitive components.

Next, the performance of di�erent structural sys-
tems and construction materials is assessed to deter-
mine the relative vulnerability of di�erent building
types. For this purpose, a \prototype damage ratio"
is de�ned. For each building type, it equals the total
loss of all buildings with that type divided by their total
value. Figure 6 presents the probability of exceeding
damage ratios for T = 50 years for di�erent building
types. This �gure indicates that unreinforced masonry
buildings are the most vulnerable, while concrete shear
wall buildings are the least. Note that this ranking is
speci�c to the composition of buildings at UBC. For
example, most of the modern concrete buildings at
UBC are shear wall buildings, which exhibit the best
performance according to Figure 6.

6. Sensitivity measures

Suppose the manager of a building portfolio seeks to
allocate limited resources in an optimal manner to
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retro�t selected buildings. One approach is to establish
a decision tree that compares the cost of retro�t
with the expected cost of damage for each building.
However, the risk analysis presented earlier yields the
entire distribution of cost. Hence, an approach that
goes beyond expected cost is desirable. To this end, the
sensitivity measure, @�=@co, is proposed and discussed
in this section, where co is cost spent on retro�t. The
fundamental idea behind @�=@co is that buildings that
yield the largest increase in the reliability index, i.e.,
the largest reduction in cost exceedance probability,
per dollar spent on retro�t should be prioritized. To
evaluate @�=@co, it is necessary to recognize that �
depends on co through p, pi, �i, and v. The chain rule
of di�erentiation yields:

@�
@co

=
@�
@p
�
NX
i=1

�
@p
@pi
� @pi
@�i
� @�i
@v
� @v
@co

�
: (14)

For convenience of subsequent derivations, the �rst
three derivatives in the right-hand side are merged and
evaluated by di�erentiation of Eqs. (11)-(13), which
yields:

@�
@�i

=
@�
@p
� @p
@pi
� @pi
@�i

=
1

'(�)
�T�i

�exp
�
�T �

NX
i=1

�i �pi
�
�'(�i); (15)

where ' is standard normal probability density func-
tion. According to Eq. (15), the value of @�=@�i
increases with the occurrence rate, �i, and decreases
with the reliability index, �i. In other words, frequent
and/or damaging hazards contribute more to the sen-
sitivity in Eq. (14). The derivative @�i=@v in the right-
hand side of Eq. (14) is obtained by di�erentiating the
reliability index from FORM [1]:

@�i
@v

=
1

jjrGijj �
@gi
@v

����
x�
; (16)

where Gi stands for limit-state function in the space
of standard normal variables, and the asterisk denotes
the realization of random variable at the design point.
Eq. (16) requires the derivative of gi in Eq. (10), which
in turn requires the derivative of the models that enter
into the evaluation of total cost. These derivatives are
available in Rt because each model computes response
sensitivities by the direct di�erentiation method [2].
The last derivative in the right-hand side of Eq. (14)
represents the marginal cost of retro�t; di�erentiation
of Eq. (9) yields:

@co
@v

= (
 �CS �A)�
�

7� �
4

�
�"o: (17)

To prioritize the buildings on the UBC campus for
seismic retro�t, the sensitivity measure @�=@co in
Eq. (14) is computed for each of the 622 buildings at
their present state, i.e. v = 0. For this purpose, the cost
threshold, ct, in Eq. (10), is set to $100 million. This
means that the reliability index in Eq. (14) corresponds
to the probability that the maximum seismic cost
in this region exceed $100 million over the next 50
years. Table 2 displays the value of @�=@co for the 10
highest ranked buildings. It is observed that most of
the highest ranked buildings are unreinforced masonry
structures. This is not surprising, because unreinforced
masonry buildings tend to sustain signi�cant damage
in earthquakes. It is also observed in Table 2 that most
of the highest ranked buildings belong to pre-code and
low-code levels. In other words, they are either built
before seismic codes appeared around 1940 or before
the seismic codes were upgraded around 1975. For
example, the \Old Auditorium", which ranks at the
top in Table 2 and is shown in Figure 7(a), is a large
unreinforced masonry structure built in 1925. The
value of @�=@co for this building implies that spending
$154,000 on retro�t changes the reliability index for the
entire campus by 0.01. This is more than any other
building on the UBC campus.

Table 2. Top 10 buildings according to retro�t priority.

Building name Type Code level @�=@co
Old Auditorium Unreinforced masonry Pre 6:5:10�8

Rugby Pavillion Unreinforced masonry Low 3:7:10�8

John Owen Pavilion Unreinforced masonry Low 3:7:10�8

Thunderbird Sports Centre Unreinforced masonry Low 3:7:10�8

Animal Science Aquaculture Centre Unreinforced masonry Low 2:7:10�8

Environmental Services Facility Unreinforced masonry Low 1:9:10�8

Sherwood Building Unreinforced masonry Low 1:8:10�8

Green College Kitchen Wood large frame Moderate 1:8:10�8

Barn Co�ee Shop Wood large frame Pre 1:6:10�8

Cheeze Factory Undergrad Society Wood large frame Pre 1:6:10�8
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Figure 7. (a) Old auditorium. (b) Top 10 buildings according to retro�t priority.

The diagram in Figure 7(b) disaggregates @�=@co
to expose the contributions of crustal, subcrustal, and
subduction earthquakes. The �gure indicates that the
highest contribution to the cost sensitivities is of sub-
crustal earthquakes. This is reasonable because sub-
crustal earthquakes are associated with relatively high
frequency and high probabilities of cost exceedance.

The positive value of @�=@co in Table 2 suggests
that it is worthwhile to allocate resources to retro�t
these buildings. In fact, positive values of @�=@co are
observed for 393 buildings on campus, which is about
63% of the building stock. Conversely, @�=@co takes
on negative values for the other 229 buildings. The
negative sign indicates that it is not worthwhile to
retro�t these 229 buildings because the construction
cost surpasses the gain from decreased damage. Table 3
shows the negative values of @�=@co for the 10 lowest
ranked buildings. These buildings yield the largest
increase in cost exceedance probability per dollar spent
on retro�t. It is observed that Table 3 contains
mostly concrete shear wall buildings. This is not
surprising, because the lateral force-resisting system of

these buildings is speci�cally designed to carry high
seismic forces. In fact, the buildings in Table 3 belong
to the moderate-code level, which means that they are
built after 1975 or retro�tted to contemporary codes.
It is therefore reasonable that these buildings are not
prioritized for seismic retro�t according to the measure
@�=@co.

It is noted, however, that these sensitivity mea-
sures only consider economic losses due to structural
and non-structural repair costs, and do not account
for social losses due to injury and death. Probabilistic
models for predicting social losses are being developed
in ongoing research by the author. The lack of such
models in the numerical example here is remedied by
selecting a \risk-averse" measure of risk. A neutral
measure of risk would be the mean regional loss.
However, in lieu of computing the sensitivities at the
mean regional loss, i.e. $16M, they are computed at
a quantile in the upper tail of the loss probability
distribution, i.e. $100M. As a result, @�=@co is positive
for a larger number of buildings. In other words, the
sensitivity measure that is computed in the tail of the

Table 3. Bottom 10 buildings according to retro�t priority.

Building name Type Code level @�=@co
Animal Care Rodent Breeding Concrete shear wall Moderate �2:1:10�9

Animal Science Main Sheep Unit Concrete moment frame Moderate �1:8:10�9

Acadia Park Highrise Concrete shear wall Moderate �1:7:10�9

The Regency Concrete shear wall Moderate �1:6:10�9

ChemBio Engineering Concrete shear wall Moderate �1:6:10�9

The Chatham Concrete shear wall Moderate �1:6:10�9

Irving Barber Library Concrete shear wall Moderate �1:6:10�9

Technology Enterprise Facility Concrete shear wall Moderate �1:6:10�9

ICICS Main Concrete shear wall Moderate �1:6:10�9

The Balmoral Concrete shear wall Moderate �1:6:10�9
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loss distribution indicates a larger number of buildings
in need of seismic retro�t than a sensitivity measure
computed at the mean loss.

It is observed that unreinforced masonry buildings
are the top candidates for retro�tting, while those that
are not worthwhile to retro�t are mostly concrete shear
wall buildings. This rea�rms the �ndings in Figure 6.
This �gure shows that concrete shear wall buildings
at UBC exhibit the best seismic performance, while
unreinforced masonry buildings exhibit the poorest.

7. Conclusion remarks

This paper revisits risk analysis and risk-based decision
making in structural and earthquake engineering. The
methodology for risk analysis in the present study
contrasts the approaches in the literature in two as-
pects: treatment of uncertainties, and computation
of risk. In the existing approaches, the uncertainty
is described by conditional probability models, e.g.
fragility curves that output a probability conditioned
upon the value of input(s). Thereafter, risk is typically
computed in either of these two ways: 1) Computing
the expectation of the loss; 2) Integrating the condi-
tional probabilities by the theorem of total probability
to compute the probability that the loss exceeds a
threshold. In contrast, the uncertainty in the present
approach is described by random variables that are
input to models. Given the realization of these random
variables, the model produces a physical measureable
output, such as spectral acceleration and seismic loss,
not a probability. In turn, risk, i.e. the probability of
exceeding a loss threshold, is computed by reliability
methods. This reliability-based approach o�ers the
following advantages:

1. Uncertainties are explicitly characterized by ran-
dom variables. In contrast, uncertainties are im-
plicit in conditional probability models;

2. By-products of the reliability analysis, i.e. im-
portance and sensitivity measures, are employed
for optimal risk mitigation, which maximize the
resilience of infrastructure;

3. Many of the existing engineering models that re-
ceive a number of inputs and produce physical
output(s) can be employed in the analysis, provided
that the uncertainty in the model is properly
characterized by random variables. For instance,
�nite element models can be directly incorporated
in the analysis;

4. Risk is computed when multiple hazards are
present, and the possible coincidence of hazards is
accounted for;

5. The models can take limitless number of inputs
and provide limitless number of outputs to many

downstream models. The limit is determined by
the memory of the computer. In contrast, the
conditional probability models are typically limited
to one or two inputs and provide a single output;

6. Portfolio level analyses are readily carried out by
modifying the limit-state function to include the
sum of the losses of multiple structures and infras-
tructure, e.g. all buildings in a region;

7. The probabilities are computed by e�cient reliabil-
ity methods, rather than a multifold integral, which
may be cumbersome to evaluate;

8. It is possible to include time-varying phenomena,
such as long-term deterioration and discounting, in
the analysis; see Mahsuli and Haukaas [30,37] for
numerical examples;

9. It is possible to distinguish between reducible and
irreducible uncertainties, which are termed epis-
temic and aleatory uncertainties, respectively. This
permits targeted e�orts to reduce the epistemic
uncertainty.
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