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 In this study, an Economic Production Quantity (EPQ) model with deterioration is developed where 
the production rate is stock dependent and the demand rate is unit selling price and stock dependent.  
The low unit selling price and more stocks correspond high demand but more stock corresponds to 
slow production because of the avoidance of unnecessary stocks. First of all, we develop the 
production model by solving some ordinary differential equations having deterministic profit function 
under some specific assumptions. Later, we develop the fuzzy model by solving the fuzzy differential 
equations using generalized Hukuhara (gH) derivative. In fact, the differential equation of the model 
has been split into two parts namely gH(L-R) and gH(R-L) on the basis of left (L) and right (R) α-cuts 
of fuzzy numbers for which the problem itself is transformed into multi-objective EPQ problem. A 
new formula of aggregation of several objective values obtained at different aspiration levels has been 
discussed to defuzzify the fuzzy multi-objective problems. We solve the crisp and fuzzy models using 
LINGO software. Numerical and graphical illustrations confirm that the model under gH derivative of 
(R-L) type contributes more profit which is one of the basic novelties of the proposed approach. 

 

1. Introduction  
The basic objective of the supply chain modelling is to 
make sure the uninterrupted service or flow of goods from 
manufacturer or dealer to consumer through all possible. 
Also, we know the production rate and demand rate are two 
basic components related to the study of the inventory 
control problem. Two popular approaches for describing the 
inventory control problems are Economic Order Quantity 
(EOQ) model introduced by Harris [1] and Economic 
Production Quantity (EPQ) model formulated by Taft [2]. 
The main objective is to find the optimal production 
quantity or optimal order quantity of the model that 
minimizes the cost objective function or maximizes the 
profit function with respect to some real constraints. 
Traditionally, all the models are assumed to be deterministic 
because the associated parameters are deterministic in 
nature. But, in reality, some of the parameters may be 
flexible (non-random uncertainty) in nature. 
 
       The parameter like demand rate is a vital component in 
the theory of inventory control problems. It would be a 
matter of easiness to the decision maker to control the 

inventory problem if the information regarding the demand 
pattern is available in crystal clear form. But in practice, the 
demand of certain product in the market fluctuates within 
finite specific range.  Also, various costs and revenues 
related to the production and marketing procedures may 
fluctuate depending upon several factors on which the 
decision maker has no control. So, uncertain decision-
making policies are coming into the situation. 
     Also, the earliest trends were to assume the constant 
demand with no shortage to develop the lot sizing 
modelling [3,4]. Later, the literature regarding EOQ and 
EPQ modelling gradually enriched through incorporating 
deterioration, partial and fully backlogged shortage, and 
credit-linked demand [5,6] respectively were discussed. The 
present article has solved the following research problems: 
 

(i) What is the optimal production-marketing 
strategy of a deteriorating inventory with profit 
maximization objective function when demand or 
consumption rate depends upon the unit selling 
price and the displayed stock? 
(ii) If the non-random uncertainty associated with 
parameters and decision variables of a model is not 
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ignored, in what extent the fuzzy counterpart be the 
best fitted approach of modelling? 
(iii) How much the Fuzzy Differential Equation 
(FDS) be helpful for the complicated and realistic 
model via new defuzzification aggregation method 
in optimization?   
 

Motivating from the above research problems, the proposed 
model of inventory control management is developed under 
some very realistic assumptions.  The demand rate is 
assumed to be a function of unit selling price and real time 
stock of the items and the production rate is also real time 
stock dependent. Generally, low selling price increases the 
demand pattern of the customer in a developing country 
like India [7-9]. Although, big size of the inventory in the 
showrooms increases enthusiasm and attraction of the 
customers towards purchasing the products.  Indeed, to 
grow a sustainable network of supply to fulfil the 
customers’ demand aiming for maximum profitability, the 
control on the production rate is made such that no items 
are left unsold. However, to analyse the non-random 
uncertainty of the various parameters of the model we have 
gone through the FDE approach under generalized 
Hukuhara (gH) derivative of two different types (L-R & R-
L) is adopted to describe the fuzzy model. A new 
defuzzification method in term of aggregation of several 
objective values obtained at different aspiration level has 
been formulated to score the numerical results of the fuzzy 
model with interval representation.  
      The organisation of the remaining part of the paper is 
described as follows: The brief literature review related to 
the proposed research objectives is carried out in Section 2. 
After that, a detailed discussion on general overview on 
FDE and Lagrange’s multiplier method to solve differential 
equation is represented in Section 3. The notations and 
assumptions are explained in Section 4. Section 5 includes 
the crisp and fuzzy mathematical model, solution algorithm 
etc. In Section 6, numerical illustrations and in Section 7, 
graphical illustrations are done. Finally, a concluding 
remark is given in Section 8 followed by a scope of future 
work. 
 
2. Literature review 
In this paper, a theoretical accumulation of different 
research domains has been carried out for a meaningful 
managerial perspective. Following the questions mentioned 
in the introduction section, the present section is going 
through a brief review on three different research 
disciplines, namely, popular lot-sizing modelling (with a 
special concern on the key words price, stock, 
deterioration), inventory modelling under uncertainty, FDE 
and its application on inventory control problem.  Thus, the 
present section contains five different subsections 
presenting the literature review of three different 
disciplines, the sense of accumulation of the ideas and the 
major contribution of the current article.   
 
2.1. Popular lot-sizing models 
In reality, the demand of the produced item depends on 
several factors, the unit selling price of items is one of such 
important issues involved in the production and retailing 
business. Considering the demand as a function of unit 
selling price [10], the subsequent worthy works on 

deterioration [11], fully backlogged shortage [12], no 
shortage [13] and discount policy with the price depended 
characteristic of demand rate [14] etc. have been studied in 
modelling rigorously. Another vital issue is the stock of the 
product in the inventory cycle. Arbitrary large amount stock 
may result to the ultimate loss of the retailer due to 
unsellable items. Moreover, the presence of moderate 
number of displayed stocks in showroom makes a positive 
result on demand, creating more interest of the customers 
towards those particular products. Incorporating these facts 
in inventory modelling researchers like Giri et al. [15], 
Mondal et al. [16] etc. studied the inventory models with 
stock dependent Later, more improvements in this regard 
have been done by incorporating the sense of dependent 
damage rate [17], shortage [18] and time varying holding 
cost [19] along with the presence of stock depended 
demand exclusively.  The study of the joint impact of stock 
and price on demand is also considered by Datta and Pal  
[20] and Teng and Chang [21] considered deterioration of 
items in this context. Sana [22] discussed the negative 
influence of uncontrolled large stock on the demand under 
the consideration of stock and price dependent demand of 
deteriorating item. Khan et al. [23] addressed the price 
discount facility for advance payment in the study of an 
EOQ model of deteriorating item with price and stock 
dependent demand allowing partial backlogged shortage. 
Indeed, some works on recent trends in supply chain 
models for Single Set up Single Delivery (SSSD) [24] and 
Single Set up Multi Delivery (SSMD) [25-27] may be 
considered over here.  
 
2.2. Inventory model under fuzzy uncertainty  
We know, non-random uncertainty of facts can be described 
by fuzzy set theory [28] that is being used frequently recent 
times. Bellman and Zadeh [29] advocated for the fuzzy 
decision making as very fruitful application of the proposed 
theory. Park [30] was the pioneer to study the lot-sizing 
problem under the fuzzy decision-making phenomena. In 
learning theory for decision making, some interesting 
works are dense fuzzy set [31], dense fuzzy Neutrosophic 
set [32], Lock fuzzy set [33], Moonsoon fuzzy set [34] etc. 
The applications of the experience-based learning 
approaches in the study of lot-sizing problem were 
addressed by Maity et al. [35-37], Karmakar et al. [38,39] 
in the light of the theory of dense and lock fuzzy number. 
Rahaman et al. [40] contributed a study to find out the joint 
impact of memory and experience-based learning on the 
decision of optimization for an EOQ model. Also, De and 
Mahata [41,42] explore the sense of cloudy fuzzy sets and 
its application on the inventory problems. Very recently, a 
MCGDM problem regarding sustainable transport 
investment selection with respect to knowledge measure 
and generalized entropy has been discussed by 
Aghamohagheghi et al. [43] in interval valued Pythagorean 
fuzzy phenomena. Also, Guleria and Bajaj [44] contributed 
a very relevant study on the theoretical properties of the T-
spherical soft set and its application on decision making 
problems. 
 
2.3. FDE in inventory management problem 
The topics on the FDEs have been rapidly grown in recent 
years. There are many approaches to solve the FDEs. In this 
context, the most important job was to introduce the 
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definition of fuzzy derivative. The concepts of the fuzzy 
derivative were first initiated by Chang and Zadeh [45], 
whereas the concept of FDE was first formulated by 
Keleva [46]. In FDE, all the derivatives are characterized 
by either Hukuhara or generalized derivatives. The Hukuhara 
derivative has some limitations because the solution turns into 
imprecise as time goes on. Bede et al. [47] exhibited that a 
large class of boundary value problem has no solution if 
Hukuhara derivative is applied. To remove this difficulty and 
deficiency the concept of gH derivative was developed [48,49] 
and FDE is utilized using this concept. Some researchers 
transformed the FDE into the corresponding fuzzy integral 
equation and solved it [50]. Another common approach to 
solve the FDE is Zadeh’s extension principle [51,52]. To solve 
the linear FDE, Allahviranloo and Ahmadi [53] used Laplace 
transformation approach. Mondal and Roy [54] solved the 
linear FDE by Lagrange multiplier method using Hukuhara 
derivative. Recently, Rahaman et al. [55] has added a new 
literature exploring a new method of solving difference 
equation under Gaussian fuzzy environment.  
      For the application of inventory management problems, 
the presence of fuzzy demand rate leads to FDE for 
instantaneous state of the inventory level. In comparison, 
till now the FDE is of little use to formulate and to solve the 
various fuzzy inventory model. Das et al. [56] gave two 
methods of solution of an initial valued first order FDE and 
described its application on a fuzzy EOQ model using fuzzy 
extension principle and centroid formula for 
defuzzification. Guchhait et al. [57] formulated a 
production inventory model with fuzzy demand and 
production rate in an imperfect production process using 
the FDEs with the interval valued genetic algorithm 
approach. A production recycling model is formulated and 
solved by Mondal et al. [58]. An EPQ model with partial 
trade credit policy in fuzzy environment was studied as an 
application of gH derivative approach of FDE by Majumder 
et al. [59]. Mondal [60] described a solution of the basic 
inventory model in fuzzy and interval environments with 
FDE and Inter Differential Equation (IDE) approach. 
Debnath et al. [61] introduced a sustainable fuzzy EPQ 
model with the demand as type-2 fuzzy number using gH 
derivative of FDE. Recently, Rahaman et al. [62] have 
studied a memory motivated fuzzy EPQ model in fuzzy 
fractional differential equation under Riemann-Liouville 
sense of fractional derivative. 
 
2.4. Research gaps and motivations 
Completing a comprehensive survey of existing literature in 
the earlier mentioned research domain, the following 
Completing a comprehensive survey of existing literature in 
the earlier mentioned research domain, the following lacks 
are spotted which are tried to fulfill in the present study:  
 

(i) A vast literature on the stock and price dependent 
demand consideration to construct the EOQ models are 
available. 
Up to the author’s knowing, only one article [63] on the 
study of an EPQ model of deteriorating items with 
stock and price dependent demand and stock dependent 
production rate is available. But that article emphasized 
on the memory effect related outcomes in a 
deterministic phenomenon through fractional calculus. 

In this paper, the model is developed under the same 
assumptions on the demand and production rate. But 
here the objective is quite different from the existing 
one. The main goal of the present article is to adopt an 
intelligent decision-making using FDE. 
(ii) There are huge collections of literature on the 
fuzzy inventory models. But, most of them were 
developed on various defuzzification techniques 
avoiding the rate of changes. Thus, the paper related to 
the fuzzy differential approach to solve the inventory 
problem is little rare in the existing literature. There are 
only few papers (described in Table 1) on inventory 
with FDE. 
(iii) GH derivative approach to solve the FDE is very 
meaningful way to quantify the changes of dependent 
fuzzy variables with respect to the dependent variables. 
But, up to the author’s knowledge, very few works are 
identified yet.  

So, we consider our proposed EPQ model in fuzzy 
environment utilizing fuzzy differential equation under gH 
derivative. Dealing with fuzzy variables and fuzzy calculus, 
this article has been reduced to a multi-objective decision-
making problem and finally the problem is solved with the 
help of new defuzzification rule.   
 
2.5. Major contribution  
The basic novelty is that all the cost components, the 
deterioration rate and the unit selling price associated to the 
model assume triangular fuzzy numbers. However, we 
adopt the FDE approach with the help of the extension of 
Lagrange’s method to describe fuzzy mathematical problem 
and solve the fuzzy model via gH derivatives of two kinds 
namely L-R and R-L types. Also, a new defuzzification 
technique is studied with some aggregation rules to find the 
crisp equivalent problem of the more complex fuzzy 
objective function of the proposed model. A comparative 
analysis over the numerical results of the crisp model and 
the fuzzy model under different circumstances is done that 
focuses the managerial insights as well.  

3. Preliminaries 
3.1. Fuzzy sets and fuzzy calculus 
Definition 1. A fuzzy set ܣሚ on a crisp set ܣ is an ordered 
pair given by ܣሚ = ൛൫ݔ, µ஺෨(ݔ)൯ൟ, where ݔ is the element of  
 is the corresponding member function and (ݔ)and µ஺෨ ܣ
µ஺෨(ݔ) ∈ [0,1] for all ݔ ∈  .ܣ
Definition 2. The ߙ-cut of the fuzzy set ܣሚ of ܺ is given 
by ܣఈ = :ݔ} µ஺෨(ݔ) ≥ ,ߙ ݔ ∈ ߙ,ܺ ∈ [0,1]}. By definition  
the ߙ-cut is a crisp set. This is also called the interval of 
confidence, ߙ-level set etc. 
Definition 3. The fuzzy number is a fuzzy set given by 
ܴ:ܨ → [0,1] which satisfies the following properties: 
 (i) ܨ is upper semi-continuous; 
 (ii) (ݔ)ܨ = 0 for ݔ < ݔ and ߛ >   ;ߜ,ߛ for some ߜ
 (iii) There exist two real numbers ߚ,ߙ  such that ߛ ≤ ߙ ≤
ߚ          ≤  :such that ߜ
             (a) (ݔ)ܨ is monotonic increasing on [ߙ,ߛ]; 
             (b) (ݔ)ܨ is monotonic decreasing on [ߜ,ߚ]; 
             (c) (ݔ)ܨ = 1 for ߙ ≤ ݔ ≤  .ߚ
Definition 4. In parametric form a fuzzy number (ݔ)ܨ  is 
given by the pair (ܨଵ,ܨଶ)  of functions ܨଵ(ݎ),ܨଶ(ݎ), 0 ≤
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Table 1. Major contribution on FDE in inventory management problems. 

Refs. Model 
type 

Demand 
rate 

Production 
rate Deterioration Solution 

approach 

Das et al.  
[56] 

 
Bi- level 

EOQ 

Time dependent fuzzy 
L-R type --  

Yes 

Fast and Elitist Multi-Objective 
Genetic Algorithm (MOGA) and 
Interactive fuzzy decision 
making 

Guchhait et al. 
[57] 
 

 
EPQ 

Time and selling price 
dependent fuzzy TFN 

Fixed fuzzy 
TFN 

 
-- 

Interval Compared Genetic 
Algorithm 

Mondal et al. 
[58] 

 
EPQ 

 
 

 
Displayed inventory 
dependent 

 
Fixed fuzzy 
 

 
-- 
 
 

Modified Graded Mean 
Integration Value (MGMIV) and 
Fuzzy Preference Ordering of 
Interval (FPOI) 
  

Majumder et 
al.  [59] EPQ Decreasing function 

of time Fuzzy constant Yes 
Generalized Hukuhara 
derivative approach 
  

Mondal  
[60] EOQ Fuzzy constant -- -- 

Fuzzy Differential and Interval 
Differential approach 
  

Debnath et al. 
[61] SFEPQ 

Stock and Production 
Price dependent type-
2 fuzzy number 

Linearly 
dependent on 
demand 

-- Generalized Hukuhara 
derivative approach 

Rahaman et al. 
[62] 

Fractional 
EPQ Fuzzy constant Fuzzy constant Yes 

Riemann-Liouville fractional 
differential equation under fuzzy 
uncertainty 
  

This paper EPQ Stock and price 
dependent Stock dependent Yes Generalized Hukuhara 

derivative approach 
 
ݎ ≤ 1, where the functions ܨଵ(ݎ) and ܨଶ(ݎ) satisfying the 
following conditions: 
 is a bounded, monotonic increasing and left (ݎ)ଵܨ .1

continuous function; 
 is a bounded, monotonic decreasing and right (ݎ)ଶܨ .2

continuous function; 
(ݎ)ଵܨ .3 ≤ ଶ݂(ݎ);  0 ≤ ݎ ≤ 1. 
Obviously, a crisp number, say ݔ  as particular case of the 
fuzzy number can be written in parametric form as ݔ =
  .(ݔ,ݔ)
Properties of the fuzzy numbers 
Let ߞ = ൫ߞଵ(ݎ), ߟ ൯ and(ݎ)ଶߞ = ൫ߟଵ(ݎ),ߟଶ(ݎ)൯ be two fuzzy 
numbers. Then, the arithmetic operations are given as 
follows: 

I. ߞ = (ݎ)ଵߞ  if   ߟ = (ݎ)ଶߞ  and  (ݎ)ଵߟ =   ,(ݎ)ଶߟ
II. ߞ + ߟ = ൫ߞଵ(ݎ) + ,(ݎ)ଵߟ (ݎ)ଶߞ +   ,൯(ݎ)ଶߟ

III. ߞ − ߟ = ൫ߞଵ(ݎ)− ,(ݎ)ଵߟ −(ݎ)ଶߞ   ,൯(ݎ)ଶߟ
IV. ߞߢ = ൫ߞߢଵ(ݎ),ߞߢଶ(ݎ)൯   for ݇ > 0,  and 

ߞߢ   = ൫ߞߢଶ(ݎ),ߞߢଵ(ݎ)൯   for ݇ < 0. 
Definition 5. Let ߠ,߶  be two fuzzy numbers. If there exists 
a fuzzy number ߰ such that ߠ = ߶ + ߰, then ߰ is called the 
Hukuhara difference of two fuzzy numbers ߠ  and ߶ and 
symbolically this is denoted by ߰ =  Here, one .߶߆ߠ
important thing to remember is that: 
߶߆ߠ ≠ ߠ + (−1)߶. 

Definition 6. Let ߠ  and ߶ be two fuzzy numbers. Then, the 
gH difference of these two fuzzy numbers is given as 
follows:  

߶௚߆ߠ = ߰ ⇔ ൜
ߠ (݅) = ߶⊕߰,               
or  (݅݅) ߶ = ߠ ⊕ (−)߰.  

Then: 
߰௅(ߙ) = min{ߠ௅(ߙ)−߶௅(ߙ),ߠோ(ߙ)−߶ோ(ߙ)},  

and 
 ߰ோ(ߙ) = max{ߠ௅(ߙ)− ߶௅(ߙ),ߠோ(ߙ) −߶ோ(ߙ)},  

where in the parametric form, a fuzzy valued function ݂  on 
[ܽ,ܾ] is expressed by:   

ఈ[(ݐ)݂] = [ ௅݂(ߙ,ݐ), ோ݂(ߙ,ݐ)], ݐ ∈ ߙ,[ܾ,ܽ] ∈ [0,1].  

Definition 7. Let ݂ be a fuzzy value function defined on 
(ܽ,ܾ). Then the gH derivative of the function ݂ at ݐ଴ is 
defined as: 

݂ᇱ(ݐ଴) = ݈݅݉
௛→଴

௙(௧బା௛)௵௚ ௙(௧బ)
௛

 . 

Now, there are two different types of gH derivative. 
Suppose in the parametric form, a fuzzy valued function ݂ 
on [ܽ,ܾ] is expressed by:   
ఈ[(ݐ)݂] = [ ௅݂(ߙ,ݐ), ோ݂(ߙ,ݐ)], ݐ ∈ ߙ,[ܾ,ܽ] ∈ [0,1]. Then: 
(1) If [݂ᇱ(ݐ଴)]ఈ = [ ௅݂

ᇱ(ݐ଴,ߙ), ோ݂
ᇱ(ݐ଴,ߙ)], then ݂(ݐ) is (i)-gH 

(L-R) differentiable at ݐ଴; 
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(2) If [݂ᇱ(ݐ଴)]ఈ = [ ோ݂
ᇱ(ݐ଴,ߙ), ௅݂

ᇱ(ݐ଴,ߙ)], then ݂(ݐ) is (ii)-  

gH(R-L) differentiable at ݐ଴. 

3.2. Solution of the differential equations using the 
Lagrange’s multiplier method 

Let, the homogeneous differential equations of first order 
are given by:   
ௗ௫
ௗ௧

= ܽଵݔ + ܾଵݕ
ௗ௬
ௗ௧

= ܽଶݔ + ܾଶݕ
ቑ.                             (1) 

After adjusting with ߣ, Eq. (1) gives: 
ݔ)݀ + (ݕߣ

ݐ݀ = (ܽଵ + ݔ(ଶܽߣ + (ܾଵ +  ݕ(ଶܾߣ

             = (ܽଵ + (ଶܽߣ ቀݔ + ௕భାఒ௕మ
௔భାఒ௔మ

 ቁ.                             (2)ݕ
Choose the number ߣ so that:  
௕భାఒ௕మ
௔భାఒ௔మ

=  (3)                                                                  ,ߣ
which gives two roots, say  ߣଵ and  ߣଶ. 
Then, Eq. (2) reduces to an equation linear in ݔ +  : ݕߣ
ௗ(௫ାఒ௬)

ௗ௧
= (ܽଵ + ݔ)(ଶܽߣ +   .(ݕߣ

That gives: 
ݔ  + ݕߣ =  ℯ(௔భାఒ௔మ)௧.                                   (4)ܥ
So, for two distinct roots ߣଵ and ߣଶ of Eq. (3), Eq. (4) gives 
a system of simultaneous equations: 

ቊݔ + ݕଵߣ = ℯ(௔భାఒభ௔మ)௧ܥ

ݔ + ݕଶߣ =  ℯ(௔భାఒమ௔మ)௧                                                 (5)ܥ

which gives value of ݔ and ݕ, that is the solution of the 
system of the ODE. 
 
3.3. Solution of the differential equations using the 

Lagrange’s multiplier method 
Here we do slight modification of the above theory. Let the 
system of differential equations is given by:  
ௗ௫
ௗ௧

= ܽଵݔ + ܾଵݕ+ ܿଵ
ௗ௬
ௗ௧

= ܽଶݔ + ܾଶݕ+ ܿଶ
ቑ.                                              (6) 

Now, as per Eq. (3) and approach of Eq. (2) we write:  
ௗ(௫ାఒ௬)

ௗ௧
= (ܽଵ + ݔ(ଶܽߣ + (ܾଵ + +ݕ(ଶܾߣ (ܿଵ +   .(ଶܿߣ

On simplification and taking ߣ =  :ଶ, we obtainߣ,ଵߣ

ݔ + ݕଵߣ + ௖భାఒభ௖మ
௔భାఒభ௔మ

=   ,ℯ(௔భାఒభ௔మ)௧ܥ

ݔ + ݕଶߣ + ௖భାఒమ௖మ
௔భାఒమ௔మ

=  ℯ(௔భାఒమ௔మ)௧,                     (7)ܥ
which gives value of ݔ and ݕ that is the solution of the 
system of the ODE. 

3.4. New defuzzification formula 

Let a fuzzy multi-objective problem having lower objective 
functions { ଵ݂ , ଶ݂, … , ௡݂} and that of upper objective 
functions {݃ଵ,݃ଶ, … ,݃௡}  obtained from fuzzification of a 
crisp problem. Also let the individual optimal values of the 
above objective functions at m aspiration level are   
{ ଵ݂

∗, ଶ݂
∗, … , ௡݂

∗} and {݃ଵ∗,݃ଶ∗ , … ,݃௡∗ } with crisp optimal ଴݂ , 
where, 

ଵ݂
∗ = { ଵ݂ଵ

∗ , ଵ݂ଶ
∗ , … , ଵ݂௠

∗ }, ଶ݂
∗ = { ଶ݂ଵ

∗ , ଶ݂ଶ
∗ , … , ଶ݂௠

∗ }, … , ௡݂
∗ 

      = { ௡݂ଵ
∗ , ௡݂ଶ

∗ , … , ௡݂௠
∗ },   

and 
݃ଵ∗ = {݃ଵଵ∗ ,݃ଵଶ∗ , … ,݃ଵ௠∗ },݃ଶ∗ = {݃ଶଵ∗ ,݃ଶଶ∗ , … ,݃ଶ௠∗ }, … ,݃௡∗  

      = {݃௡ଵ∗ ,݃௡ଶ∗ , … ,݃௡௠∗ }. 
 
respectively. Now, the individual aggregated value of the 
lower fuzzy objective functions can be defined as:  

ሜ݈ =
∑ ௜ߙ ⊗ ௝݂௜
௠
௜ୀଵ
∑ ௝݂௜
௠
௜ୀଵ

,                   ݆ = 1.2, … , ݊, 

Similarly, the individual aggregated value of the lower 
fuzzy objective functions can be defined as: 

ݎ̄ =
∑ ௜ߙ ⊗݃௝௜௠
௜ୀଵ
∑ ݃௝௜௠
௜ୀଵ

,            ݆ = 1,2, … , ݊. 

Therefore, the relative change in optimal values is ௥̄ି௟
ሜ

௙బ
 .  

Noting that for increasing objective function ̄ݎ > ሜ݈ and that 
of decreasing function ̄ݎ < ሜ݈. Hence, the aggregation 
formulas for fuzzy multi-objective functions defined by ሜ݂ 
are:  

a) If it is maximization function then: 

ሜ݂ = ቐ
଴݂ + ௥̄ି௟ሜ

௙బ
,   when   ̄ݎ > ሜ݈

଴݂ −
௥̄ି௟ሜ

௙బ
, when   ̄ݎ < ሜ݈

  

b) If it is minimization function then: 

ሜ݂ = ቐ
଴݂ −

௥̄ି௟ሜ

௙బ
,   when   ̄ݎ > ሜ݈

଴݂ + ௥̄ି௟ሜ

௙బ
,   when   ̄ݎ < ሜ݈

  

4. Notations and assumptions 

To describe our proposed model, we use the following 
notation and assumptions. 

4.1. Notations  
ܿ௛: Holding cost per unit product ($) 
ܿ଴:  Set up cost per cycle ($) 
ܿ௣: Production cost per unit product ($) 
 ($) Selling price per unit product :݌
 Production rate (Units) per month :ܭ
 Annual demand (Units)  :ܦ

ܶ: Total cycle time (months) (dependent decision variable) 

 ଵ: Production time (months) (independent decisionݐ
variable) 

ܳ: Highest inventory level (Units) (dependent decision 
variable) 

,ଵ: Rate of deterioration in [0ߠ   [ଵݐ

  [ܶ,ଵݐ] ଶ: Rate of deterioration inߠ

 Total Average Profit ($/Cycle)  :ܲܣܶ

4.2. Assumptions  
The following assumptions have been considered to 
develop the proposed model: 
a) The production rate depends on the stock or on hand 

inventory. Generally, the rate of the production (ܭ) 
follows a decreasing function, ܭ (ݐ)ݍ = ݉−   ,(ݐ)ݍ݊
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Figure 1. Visualization of the proposed model. 

where ݉,݊ are positive constants and (ݐ)ݍ is the on-
hand inventory or stock; 

b) Demand of the produced items depends on price and 
stock. When selling price is low then the demand 
increases. Also, presence of the lot of stock makes 
increasing demand, so, ܦ = ܽ − ݌ܾ +  where ,(ݐ)ݍܿ
ܽ, ܾ, ܿ  are positive constants and݌, is the unit selling 
price of the product; 

c) No shortage is allowed; 

d) Both the replenishment rate and lot size are finite; 

e) The time horizon is infinite; 

f) Deterioration rate is constant and it is  ߠଵ, when ݐ ∈
[0, ݐ ଶ, whenߠ ଵ] andݐ ∈  ;[ܶ,ଵݐ]

g) Lead time is zero. 

5. Formulation of crisp EPQ model 
Let, a manufacturing farm starts with the production rate ܭ.  
At the same time the system is meeting up the demand rate 
ݐ ଵ. At timeߠ and facing a deterioration rate ܦ =  ଵ, theݐ
farm stops the production after reaching the sufficient stock 
of the product. Then, the stock gradually decreases meeting 
up the demand of the customers and deterioration rate ߠଶ 
during the interval [ݐଵ,ܶ]. Figure 1 describes the production 
model graphically. 
 
5.1. Crisp EPQ model 
The governing differential equations of the production-
consumption process are given below: 
 
ௗ௤(௧)
ௗ௧

+ (ݐ)ݍଵߠ = ݉          
−(ݐ)ݍ݊−       {ܽ − ݌ܾ + for  0   ,{(ݐ)ݍܿ ≤ ݐ ≤  ଵ,          (8)ݐ
ௗ௤(௧)
ௗ௧

+ (ݐ)ݍଶߠ =  
      −{ܽ − ݌ܾ + ଵݐ  for             ,{(ݐ)ݍܿ ≤ ݐ ≤ ܶ.               (9) 
The initial, intermediate and terminating information about 
stock level are given by: 
(0)ݍ} = (ଵݐ)ݍ,0 = (ܶ)ݍ,ܳ = 0.                    (10) 
Solving Eqs. (8) and (9) and using Eq. (10), the stock levels 
at productive and non-productive phases are obtained as: 
(ݐ)ݍ = ௠ି(௔ି௕௣)൫ଵିℯషೖభ೟൯

௞భ
,                   0 ≤ ݐ ≤  ଵ,            (11)ݐ

and 
(ݐ)ݍ = (௔ି௕௣)

௞మ
൛ℯ௞మ(்ି௧) − 1ൟ,              ݐଵ ≤ ݐ ≤ ܶ.           (12) 

Also, the maximum level of stock at the end of the 
productive phase is obtained as: 

ܳ = ௠ି(௔ି௕௣)
௞భ

{1 − ℯି௞భ௧భ}.                                   (13) 

The values of ݇ଵ and ݇ଶ are given by: 
 
൜݇ଵ = ଵߠ + ݊ + ܿ,   
݇ଶ = ଶߠ + ܿ.                                                    (14) 

Also, using the continuity conditions given in Eqs. (11) and 
(12), the relationship between the independent variable and 
dependent variable is established as: 

ܶ = ଵݐ + ଵ
௞మ
݈݊ ቂ1 + ቄ௞మ(௠ି௔ା௕௣)

௞భ(௔ି௕௣)
ቅ (1 − ݁ି௞భ௧భ)ቃ.            (15) 

The total holding cost in the time interval [0,ܶ] is given by  
ܥܪ = ܿ௛ ቂ∫ ௧భݐ݀(ݐ)ݍ

଴ + ∫ ்ݐ݀(ݐ)ݍ
௧భ

ቃ  

       = ܿ௛ ቎

௠ି(௔ି௕௣)
௞భమ

{ℯି௞భ௧భ + ݇ଵݐଵ − 1}

+ (௔ି௕௣)
௞మమ

൛ℯ௞మ(்ି௧భ) − ݇ଶ(ܶ − −(ଵݐ 1ൟ
቏.        (16) 

The Sales Revenue (SR) during the entire circle is given by: 

ܴܵ = ݌

⎣
⎢
⎢
⎢
⎡න {ܽ − +݌ܾ ݐ݀{(ݐ)ݍܿ

௧భ

଴

+න {ܽ − +݌ܾ ݐ݀{(ݐ)ݍܿ
்

௧భ ⎦
⎥
⎥
⎥
⎤
 

       = ܽ)݌ − ܶ(݌ܾ + ݌ܿ ு஼
௖೓

.                   (17) 

The production cost during whole cycle is given by: 

ܥܲ = ܿ௣ ∫ {݉− ௧భݐ݀{(ݐ)ݍ݊
଴   

       = ܿ௣݉ݐଵ −
௠ି(௔ି௕௣)

௞భ
ܿ௣݊ ቄݐଵ + ൫ℯషೖభ೟భିଵ൯

௞భ
ቅ.   (18) 

Therefore, the average profit of the production system 
during the entire circle is given by: 

ܲܣܶ = ௌோି௖బିு஼ି௉஼
்

.                                                      (19) 

So, the optimization problem is given by: 

⎩
⎪
⎨

⎪
⎧ Maximize                 ܶܲܣ = ௌோି஼బିு஼ି௉஼

்
,            

Subject to                 ܳ = ௠ି(௔ି௕௣)
௞భ

{1 − ℯି௞భ௧భ},

ܶ = ଵݐ + ଵ
௞మ
݈݊ ቂ1 + ቄ௞మ(௠ି௔ା௕௣)

௞భ(௔ି௕௣)
ቅ (1− ݁ି௞భ௧భ)ቃ .

       (20) 

5.2. Fuzzy EPQ model 
Assuming the entire cost coefficients, deterioration rate and 
unit selling price as fuzzy numbers, the governing 
differential equation of the model can be put as follows: 

ௗ௤෤(௧)
ௗ௧

+ (ݐ)෤ݍ෨ଵߠ = {݉−    {(ݐ)෤ݍ݊

           − {ܽ − ෤݌ܾ + 0        ,{(ݐ)෤ݍܿ ≤ ݐ ≤  ଵ,                 (21)ݐ

ௗ௤෤(௧)
ௗ௧

+ (ݐ)෤ݍ෨ଶߠ = −{ܽ − ෤݌ܾ + ଵݐ    ,{(ݐ)෤ݍܿ ≤ ݐ ≤ ܶ.   (22) 

Also, the fuzzy valued stock level at the starting and 
stopping time are given by:  

෤(0)ݍ = (ܶ)෤ݍ = 0.                                         (23) 

Suppose the parametric representation of fuzzy valued  
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stock, deterioration rate and selling price are given as: 

⎩
⎪
⎨

⎪
(ݐ)෤ݍ⎧ =      ,[(ߙ,ݐ)ோݍ,(ߙ,ݐ)௅ݍ]
෨ଵߠ =             ,[(ߙ)ଵோߠ,(ߙ)ଵ௅ߠ]
෨ଶߠ = ,(ߙ)ଶ௅ߠ]             ,[(ߙ)ଶோߠ
෤݌ =                 .[(ߙ)ோ݌,(ߙ)௅݌]

                               (24) 

Here, the notion of gH derivative is applied to solve Eqs. 
(21) and (22) under two different cases of gH 
differentiability of the fuzzy valued function ݍ෤(ݐ) as 
follows: 

Case 1. when ݍ෤(ݐ) is (i)-gH(L-R) differentiable. 
Then, the FDE given by Eq. (21) is turned into a system of 
differential equations as bellow: 

⎩
⎪
⎨

⎪
௅ݍ⎧

ᇱ (ߙ,ݐ) + (ߙ,ݐ)௅ݍ(ߙ)ଵ௅ߠ =                       
݉− (ߙ,ݐ)ோݍ݊ − ܽ + −(ߙ)௅݌ܾ (ߙ,ݐ)ோݍܿ
ோᇱݍ (ߙ,ݐ) + (ߙ,ݐ)ோݍ(ߙ)ଵோߠ =                      
݉− (ߙ,ݐ)௅ݍ݊ − ܽ + (ߙ)ோ݌ܾ − (ߙ,ݐ)௅ݍܿ
with ݍ௅(0,ߙ) = (ߙ,0)ோݍ = 0                     

                  (25) 

Similarly, from Eq. (22) we get: 

ቐ
௅ᇱݍ (ߙ,ݐ) + (ߙ,ݐ)௅ݍ(ߙ)ଶ௅ߠ = −ܽ + −(ߙ)௅݌ܾ ,(ߙ,ݐ)ோݍܿ
ோᇱݍ (ߙ,ݐ) + (ߙ,ݐ)ோݍ(ߙ)ଶோߠ = −ܽ + −(ߙ)ோ݌ܾ (ߙ,ݐ)௅ݍܿ

with    ݍ௅(ܶ,ߙ) = (ߙ,ܶ)ோݍ = 0.
,     (26) 

In Eqs. (25) and (26) and the rest of the paper, ݍ௅ᇱ  and  (ߙ,ݐ)
ோᇱݍ  and (ߙ,ݐ)௅ݍ represents the first derivative of (ߙ,ݐ)
௅ᇱݍ ,.i.e ݐ respectively with respect to (ߙ,ݐ)ோݍ (ߙ,ݐ) ≡
ௗ൫௤ಽ(௧,ఈ)൯

ௗ௧
 and ݍோᇱ (ߙ,ݐ) ≡ ௗ൫௤ೃ(௧,ఈ)൯

ௗ௧
. After simplification, the 

Eq. (25) is reduced as: 

ቐ
௅ᇱݍ (ߙ,ݐ) = −ܽଵݍ௅(ߙ,ݐ) − ܾଵݍோ(ߙ,ݐ) + ܿଵ,
ோᇱݍ (ߙ,ݐ) = −ܽଶݍ௅(ߙ,ݐ)− ܾଶݍோ(ߙ,ݐ) + ܿଶ,

with ݍ௅(0,ߙ) = (ߙ,0)ோݍ = 0.
                 (27) 

The values of ܽଵ, ܽଶ,ܾଵ,ܾଶ,ܿଵ, ܿଶ are given by:  

⎩
⎨

⎧ܽଵ = ,(ߙ)ଵ௅ߠ ܾଵ = ݊ + ܿ,
ܿଵ = ݉− ܽ + ,(ߙ)௅݌ܾ
ܽଶ = ݊ + ܿ, ܾଶ = ,(ߙ)ଵோߠ
ܿଶ = ݉− ܽ + .(ߙ)ோ݌ܾ

                                            (28) 

The system of differential equations given by Eq. (27) is solved 
using Lagrange’s multiplier method in the following way: 

݀൫ݍ௅(ߙ,ݐ) + ൯(ߙ,ݐ)ோݍߣ
ݐ݀ = 

−(ܽଵ + −(ߙ,ݐ)௅ݍ(ଶܽߣ (ܾଵ + (ߙ,ݐ)ோݍ(ଶܾߣ + (ܿଵ +  ,(ଶܿߣ

i.e., 

 
ௗ൫௤ಽ(௧,ఈ)ାఒ௤ೃ(௧,ఈ)൯

ௗ௧
= 

        −(ܽଵ + (ଶܽߣ ൝
(ߙ,ݐ)௅ݍ +
(௕భାఒ௕మ)
(௔భାఒ௔మ) (ߙ,ݐ)ோݍ − (௖భାఒ௖మ)

(௔భାఒ௔మ)
ൡ.            (29) 

Then, we choose a constant ߣ such that: 

(௕భାఒ௕మ)
(௔భାఒ௔మ) =  (30)                                                              .ߣ

Using Eq. (30), Eq. (29) is reduced as:  

ௗ௭(௧)
ௗ௧

= −(ܽଵ +  (31)                                               .(ݐ)ݖ(ଶܽߣ

For simplification (ݐ)ݖ is assumed as:  

(ݐ)ݖ = (ߙ,ݐ)௅ݍ + −(ߙ,ݐ)ோݍߣ (௖భାఒ௖మ)
(௔భାఒ௔మ) .                    (32) 

Therefore, solving Eq. (31) and putting the value of (ݐ)ݖ  
from Eq. (32), the result is obtained as: 

(ߙ,ݐ)௅ݍ + (ߙ,ݐ)ோݍߣ − (௖భାఒ௖మ)
(௔భାఒ௔మ) =  ℯି(௔భାఒ௔మ)௧.           (33)ܣ

In Eq. (33), ܣ is a constant of integration which has to be 
determined using the initial conditions. Using the initial 
conditions, Eq. (33) is reduced to: 

(ߙ,ݐ)௅ݍ + (ߙ,ݐ)ோݍߣ = (௖భାఒ௖మ)
(௔భାఒ௔మ)

൛1− ℯି(௔భାఒ௔మ)௧ൟ.       (34) 

Also, the relation described by Eq. (30) is actually a 
quadratic equation having two roots, say, ߣଵ and ߣଶ. For 
different values of ߣଵ and ߣଶ, Eq. (34) is again turned into a 
system of simultaneous equations: 

ቐ
(ߙ,ݐ)௅ݍ + (ߙ,ݐ)ோݍଵߣ = (௖భାఒభ௖మ)

(௔భାఒభ௔మ)
൛1 − ℯି(௔భାఒభ௔మ)௧ൟ.

(ߙ,ݐ)௅ݍ + (ߙ,ݐ)ோݍଶߣ = (௖భାఒమ௖మ)
(௔భାఒమ௔మ)

൛1− ℯି(௔భାఒమ௔మ)௧ൟ,
  

So, 

൜ݍ௅(ߙ,ݐ) + (ߙ,ݐ)ோݍଵߣ = −ଵ(1ܣ ݁ି஻భ௧).
(ߙ,ݐ)௅ݍ + (ߙ,ݐ)ோݍଶߣ = −ଶ(1ܣ ݁ି஻మ௧),                   (35) 

The values of the constants ܣଵ,ܣଶ,ܤଵ and ܤଶ are given by: 

ቐ
ଵܣ = (௖భାఒభ௖మ)

(௔భାఒభ௔మ) ଵܤ   , = ܽଵ + .ଵܽଶߣ

ଶܣ = (௖భାఒమ௖మ)
(௔భାఒమ௔మ),   ܤଶ = ܽଵ + ,ଶܽଶߣ

                           (36) 

The solution of the system of simultaneous equation given 
by Eq. (35) is obtained as follows: 

Eq. (35) is obtained as follows: 

⎩
⎪
⎨

⎪
(ߙ,ݐ)ଵ௅ݍ⎧ = ஺భఒమ൫ଵି௘షಳభ೟൯ି஺మఒభ൫ଵି௘షಳమ೟൯

ఒమିఒభ
.

(ߙ,ݐ)ଵோݍ = ஺భ൫ଵି௘షಳభ೟൯ା஺మ൫௘షಳమ೟ିଵ൯
ఒభିఒమ

.     
0 ≤ ݐ ≤ ଵݐ ,

                 (37) 

On the other hand, the system of differential equations 
described by Eq. (26) can be simplified as:  

⎩
⎪
⎨

⎪
⎧
௅ᇱݍ (ߙ,ݐ) = − ଵ݂ݍ௅(ߙ,ݐ) − ଵ݃ݍோ(ݐ, (ߙ − ℎଵ .     
ோᇱݍ (ߙ,ݐ) = − ଶ݂ݍ௅(ߙ,ݐ) − ݃ଶݍோ(ߙ,ݐ) − ℎଶ.     
,ܶ)௅ݍ (ߙ = (ߙ,ܶ)ோݍ = 0.                                     

where ଵ݂ = ଵ݃  .(ߙ)ଶ௅ߠ = ܿ.  ℎଵ = ܽ − .(ߙ)௅݌ܾ
ଶ݂ = ܿ, ݃ଶ = ℎଶ  .(ߙ)ଶோߠ = ܽ −        ,(ߙ)ோ݌ܾ

                           (38) 
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The system of differential equations described in Eq. (39) 
can be written as: 

(ߙ,ݐ)௅ݍ + (ߙ,ݐ)ோݍߤ = (௛భାఓ௛మ)
(௙భାఓ௙మ)

൛ℯ(௙భାఓ௙మ)(்ି௧) − 1ൟ.     (39) 

The constant ߤ is chosen in such a manner that the 
following relationship holds: 

ߤ = ௚భାఓ௚మ
௙భାఓ௙మ

.                                                                     (40) 

The above relationship is actually a quadratic equation 
which produces two roots, say, ߤଵ and ߤଶ.Then, proceeding 
as the productive phase, a system of simultaneous equations 
is obtained as: 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
(ߙ,ݐ)ଶ௅ݍ⎧ = ஺యఓమ൫௘ಳయ(೅ష೟)ିଵ൯ି஺రఓభ൫௘ಳర(೅ష೟)ିଵ൯

ఓమିఓభ
.   

(ߙ,ݐ)ଶோݍ = ஺య൫௘ಳయ(೅ష೟)ିଵ൯ି஺ర൫௘ಳర(೅ష೟)ିଵ൯
ఓభିఓమ

.          

 
where   ܣଷ = (௛భାఓభ௛మ)

(௙భାఓభ௙మ) ଷܤ  . = ଵ݂ + ଵߤ ଶ݂ .         

ସܣ = (௛భାఓమ௛మ)
(௙భାఓమ௙మ) ସܤ   . = ଵ݂ + ଶߤ ଶ݂.                       

ଵݐ ≤ ݐ ≤ ܶ,

            (41) 

Several relevant costs and revenue associated with the 
model are computed in parametric representation as 
follows: 
(i) The set-up cost ܿ଴ = [ܿ଴௅(ߙ), ܿ଴ோ(ߙ)].  

(ii) ܿ̃௛ = [ܿ௛௅(ߙ), ܿ௛ோ(ߙ)] = Unit holding cost per unit 
product. 

Therefore, the holding cost =  :given by  [(ߙ)ோܥܪ,(ߙ)௅ܥܪ]

(ߙ)௅ܥܪ = ܿ௛௅ ቂ∫ ௧భݐ݀(ߙ,ݐ)ଵ௅ݍ
଴ + ∫ ்ݐ݀(ߙ,ݐ)ଶ௅ݍ

௧భ
ቃ  

            = ܿ௛௅ ൦
∫ ቄ஺భఒమ൫ଵି௘

షಳభ೟൯ି஺మఒభ൫ଵି௘షಳమ೟൯
ఒమିఒభ

ቅ݀ݐ௧భ
଴ +

∫ ൜஺యఓమ൫௘
ಳయ(೅ష೟)ିଵ൯ି஺రఓభ൫௘ಳర(೅ష೟)ିଵ൯

ఓమିఓభ
ൠ ்ݐ݀

௧భ

൪ 

            = ܿ௛௅{ܫଵ +  ଶ},                                                       (42)ܫ
In Eq. (42), the values of ܫଵ and ܫଶ are assumed as: 

⎩
⎪
⎨

⎪
⎧ ଵܫ =

ಲభഊమ
ಳభ

൫௘ష೟భಳభା஻భ௧భିଵ൯ି
ಲమഊభ
ಳమ

൫௘ష೟భಳమା஻మ௧భିଵ൯

ఒమିఒభ
,             

ଶܫ =
ಲయഋమ
ಳయ

൫௘(೅ష೟భ)ಳయା(௧భି்)஻యିଵ൯ି
ಲరഋభ
ಳర

൫௘(೅ష೟భ)ಳరା(௧భି்)஻రିଵ൯

ఓమିఓభ
,
      (43) 

(ߙ)ோܥܪ = ܿ௛ோ ቂ∫ ௧భݐ݀(ߙ,ݐ)ଵோݍ
଴ + ∫ ்ݐ݀(ߙ,ݐ)ଶோݍ

௧భ
ቃ  

                = ܿ௛ோ ൦
∫ ቄ஺భ൫ଵି௘

షಳభ೟൯ା஺మ൫௘షಳమ೟ିଵ൯
ఒభିఒమ

ቅ݀ݐ௧భ
଴

+∫ ൜஺య൫௘
ಳయ(೅ష೟)ିଵ൯ି஺ర൫௘ಳర(೅ష೟)ିଵ൯

ఓభିఓమ
ൠ ்ݐ݀

௧భ

൪  

                = ܿ௛ோ{ܬଵ +  ଶ}.                   (44)ܬ
In Eq. (44), the values of ܬଵ and ܬଶ are assumed as: 

⎩
⎨

⎧ ଵܬ =
ಲభ
ಳభ
൫஻భ௧భା௘ష೟భಳభିଵ൯ି

ಲమ
ಳమ
൫஻మ௧భା௘ష೟భಳమିଵ൯

ఒభିఒమ
.                         

ଶܬ =
ಲయ
ಳయ
൫௘(೅ష೟భ)ಳయି஻య(்ି௧భ)ିଵ൯ିಲరಳర൫௘

(೅ష೟భ)ಳరି஻ర(்ି௧భ)ିଵ൯

ఓభିఓమ
,     

   (45) 

 
(iii) The ݌෤ = [(ߙ)ோ݌,(ߙ)௅݌] = The SR per unit product. 

Therefore, total SR, ܴܵ = [ܴܵ௅(ߙ), ܴܵோ(ߙ)]  during the 
entire cycle is given by: 

ܴܵ௅(ߙ) 

           = (ߙ)௅݌

⎣
⎢
⎢
⎢
⎡න {ܽ − (ߙ)ோ݌ܾ + ݐ݀{(ߙ,ݐ)ଵ௅ݍܿ

௧భ

଴

+න {ܽ − (ߙ)ோ݌ܾ + ݐ݀{(ߙ,ݐ)ଶ௅ݍܿ
்

௧భ ⎦
⎥
⎥
⎥
⎤
 

           = ܽ}](ߙ)௅݌ − ܶ{(ߙ)ோ݌ܾ + ଵܫ}ܿ +  ଶ}].                (46)ܫ

and 
ܴܵோ(ߙ) 

           = (ߙ)ோ݌ ൥
∫ {ܽ − (ߙ)௅݌ܾ + ௧భݐ݀{(ߙ,ݐ)ଵோݍܿ
଴

+∫ {ܽ − (ߙ)௅݌ܾ + ்ݐ݀{(ߙ,ݐ)ଶோݍܿ
௧భ

൩  

           = ܽ}](ߙ)ோ݌ − ܶ{(ߙ)௅݌ܾ + ଵܬ}ܿ +  ଶ}],               (47)ܬ
 
(iv) ܿ̃௣ = ൣܿ௣௅(ߙ), ܿ௣ோ(ߙ)൧ = The unit production cost per 

unit product. 

Therefore, total production cost ܲܥ =  ோܥܲ,(ߙ)௅ܥܲ]
 :during the entire cycle is given by [(ߙ)
(ߙ)௅ܥܲ = ܿ௣௅ ቂ∫ {݉− ௧భݐ݀{(ߙ,ݐ)ଵோݍ݊

଴ ቃ         
               = ܿ௣௅[݉ݐଵ −  ଵ],                                           (48)ܬ݊

and  

(ߙ)ோܥܲ = ܿ௣ோ ቂ∫ {݉− ௧భݐ݀{(ߙ,ݐ)ଵ௅ݍ݊
଴ ቃ       

              = ܿ௣ோ[݉ݐଵ −  ଵ],                                            (49)ܫ݊

The total average profit, ܶܲܣ = ܣܶ] ଵܲ௅(ߙ),ܶܣ ଵܲோ(ߙ)] 
during the entire cycle is given by:  
 

⎩
⎪
⎨

⎪
ܣܶ⎧ ଵܲ௅(ߙ)

= ൫ௌோಽ(ఈ)ି௉஼ೃ(ఈ)ିு஼ೃ(ఈ)ି௖బೃ(ఈ)൯
்

.
ܣܶ ଵܲோ(ߙ)

= ൫ௌோೃ(ఈ)ି௉஼ಽ(ఈ)ିு஼ಽ(ఈ)ି௖బಽ(ఈ)൯
்

,

                                 (50) 

Therefore, mathematically the optimization problem can be 
written in form: 

൞

Maximize                        ܶܣ ଵܲ௅(ߙ),
Maximize                        ܶܣ ଵܲோ(ߙ),
Subject to   (15), (37)  and  (41),

0 ≤ ߙ ≤ 1.

                              (51) 

Case 2. when ݍ෤(ݐ) is (ii)-gH(R-L) differentiable. 
Then, the FDE given by Eq. (21) is transformed into a 
system of differential equation as following: 
 

⎩
⎪
⎨

⎪
ோݍ⎧

ᇱ (ߙ,ݐ) + (ߙ,ݐ)௅ݍ(ߙ)ଵ௅ߠ
= ݉− (ߙ,ݐ)ோݍ݊ − ܽ + (ߙ)௅݌ܾ − .(ߙ,ݐ)ோݍܿ
௅ᇱݍ (ߙ,ݐ) + (ߙ,ݐ)ோݍ(ߙ)ଵோߠ
= ݉− (ߙ,ݐ)௅ݍ݊ − ܽ + −(ߙ)ோ݌ܾ .(ߙ,ݐ)௅ݍܿ
(ߙ,0)௅ݍ = (ߙ,0)ோݍ = 0,                                  

                 (52) 

On the other hand, the FDE given by Eq. (22) is 
transformed into a system of differential equation as 
following: 

ቐ
ோᇱݍ (ߙ,ݐ) + (ߙ,ݐ)௅ݍ(ߙ)ଶ௅ߠ = −ܽ + −(ߙ)௅݌ܾ .(ߙ,ݐ)ோݍܿ
௅ᇱݍ (ߙ,ݐ) + (ߙ,ݐ)ோݍ(ߙ)ଶோߠ = −ܽ + −(ߙ)ோ݌ܾ (ߙ,ݐ)௅ݍܿ

(ߙ,ܶ)௅ݍ = (ߙ,ܶ)ோݍ = 0,                                    
.     (53) 
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Figure 2. Schematic diagram of the proposed model. 

 
 
Utilizing the procedure developed in Case 1, the parametric 
values of the total average profit, ܶܲܣ =
ܣܶ] ଶܲ௅(ߙ),ܶܣ ଶܲோ(ߙ)] is given by (For more details see 
Appendix A):    
ܣܶ ଶܲ௅(ߙ) = ൫ௌோಽ(ఈ)ି௉஼ೃ(ఈ)ିு஼ೃ(ఈ)ି௖బೃ(ఈ)൯

்
,                   (54) 

ܣܶ ଶܲோ(ߙ) = ൫ௌோೃ(ఈ)ି௉஼ಽ(ఈ)ିு஼ಽ(ఈ)ି௖బಽ(ఈ)൯
்

.                   (55) 

Therefore, the optimization problem can be reduced to Eq. (56): 

൞

Maximize                                               ܶܣ ଶܲ௅(ߙ).
Maximize                                               ܶܣ ଶܲோ(ߙ).
Subject to Constraints (15), ,ܣ) 2) and  (ܣ, 4).

0 ≤ ߙ ≤ 1,

         (56) 

However, the schematic diagram of the proposed model is 
given by Figure 2. 
 
5.3. Solution algorithm of the proposed model 
Here we develop a solution algorithm to solve the proposed 
model. 
Step1: Solve the crisp problem using LINGO software or any 
programming language,  
Step 2: Covert the crisp problem into two fuzzy problems 
(Cases 1 and 2) for different scenarios of α-cuts of the FDEs, 
Step 3: Find maximum value of lower and upper objective 
functions in each case for different cycle time under 
different aspiration levels, 
Step 4: Defuzzify the results using the definite formula 
stated in Subsection 2.1, 
Step 5: Compare the numerical out puts of each case with 
respect to crisp result and get the optimum average profit of 
the original problem, 
Step 6: Record the optimum decision variables. 

6. Numerical and graphical illustrations 
In this section we take some numerical study over crisp and 
fuzzy models. Moreover, we perform some graphical 
illustrations on the basis of these numerical data. 

6.1. Numerical results of crisp model 
 For numerical study of the crisp model, we take the 
following values of the input parameters: 
ܽ = 100,   ܾ = 0.1,      ܿ = 0.14,     ݉ = 180,   ݊ = 0.8,   
݌ = 95,   ܿ௛ = 3.25 ,  ܿ௣ = 40,      ܿ଴ = ଵߠ   ,300 = 0.05,   

ଶߠ = 0.07. 

Then, using the LINGO 17.0 software the optimum results 
are obtained and presented in Table 2. 

Table 2 shows that average profit of the model gets 
maximum value $5041.09 for the cycle time 2.5 months and the 
production run time 1.742 months with order quantity 74.29 units 
respectively. Beyond this, if the cycle time increases or decreases 
then the average profit of the model is also decreasing. 

 
Table 2. Crisp optimal solution. 

∗૚࢚ ࢀ  ∗ࢆ ∗ࡽ 

1 0.582 39.57 4860.22 
1.5 0.933 54.50 4988.65 
2 1.322 65.97 5035.41 

2.5 1.742 74.29 5041.09 
3 2.19 80.05 5025.49 

3.5 2.653 83.87 5000.21 
4 3.13 86.33 4971.93 
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6.2. Numerical results of crisp model 
Let the deterioration rate (ߠଵ,   ,ଶ), unit holding cost (ܿ௛)ߠ
ordering cost (ܿ଴), unit production cost ൫ܿ௣൯ and unit sell- 
ing price (݌)  assume as triangular fuzzy numbers. Then the 
left and right ߙ-cuts of each triangular fuzzy number are 
respectively given by: 
 
ଵ௅ߠ = 0,03 + ଵோߠ   .ߙ0,02 = 0,07−  .ߙ0,02

ଶ௅ߠ = 0.05 + ଶோߠ   ,ߙ0.02 = 0.09−  ,ߙ0.02

ܿ௛௅ = 2.25 + ,ߙ1  ܿ௛ோ = 4.25− ,ߙ1 ܿ௣௅ = 36 +  ,ߙ4
 
ܿ௣ோ = 44− ௅݌   ,ߙ4 = 90 + ோ݌   ,ߙ5 = 100−  ,ߙ5
 
ܿ௢௅ = 280 + ௢ோܿ   ,ߙ20 = 320−  ,ߙ20

Now, Tables 3 and 4 represent the values of different decision 
variables and objective function in different level of 
aspirations in the cases of (i)-gH(L-R) differentiability and 
(ii)-gH(R-L) differentiability respectively.  
Now, utilizing Subsection 3.4 on the numerical values of 
Table 3 we get, ሜ݈ = 0.6772 and ̄ݎ = 0.8652 and then 
optimum cycle time is 2.5 months, production run time is 
1.74 months and the average profit= Crisps value of the 
objective × ൫1 + ݎ̄ − ሜ݈൯ = $5988.81  and order quantity = 
74.96 units. 

Now, utilizing Section 3.4 on the numerical values of 
Table 3 we get, ሜ݈ = 0.8845 and ̄ݎ = 1.1933 and then 
optimum cycle time is 2.5 months, production run time is 
1.74 months and the average profit=$  Crisps value of the 
objective × ൫1 + ݎ̄ − ሜ݈൯ = $6597.78 and order quantity = 
74.58 units respectively.  
 
6.3. Graphical illustrations 

We shall draw several graphs using the data set 
obtained from Tables 2–4. Figure 3 shows that in crisp 
model the average profit function gets minimum value in 
compared to fuzzy models. On the other hand, Case 2 gives 
the maximum average profit of the proposed model. From 
Figure 4 we see that at cycle time ܶ = 1 month the profit of 
the inventory model assumes lower value. Then profit 
function began to increase and reaches its maximum at ܶ = 

2.5 months. After that the profit function is going to 
decrease. In Figure 5 it is seen that the multi-objective 
functions obtained from fuzzy problem (Case 2) are getting 
more and closer to the crisp value (near $5000) whenever 
the aspiration level is going to increase from 0.1 to 0.9. 
From Figure 6 we see that lower objective function (ܶܣ ௅ܲ) 
plane like surface gets maximum value at cycle time 3 
months and aspiration level 0.9 whereas Figure 7 indicate 
that the upper objective function attained maximum value 
at cycle time 3 months and aspiration level 0.1. Figure 8 
explores that the span of lower objective functions due to 
different cycle times is gradually increasing with respect to 
the change of aspiration level. But for the upper objective 
function it began to decrease and they are going to intersect 
near the aspiration level 0.9 keeping the profit value near 
$5000.  

 
Figure 3. Optimal solution of crisp and fuzzy models. 

 

 
Figure 4. Inventory profit vs cycle time 

 
Table 3. Fuzzy optimal solution for Case 1 (L-R type gH method). 

    *
1t  Lq  Rq  LTAP  RTAP  

0.1 [1, 2.5] [0.58, 1.74] [39.58, 73.95] [39.59, 75.09] [1730.46, 3013.21] [4663.61, 4763.77] 

0.2 [1, 2.5] [0.58, 1.74] [39.55, 73.98] [39.57, 75.00] [1853.56, 3113.29] [4460.75, 4633.35] 

0.3 [1, 2.5] [0.58, 1.74] [39.55, 74.03] [39.58, 74.92] [1976.81, 3213.38] [4258.07, 4528.83] 

0.4 [1, 2.5] [0.58, 1.74] [39.55, 74.06] [39.58, 74.84] [2100.24, 3313.51] [4055.58, 4441.00] 

0.5 [1, 2.5] [0.58, 1.74] [39.55, 74.10] [39.58, 74.84] [2223.88, 3413.68] [3853.30, 4353.22] 

0.6 [1, 2.5] [0.58, 1.74] [39.56, 74.14] [39.58, 74.65] [2347.67, 3513.87] [3651.19, 4265.49] 

0.7 [1, 2.5] [0.58, 1.74] [39.56, 74.18] [39.58, 74.56] [2471.67, 3614.09] [3449.31, 4177.80] 

0.8 [1, 2.5] [0.58, 1.74] [39.57, 74.23] [39.58, 74.47] [2595.85, 3714.36] [3247.62, 4090.15] 

0.9 [1, 2.5] [0.58, 1.74] [39.57, 74.27] [39.58, 74.38] [2720.17, 3814.64] [3046.10, 4002.53] 
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Table 4. Fuzzy optimal solution for Case 2 (R-L type gH method). 

  T  *
1t  Lq  Rq  LTAP  RTAP  

0.1 [1, 3] [0.58, 2.18] [39.55, 80.18] [39.58, 80.62] [3892.99, 4036.27] [5439.30, 6838.66] 

0.2 [1, 3] [0.58, 2.18] [39.55, 80.16] [39.58, 80.56] [3984.97, 4141.53] [5359.42, 6632.37] 

0.3 [1, 3] [0.58, 2.18] [39.55, 80.15] [39.58, 80.49] [4076.96, 4246.98] [5279.58, 6426.31] 

0.4 [1, 3] [0.58, 2.18] [39.55, 80.13] [39.58, 80.43] [4168.99, 4352.62] [5199.78, 6220.49] 

0.5 [1, 3] [0.58, 2.18] [39.56, 80.12] [39.58, 80.37] [4261.06, 4458.45] [5120.03, 6014.88] 

0.6 [1, 3] [0.58, 2.18] [39.56, 80.10] [39.58, 80.36] [4353.16, 4564.46] [5040.31, 5809.53] 

0.7 [1, 3] [0.58, 2.18] [39.56, 80.09] [39.58, 80.24] [4445.28, 4670.67] [4960.64, 5604.39] 

0.8 [1, 3] [0.58, 2.18] [39.57, 80.07] [39.58, 80.17] [4537.44, 4777.06] [4880.99, 5399.50] 

0.9 [1, 3] [0.58, 2.18] [39.57, 80.06] [39.57, 80.11] [4629.62, 4883.64] [4801.40, 5194.84] 

 

 
Figure 5. Fuzzy optimal model. 

 

 
Figure 6. TAPL vs aspiration level and cycle time. 

 

 
Figure 7. TAPR vs aspiration level and cycle time. 

 
Figure 8. Aspiration level vs average profit. 

7. Merits and demerits of the proposed approach 

In this paper, an EPQ model is studied under fuzzy uncertainty 
with FDE as a working tool. The definition of gH derivative is 
taken to make sense of the fuzzy derivative. The approach 
adopted in this article has some advantages: 

(i) Very frequently, the researchers solve ordinary differential 
equations to obtain a crisp model they use defuzzification 
techniques for fuzzy valued parameters and variables.  But, 
doing so, they ignore the need of FDEs. In this proposed 
approach, anybody can control and estimate the defuzzified 
value of the fuzzy parameters in more concrete way;  

(ii) New defuzzification formula in terms of aggregation of 
fuzzy outcomes is very much helpful towards definite 
decision making that involves multi-valued objective 
functions. 

On the other hand, a drawback of the proposed approach cannot 
be over looked. The FDEs are solved by two methods one of 
them is L-R type gH method and the other one is R-L type gH 
method. So, the proposed approach will take much 
computational time for more complicated problems. 
 

8. Conclusion and future research scope 

The present study discusses a production inventory model 
considering the demand function which is depending on 
unit selling price and on hand stock of the inventory. The 
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profit function of the proposed model has been analysed 
under crisp and fuzzy environment because of several 
parametric flexibility. In the process of constructing the 
fuzzy profit function we have utilized gH derivative which 
are directly associated with the ߙ-cuts of fuzzy numbers. 
However, we have developed a new defuzzyfication 
method for the fuzzy mathematical model to capture the 
multi-objective optimization problem. This new 
defuzzification method is nothing but the aggregation of 
several objective values obtained at different aspiration 
levels. Aggregation formula is used as because the spans of 
lower and upper objective functions are dissimilar and 
hence, they carry more uncertainty as a whole. In fact, the 
model has been studied in two different derivative 
approaches where the ߙ-cuts of the fuzzified function 
assume increasing (Case-I, L-R type gH method) and 
decreasing (Case-II, R-L type gH method) values 
respectively. Our numerical result shows that the crisp 
solution is quite inferior than both the solutions obtained 
from fuzzy problem. Sensitivity analysis of the fuzzy 
problem has been made by varying different aspiration level 
 The comparative study reveals that the profit function .ߙ
gets higher value 30.88% more for Case-II and that for 
Case-I, it becomes 18.8% more profit keeping the optimum 
inventory cycle time and production run time unaltered 
with respect to crisp model. Moreover, the optimum order 
quantity becomes 74.58 units for Case-II and that for Case-I 
it is 74.96 units which are slightly higher than that for crisp 
model. The basic managerial insight as well as the novelty 
of the current study is focused focused from the fuzzy 
model that utilizes fuzzy R-L gH derivatives and the newly 
defined defuzzification aggregation method exclusively. 
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Appendix A 
Simplifying the system of differential equations described 
by Eq. (52): 

⎩
⎪
⎪
⎨

⎪
⎪
⎧
ோᇱݍ (ߙ,ݐ) = −ܽଷݍோ(ߙ,ݐ)− ܾଷݍ௅(ߙ,ݐ) + ܿଷ ,
௅ᇱݍ (ߙ,ݐ) = −ܽସݍோ(ߙ,ݐ) − ܾସݍ௅(ߙ,ݐ) + ܿସ ,      

with                   ݍ௅(0,ߙ) = (ߙ,0)ோݍ = 0,
where                  ܽଷ = ݊ + ܿ, ܾଷ = ,(ߙ)ଵ௅ߠ
ܿଷ = ݉− ܽ + ,(ߙ)௅݌ܾ
ܽସ = ସܾ,(ߙ)ଵோߠ = ݊ + ܿ,
ܿସ = ݉− ܽ + .(ߙ)ோ݌ܾ

                    (A.1) 

The system of differential equations described by Eq. (A.1) 
can be written as: 
(ߙ,ݐ)ோݍ + (ߙ,ݐ)௅ݍߣ = (௖యାఒ௖ర)

(௔యାఒ௔ర)
൛1− ℯି(௔యାఒ௔ర)௧ൟ.    (A.2) 

The constant ߣ is chosen in such a manner that the 
following relationship holds: 

(௕యାఒ௕ర)
(௔యାఒ௔ర) =  (A.3)                                                                .ߣ

The above relationship is actually a quadratic equation 
which produces two roots, say, ߣଵ and ߣଶ.  

Then, proceeding as the productive phase of Case 1, a 
system of simultaneous equations is obtained as: 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
(ߙ,ݐ)ଵோݍ⎧ = ஺ఱఒర൫ଵି௘షಳఱ೟൯ି஺లఒయ൫ଵି௘షಳల೟൯

ఒరିఒయ
,     

(ߙ,ݐ)ଵ௅ݍ = ஺ఱ൫ଵି௘షಳఱ೟൯ି஺ల൫ଵି௘షಳల೟൯
ఒయିఒర

,           

where  ܣହ = (௖యାఒయ௖ర)
(௔యାఒయ௔ర) ହܤ, = ܽଷ +     ,ଷܽସߣ

଺ܣ     = (௖యାఒర௖ర)
(௔యାఒర௔ర) ଺ܤ, = ܽଷ + ,ସܽସߣ

0 ≤ ݐ ≤ .ଵݐ

             (A.4) 
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Simplifying the system of differential equations described 
by Eq. (53): 

⎩
⎪
⎨

⎪
⎧
௅ᇱݍ (ߙ,ݐ) = − ସ݂ݍோ(ߙ,ݐ) − ݃ସݍ௅(ߙ,ݐ) − ℎସ,
ோᇱݍ (ߙ,ݐ) = − ଷ݂ݍோ(ߙ,ݐ)− ݃ଷݍ௅(ߙ,ݐ) − ℎଷ,        

(ߙ,ܶ)௅ݍ = (ߙ,ܶ)ோݍ = 0,                             
where   ଷ݂ = ܿ,݃ଷ = ℎଷ,(ߙ)ଶ௅ߠ = ܽ − ,(ߙ)௅݌ܾ

          ସ݂ = ସ݃,(ߙ)ଶோߠ = ܿ,ℎସ = ܽ − .(ߙ)ோ݌ܾ    

   (A.5) 

The system of differential equations described by Eq. (A.5) 
can be written as: 

(ߙ,ݐ)ோݍ + (ߙ,ݐ)௅ݍߤ = (௛యାఓ௛ర)
(௙యାఓ௙ర)

൛ℯ(௙యାఓ௙ర)(்ି௧) − 1ൟ.  (A.6) 
The constant ߤ is chosen in such a manner that the 
following relationship holds: 
(௚యାఓ௚ర)
(௙యାఓ௙ర) =  (A.7)                                                                .ߤ
Then, proceeding as the non-productive phase of Case 1, a 
system of simultaneous equations is obtained as: 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
(ߙ,ݐ)ଶ௅ݍ⎧ = ஺ళ൛௘ಳళ(೅ష೟)ିଵൟି஺ఴ൛௘ಳఴ(೅ష೟)ିଵൟ

ఓయିఓర
.

(ߙ,ݐ)ଶோݍ = ஺ళఓర൛௘ಳళ(೅ష೟)ିଵൟି஺ఴఓయ൛௘ಳఴ(೅ష೟)ିଵൟ
ఓరିఓయ

.

where ܣ଻ = (௛యାఓయ௛ర)
(௙యାఓయ௙ర) ଻ܤ  . = ଷ݂ + ଷߤ ସ݂.     

଼ܣ   = (௛యାఓర௛ర)
(௙యାఓర௙ర) ଼ܤ. = ଷ݂ + ସߤ ସ݂.

ଵݐ ≤ ݐ ≤ ܶ,

           (A.8) 

Some relevant fuzzy valued costs and revenue in parametric 
form: 
(i) The set-up cost ܿ̃଴ = [ܿ଴௅(ߙ), ܿ଴ோ(ߙ)]. 

(ii) ܿ̃௛ = [ܿ௛௅(ߙ), ܿ௛ோ(ߙ)] the holding cost per unit prod- 
uct.   

Therefore, the holding cost, ܥܪ =  is [(ߙ)ோܥܪ,(ߙ)௅ܥܪ]
given by: 
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= ܿ௛௅{ܫଷ +  ସ}.                                                          (A.9)ܫ
 
The values of ܫଷ and ܫସ are assumed as: 

⎩
⎪
⎨

⎪
⎧ ଷܫ =

ಲఱ
ಳఱ
൫௘ష೟భಳఱା௧భ஻ఱିଵ൯ି

ಲల
ಳల
൫௘ష೟భಳలା௧భ஻లିଵ൯

ఒయିఒర
.               

ସܫ =
ಲళ
ಳళ
൫௘(೅ష೟భ)ಳళି஻ళ(்ି௧భ)ିଵ൯ିಲఴಳఴ

൫௘(೅ష೟భ)ಳఴି஻ఴ(்ି௧భ)ିଵ൯
ఓయିఓర .

    (A.10) 

(ߙ)ோܥܪ = ܿ௛ோ ቈන ݐ݀(ߙ,ݐ)ଵோݍ
௧భ

଴
+ න ݐ݀(ߙ,ݐ)ଶோݍ

்

௧భ
቉ 

        = ܿ௛ோ ൦
∫ ቄ஺ఱఒర൫ଵି௘

షಳఱ೟൯ି஺లఒయ൫ଵି௘షಳల೟൯
ఒరିఒయ

ቅ݀ݐ௧భ
଴

+∫ ൜஺ళఓర൛௘
ಳళ(೅ష೟)ିଵൟି஺ఴఓయ൛௘ಳఴ(೅ష೟)ିଵൟ

ఓరିఓయ
ൠ ்ݐ݀

௧భ

൪  

        = ܿ௛ோ{ܬଷ +  ସ},                               (A.11)ܬ
 
The values of ܬଷ and ܬସ are assumed as: 

⎩
⎪
⎨

⎪
⎧ ଷܬ =

ಲఱഊర
ಳఱ

൫௘ష೟భಳఱା஻ఱ௧భିଵ൯ି
ಲలഊయ
ಳల

൫௘ష೟భಳలା஻ల௧భିଵ൯

ఒరିఒయ
.

ସܬ =
ಲళഋర
ಳళ

൫௘(೅ష೟భ)ಳళି஻ళ(்ି௧భ)ିଵ൯ିಲఴഋయಳఴ
൫௘(೅ష೟భ)ಳఴି஻ఴ(்ି௧భ)ିଵ൯

ఓరିఓయ
,
   

(iii) ݌෤ = [(ߙ)ோ݌,(ߙ)௅݌] = The SR per unit product. 
Therefore, ܴܵ = [ܴܵ௅(ߙ),ܴܵோ(ߙ)]  during the entire cycle 
is given by: 

 ܴܵ௅(ߙ) = (ߙ)௅݌ ൥
∫ {ܽ − (ߙ)ோ݌ܾ + ௧భݐ݀{(ߙ,ݐ)ଵ௅ݍܿ
଴

+ ∫ {ܽ − (ߙ)ோ݌ܾ + ்ݐ݀{(ߙ,ݐ)ଶ௅ݍܿ
௧భ

൩  

            = ܽ}](ߙ)௅݌ − ܶ{(ߙ)ோ݌ܾ + ଷܫ}ܿ +  ସ}],            (A.12)ܫ

and  
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


 

  
 
               = ܽ}](ߙ)ோ݌ − ܶ{(ߙ)௅݌ܾ + ଷܬ}ܿ +  ସ}].         (A.13)ܬ
 
(iv) ܿ̃௣ = ൣܿ௣௅(ߙ), ܿ௣ோ(ߙ)൧ = The production cost per unit 

product. 

Therefore, the production cost =  during  [(ߙ)ோܥܲ,(ߙ)௅ܥܲ]
the entire cycle is given by: 
 

    
1

1

0

,
t

L pL RPC c m nq t dt  
 
 
 
  

 
                 = ܿ௣௅[݉ݐଵ −  ଷ].                                        (A.14)ܬ݊
                    

    
1

1

0

{ , }
t

R pR L
PC c m nq t dt  

 
  
                 

 
                 = ܿ௣ோ[݉ݐଵ −    ଷ].                                        (A.15)ܫ݊
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