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Abstract. Landslide is recognized as one of the environmental challenges that causes land
degradation, fertility reduction, and other signi�cant damages to the ecosystem. Therefore,
proper identi�cation of landslide-prone areas through modeling is signi�cantly helpful for
land development managers and planners by providing them with appropriate management
strategies for preventing land degradation. In this research, landslide susceptibility
mapping was carried out in West Azerbaijan province, Iran using Frequency Ratio (FR),
Shannon Entropy (SE), Random Forest (RF), and an ensemble of Random Forest and
Bagging (RF-BA) methods. Based on �eld surveys, local interviews, and review of similar
studies, 12 factors were identi�ed that a�ected landslide occurrence, namely altitude, slope
angle, slope aspect, distance from fault, distance from river, distance from road, drainage
density, road density, rainfall, soil, land use, and lithology. In the �eld surveys, 110
landslides in the area were speci�ed; 70% of the data (77 landslides) were randomly selected
and used for modeling and the remaining 30% (33 landslides) for validation. The results of
the ROC curve exhibited the accuracy rates of 0.92, 0.91, 0.89, and 0.88 through RF-BA,
RF, FR, and SE models, respectively.
© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Hillsides in nature are a�ected by external processes
due to geological, geomorphological, and climatic
changes, which may lead to the occurrence of slope
movements such as landslides. Landslide is a prominent
case of land degradation among the seven soil threat
factors that change landscape, reduce production re-
sources, and disrupt transportation activities [1]. Al-
though surface landslides apparently do not pose much
hazard and displace relatively small volumes of soil
down the hillsides, they may cause signi�cant damages
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to agriculture, structures, infrastructures, and trans-
portation, which are sometimes intense and even fatal
[2]. Landslide is smaller in scale, but more frequent
than other geological hazards around the world and in
many cases, it is more dangerous [3]. Landslide, after
ood and earthquake, is recognized as the third most
signi�cant natural hazard in the world. According to
the World [4], 3.7 million square kilometers of land area
and 300 million of the population of the world (about
5%) are at the risk of landslides.

Given the repercussions of landslides on agricul-
tural and natural resources as well as human infras-
tructure, the signi�cance of research and plans for
preventing or reducing their negative impacts remains
undisputed [5,6]. One way to reduce the risk of
landslide hazards in life and economy is to increase
readiness through landslide forecasting systems or
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identify the susceptible and endangered areas [7,8].
Therefore, recognizing the unstable regions and causes
of landslide events, investigating their geometrical
and morphological features, and determining the re-
lationship between the factors a�ecting landslides and
their morphological characteristics have gained much
more signi�cance. A better understanding of the
interconnection among the environmental factors in
the occurrence of landslides is essential to quantitative
assessment of landslide sensitivity. Hence, a reliable
evaluation depends on the quality of available data and
proper utilization of analysis and modeling methods
[9]. So far, much research has been carried out
on landslide modeling using Geographic Information
System (GIS) and remote sensing. Bivariate statistical
methods [10], weight of evidence [11], evidential belief
function [12], certainty factor [13], Shannon Entropy
(SE) [14], machine learning methods (e.g., arti�cial
neural network) [15], Adaptive Neuro-Fuzzy Inference
System (ANFIS) [16], support vector machine [17],
decision tree [18], Random Forest (RF) [19], logistic
regression [20], decision-making methods (e.g., analytic
hierarchy process) [21], and analytic network process
[22] are some of the approaches that have been adopted
in such studies.

The main challenge in landslide modeling is the
uncertainty that a�ects the predictive ability of models
as well as the accuracy of landslide susceptibility maps
derived from the models [23]. In other words, the major
problem is the lack of a comprehensive framework that
is acceptable for use in all extended models [12]. Given
that a number of factors in nature a�ect landslides
that are not easily identi�able and collectible, the
models developed by planners may not be complete and
the parameters of di�erent models may be di�erent.
Accordingly, the results of no speci�c model can be
accepted with total certainty [24]. Not surprisingly,
the current trend of research is mostly directed at
combining algorithms to go beyond the existing lim-
itations in order to develop a standard framework
for integrating the main concepts of modeling and
reducing the uncertainties in studies on landslide.
The �nal objective is to achieve spatial prediction
maps with higher reliability. ANFIS methods in
combination with genetic algorithm and particle swarm
optimization [12], combined Arti�cial Neural Network
(ANN) and particle swarm optimization [25], rotation
forest-based support vector machines [26], least-squares
support vector classi�cation and bat algorithm [27], an
ensemble of Stochastic Gradient Descent (SGD) and
AdaBoost meta classi�er [28], kernel logistic regression
[29], Random Subspace (RS) [30], Best First Decision
Trees (BFDT) [31], Logistic Model Tree (LMT) [32],
SGD [27], and Nave Bayes Tree (NBT) [26] are samples
of such e�orts. On the other hand, since there is
no algorithm identi�ed with the highest global per-

formance, researchers have always been looking for
new and more robust algorithms. The main principle
behind the ensemble model is that a group of weak
learners come together to form a strong learner, thus
increasing the accuracy of the model [33]. When we
try to predict the target variable using any machine
learning technique, the main causes of the di�erence
in actual and predicted values are noise, variance,
and bias. Application of some techniques such as
Bagging helps decrease the variance and increase the
robustness of the model. Combinations of multiple
classi�ers decrease variance, especially in the case of
unstable classi�ers, and may produce a more reliable
classi�cation than that of a single classi�er [34].

The present study also attempts to achieve high-
accuracy landslide susceptibility mapping by combin-
ing data mining algorithms (RF and RF-BA). The
results were then compared with the those of bivariate
statistical methods (FR and SE) to test the reliability
of the proposed method for the study area.

The rest of this paper is organized as follows.
In Section 2, the study area is generally introduced
that comprises the following information on the factors
a�ecting the occurrence of landslides and how to
prepare them, statistical methods, and data mining,
and evaluation. In Section 3, the results obtained from
statistical methods as well as those from combined
data mining methods, landslide susceptibility map
visualization, and validation of results are examined.
In Section 4, the results received by statistical methods
are discussed, the importance of these criteria is high-
lighted, and data mining models are compared. Finally,
concluding remarks are given in Section 5.

2. Material and method

2.1. Study area
West Azerbaijan province is located in the northwest-
ern Iran with an area of 37412 km2 between east
longitudes of 44�30 and 47�240 and north latitudes of
36�050 and 39�460. Topographically, the minimum and
maximum elevations in the province are 605 and 3600
m, respectively, and the slope angle ranges from 0 to
62�. The average annual rainfall ranges between 310
and 900 mm, and the maximum annual temperature,
minimum annual temperature, and annual mean tem-
perature are 31.7�C, �6:9�C, and 10.9�C, respectively.
In terms of land use, most of the province is occupied
by agricultural land use. The study area along with
the landslide locations is shown in Figure 1.

2.2. Landslide inventory map
Precise determination of the location of landslides and
establishment of a landslide database are essential
for risk studies. However, determining the exact
locations and areas of landslides is challenging and
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Figure 1. Study area and landslide location.

time-consuming. It requires surveying the terrain and
checking the recorded areas through aerial photographs
and satellite images. In this study, �rst, the landslide
location information was obtained from the Iranian
Forest, Range, and Watershed Management Organi-
zation (FRWO). Then, 110 landslides were identi�ed
through �eld surveys, aerial photo interpretation, and
Google Earth satellite imagery (Figure 1).

2.3. Criteria for landslide modeling
This study employed altitude, slope angle, slope aspect,
distance from fault, lithology, distance from river,
distance from road, drainage density, road density, land
use, soil, and rainfall for landslide hazard modeling.
Factors a�ecting the occurrence of landslides were
selected based on previous studies, expert opinion, and
data access [12,16]. A digital elevation model with a
spatial resolution of 30 m was prepared using ASTER
satellite images, and the altitude, slope angle, and slope
aspect layers were prepared in ArcGIS 10.3. Altitude
indirectly a�ects vegetation and soil moisture, thus
determining hillside stability status [35]. The altitude
map is divided into �ve classes of 610{1200 m, 1300{
1600 m, 1700{1900 m, 2000{2400 m, and 2500{3600
m (Figure 2(a)). Slope angle is also a key factor that
a�ects the stability status of hillside. Upon increasing
the slope angle, shear force and, consequently, the
likelihood of landslide occurrence would increase [36].
The slope angle map is also divided into �ve classes of
0�{4.6�, 4.7�{10�, 11�{17�, 18�{25�, and more than

26�{62�(Figure 2(b)). The slope aspect a�ects the
hydrological processes of evapotranspiration, weath-
ering, and vegetation [18]. The slope aspect map
is divided into nine classes of at, north, northeast,
east, southeast, south, southwest, west, northwest,
and north (Figure 2(c)). Rainfall is regarded as
one of the landslide driving factors that reduces the
hillside con�dence factor and consequently, increases
the probability of landslide occurrence. Rainfall data
were obtained from the Meteorological Organization of
Iran. Rainfall maps were then prepared using station
locations in the area under study through the kriging
interpolation method (30-year stats). To select the
best interpolation method, the Root Mean Square
Error (RMSE) index was used, which was the lowest
in the kriging method among the other methods for
interpolating rainfall. Semivariograms related to the
interpolation of rainfall through the kriging method
are shown in Figure 3. The rainfall map was divided
into �ve classes of 310{380 mm, 390{440 mm, 450{
540 mm, 550{700 mm, and 710{900 mm (Figure 2(d)).
In most cases, discontinuous lithological structures
such as faults, seams, and crevices can accelerate the
occurrence of landslides and provide the conditions
for weathering. The geological map was obtained
from the Geological Survey of Iran. The distance-
from-fault map was derived from the geological map
of West Azarbaijan province on a scale of 1:100,000,
hence divided into six classes of 0{500 m, 500{1000
m, 1000{2000 m, 2000{5000 m, 5000{10000 m, and
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Figure 2. Landslide conditioning factors.

10000{50000 m (Figure 2(e)). The distance from river
was introduced into the model to evaluate the role of
runo� and e�ect of erosion (heel) in the waterway in
the occurrence of landslide [13]. The streams layer was
obtained from the Natural Resources Organization of
West Azerbaijan Province. The layer for the distance
from river was prepared on a scale of 1:50000 and

divided into six classes of 0{500 m, 500{1000 m, 1000{
2000 m, 2000{5000 m, 5000{10000 m, and more than
10,000 m (Figure 2(f)). The distance from road is
considered as one of the factors of human interference
in a number of studies on landslide risks [37]. Road
construction near the hillside may cause changes in the
natural conditions of areas, which may have been in
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Figure 2. Landslide conditioning factors (continued).

full equilibrium before such constructions. The layer
of distance from road was created on a scale of 1:50000
and divided into six classes of 0{500 m, 500{1000 m,
1000{2000 m, 2000{5000 m, 5000{10000 m, and more
than 10,000 m (Figure 2(g)). With an increase in the

drainage density, both rock permeability and surface
ow velocity would decrease. As a result, followed by
saturation of the surface layers of the earth, landslides
may occur [38]. Drainage density layer was divided into
�ve classes of 0{0.076, 0.077{0.14, 0.15{0.2, 0.21{0.26,
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Figure 2. Landslide conditioning factors (continued).

and 0.27{0.38 (Figure 2(h)). An increase in the road
density is indicative of the higher inuence of human
activities on the location as well as a rise in the possi-
bility of disturbing natural conditions and equilibrium
of the slopes. In addition, soil adhesion and internal

friction decreased, thus decreasing the reliability factor
of the hillside, especially in mountainous areas. The
road layer was taken from the Open Street Map (OSM)
website. Road density layer was divided into �ve
classes of 0{0.086, 0.069{0.14, 0.15{0.21, 0.22{0.27,



A. Aram et al./Scientia Iranica, Transactions A: Civil Engineering 29 (2022) 1077{1094 1083

Figure 3. Toxic results of variogram.

and 0.28{0.34 (Figure 2(i)). Land use and vegetation
play an important role in hillside stability, and several
studies have emphasized their signi�cance in landslide
risk assessment. The land use map of the area under
study was prepared using images from Landsat 8. The
maximum likelihood supervised classi�cation algorithm
in ENVI 4.5 software was employed to classify surface
coverage, and 33 types of land use were identi�ed in
the study area (Figure 2(j)). Since the resistance of
di�erent geological units against landslide varies, the
properties of the constituents of a domain such as
resistance and relative permeability play an important
role in their stability. Therefore, lithology is an
important and inuential factor in the likelihood of
landslides. The lithology map was prepared on a scale
of 1:100,000 (Figure 2(k)). The soil map was prepared
based on the information from the west Azerbaijan
natural resources organization.

2.4. FR model
In the Frequency Ratio (FR) model, the set of land-
slides is introduced as the dependent variables, and
the parameters a�ecting landslide are presented as the
independent variables [39]. FR model calculates the
probability of a phenomenon with speci�c characteris-
tics. In this regard, the probability of the occurrence of
landslides in each class for all parameters is computed
through this method. To determine the e�ect of each
class on each independent variable, Eq. (1) is used:

FR =
Fi
Pi
; (1)

where FR is the impact of each class on each parameter,
Fi the percentage of the points of landslide in class i,
and Pi the percentage of the pixels of class i in the
entire study area.

2.5. SE model
Entropy is a measure of disorder, instability, behavioral
imbalance, energy distribution, and uncertainty in a
system [40]. It determines how the most important
factors can be estimated based on the e�ective factors
of a goal and speci�es the variables with the highest
impact on an event [41]. Therefore, this theory, as a
managerial approach, can play an important role in

identifying the e�ective factors and their impacts [40].
Eqs. (2){(6) are employed to evaluate the criteria using
the entropy model:

Eij =
FR
MP
j=1

FR
; (2)

Hj = �
sX
i=1

(Eij)log2(Eij); (3)

Hjmax = log2Mj ; (4)

Ij =
Hjmax �Hj

Hjmax
; (5)

Wj = Ij � FR; (6)

where FR is the frequency ratio, Eij is density proba-
bility, Hj and Hjmax are entropy value and maximum
entropy, respectively, Ij is information factor, Mj is the
number of classes, and Wj is the �nal weight of each
criterion.

2.6. RF model
RF is a modern type of tree-based methods that incor-
porates a variety of classi�cation and regression trees.
Since it is nonparametric, it is suitable for modeling
continuous and discrete decision tree data [42]. It is
constructed using a set of trees with n independent
observational data. This method is a combination
of several decision trees in which di�erent Bootstrap
instances of data are involved. Moreover, in random
construction of each tree, many input variables are
involved. Through the Bootstrap method, a large num-
ber of n samples from the initial observation dataset are
generated. During the sampling process, almost one-
third of the data are not sampled, hence regarded as
out-of-process sampling. Followed by constructing the
whole tree, the test data are introduced to the tree,
and the number of trees is calculated for each input.
Finally, the �nal output is calculated by averaging the
outputs [39].

2.7. Bagging model
Bagging is one of the simplest, yet most successful,
group methods for improving the classi�cation problem
[43]. This method is speci�cally bene�cial for dealing
with high-volume and high-dimensional data since, in
such situations, it is not possible to achieve a model
in one step due to the high complexity of the problem
[18]. Bagging was �rst introduced in [44] to reduce the
variance of a predictor. In this method, several copies
with equal volumes to the initial training dataset are
randomly selected. Given that sampling is done by
replacement, some data may not appear multiple times
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or even in one training sequence. Each of the training
sequences is used to train a weak cluster and build a
model. The output of the models is combined using
bagging technique to achieve the �nal output.

2.8. Validation
Receiver Operating Characteristic (ROC) curve is used
to evaluate the models. It consists of two axes, namely
sensitivity (x-axis) and transparency (y-axis) [45]. The
x and y axes of the ROC curve are calculated using
Eqs. (7) and (8), which are obtained from the confusion
matrix by de�ning the threshold limit between zero and
one.

X = 1�
�

TN
TN + FP

�
; (7)

Y =
�

TP
TP + FN

�
: (8)

The area under the ROC curve, called Area Under the
ROC Curve (AUC), represents the value of the predic-
tion of a system by describing its ability to accurately
predict the occurrence of an event (landslide) and its
non-occurrence (no landslide).

3. Result

3.1. Results of FR model
The results from the FR model for each of the classes
of e�ective factors are shown in Table 1. According
to these results, the middle slopes have the greatest
impact on landslide occurrence. In low slopes, due to
small gravity, the probability of landslide occurrence
is reduced and the steep slopes are the mountainous
areas covered with rocks and fragile soil, which is not
a suitable condition for the occurrence of landslides.
According to the results related to the slope, the south
direction with a weight of 1.49 has the highest impact
on landslide occurrence and the lowest weight is for
the at areas, where no landslides have occurred. In
terms of altitude, more landslides often occur in the
middle classes, as pointed out by other researchers
[39]. In the study area, as the altitude increases,
the probability of landslide occurrence decreases. The
results of the rainfall factor show that overall, with an
increase in rainfall amounts, the likelihood of landslides
increases, which is consistent with the results from
other studies (e.g. [43]). According to the results
related to distance from fault, the class of 0{500 m
with a weight of 5.07 has the greatest impact on
landslide occurrence in the study area. In the case
of distance from the river, the 0{500 m class has the
highest inuence on landslide occurrence mainly be-
cause permanent rivers are the main source of moisture
for landslide occurrence. Although the role of non-
standard road construction in landslide events has been

con�rmed by other researchers [46], it did not have a
signi�cant impact in the area under study. The results
for drainage density show that the class of 0.19{0.34
has the most signi�cant impact on landslide occurrence
(FR = 3:10). In terms of road density, the class of
0.07{0.13 has the greatest e�ect on landslide occurrence
in the study area (FR = 1:28). Lithology criterion
is characterized by the highest FR value for Eva unit
(FR = 23:93). It has been proven that upon increasing
the density and amount of vegetation, the probability
of landslide occurrence would decrease due to the role of
the roots of plants in preventing this phenomenon. The
results related to land use in this study also indicate
that low forest areas are most prone to the occurrence
of landslides (FR = 9:28). Finally, the results of
soil criterion show that Entisols/Inceptisols have the
greatest impact on landslide occurrence (FR = 12:33).
The weights obtained by the FR model were applied to
the e�ective criteria. Figure 4 illustrates the landslide
susceptibility map.

3.2. Result of SE model
The results achieved by the SE model are summarized
in Table 1. The order of the e�ective factors in
landslide incidents is as follows: soil (1.33), land use
(0.41), distance from fault (0.36), river density (0.26),
road density (0.2), distance from river (0.17), altitude
(0.13), lithology (0.13), rainfall (0.11), slope angle
(0.08), slope aspect (0.07), and distance from river
(0.05). The landslide susceptibility map prepared by
applying the weights from the SE model to the e�ective
criteria is presented in Figure 5.

3.3. Results of RF and RF-BA models
To prepare a landslide sensitivity map using the
combined data mining models, the combination of
bagging model with RF model in WEKA data mining
software was used. To this end, the weights of the
FR model were used to input the hybrid models. To
implement the data mining models, a spatial database
provided the points of presence of landslide (Value 1)
and absence of landslide (Value 0). Non-occurrence
points were randomly created as equal to the training
and validation points. Here, 70% of the data were
used as training points and 30% as evaluation points.
The performance of the hybrid data mining algorithms
depends on the optimal selection of the parameters
used by this algorithm. This requires performing
modeling in many di�erent iterations based on the
training data and number of the seeds (to divide the
training data). Therefore, by changing each of these
parameters, modeling is carried out again with the new
conditions and the results will change. Since the two
parameters in this study depended on each other, a
constant number was assumed for iterations. Then,
the number of seeds varied and the percentage for
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Table 1. Spatial relationship between each e�ective factor and landslide locations based on the FR and SE models.

Class No. of pixels
in domain

No. of
landslides

FR Eij Hj Hjmax Ij Wj

Altitude (m) 1.94 2.32 0.16 0.13
605{1179
1179{1562
1562{1942
1942{2381
2381{3600

358553
1225254
1006641
724626
406076

3
24
38
11
1

0.40
0.95
1.82
0.73
0.12

0.10
0.24
0.45
0.18
0.03

Slope angle 2.14 2.32 0.08 0.08
0{4.5

4.5{10.5
10.5{17.17
17.17{25.1
25.1{61.7

1348663
940113
757493
478448
196433

12
23
27
13
2

0.43
1.18
1.72
1.31
0.49

0.08
0.23
0.34
0.26
0.10

Slope aspect 2.92 3.17 0.08 0.07
Flat

North
North East

East
South East

South
South West

West
North West

281
460586
488194
470580
454555
462122
473843
460561
450427

0
11
7
6
14
5
10
13
11

0.00
1.15
0.69
0.62
1.49
0.52
1.02
1.36
1.18

0.00
0.14
0.09
0.08
0.19
0.07
0.13
0.17
0.15

Rainfall (m) 2.07 2.32 0.11 0.11
308{383
383{443
443{543
543{700
700{900

555800
1132762
1215138
425717
407377

3
12
37
16
9

0.26
0.51
1.48
1.82
1.07

0.05
0.10
0.29
0.35
0.21

Distance from fault 2.13 2.58 0.18 0.36
0{500

500{1000
1000{2000
2000{5000
5000{10000
10000{50000

162718
153675
274248
665573
875384
1605196

17
9
13
9
20
9

5.07
2.84
2.30
0.66
1.11
0.27

0.41
0.23
0.19
0.05
0.09
0.02

Distance from river 2.11 2.58 0.18 0.17
0{500

500{1000
1000{2000
2000{5000
5000{10000
10000{50000

669330
598882
935863
1116796
353574
62345

26
20
18
8
5
0

26
20
18
8
5
0

0.34
0.30
0.17
0.06
0.13
0.00
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Table 1. Spatial relationship between each e�ective factor and landslide locations based on the FR and SE models
(continued).

Class No. of pixels
in domain

No. of
landslides

FR Eij Hj Hjmax Ij Wj

Distance from road 2.44 2.58 0.06 0.05
0{500

500{1000
1000{2000
2000{5000
5000{10000
10000{50000

263840
244182
437796
1004482
1006340
780150

2
5
10
22
31
7

0.37
0.99
1.11
1.06
1.49
0.44

0.07
0.18
0.20
0.19
0.27
0.08

Drainage density 1.78 2.32 0.23 0.26
0{0.03

0.03{0.07
0.07{0.12
0.12{0.19
0.19{0.34

478741
810623
926513
988682
532223

4
8
7
24
34

0.41
0.48
0.37
1.18
3.10

0.07
0.09
0.07
0.21
0.56

Road density 1.47 2.32 0.37 0.2
0{0.07

0.07{0.13
0.13{0.2
0.2{0.27
0.27{0.34

2025379
1329621
327766
37710
16318

39
35
3
0
0

0.93
1.28
0.44
0.00
0.00

0.35
0.48
0.17
0.00
0.00

Lithology 3.4 6.64 0.49 0.13
am
Cb
Cl

Cm
COm
Czl
db
Db

DCkh
di-gb
Dp
E1c
E1f
E1l
E1s
E2c
E2l
E2s
E3c

Ea.bvt
Eav
Edi

Edsv
Egb
Ek

41533
33661
18377
13230
15779
8129
10917
4655
28756
13877
497
8324
2425
8348
27632
15940
26756
37308
796
6077
5996
3385
2197
1828
53801

3
1
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3
0
0
0
9

3.45
1.42
5.20
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
23.93
0.00
0.00
0.00
8.00

0.04
0.02
0.06
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.26
0.00
0.00
0.00
0.09
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Table 1. Spatial relationship between each e�ective factor and landslide locations based on the FR and SE models
(continued).

Class No. of pixels
in domain

No. of
landslides

FR Eij Hj Hjmax Ij Wj

Lithology 3.4 6.64 0.49 0.13
h
Jd
Jl

Jph
K

K1m
K2a.bv
K2gb
K2gr
K2l1
Kav
Kdi
Kfsh
Kl

Klsm
Klsol
KPegr
Ktzl
Ku

Kuft
Kupl
Kur
Kurl
Lake
Mav
mb
Mur

Murm
Murmg

Odi
Ogr
Olc,s
om1
om3

OMav
OMdsv
OMq
OMql

OMqm
OMrb

P
PAgr
pC-Cs
pCam
pCav
pCbr
pCgn

8911
177

10266
22777
5824
3913
3809
771

22989
11985
22416
1423
67657
739

113364
89896
6621
11601
37252
34076
21822
1570
17131
22405
9640
9788
46757
72510
2601
813
7044
583

111695
3805
18437
3797
71732
269830
18873
97679
17164
21779
966

10171
297
6675
92759

0
0
5
0
0
0
0
0
0
0
0
0
2
0
9
3
0
0
0
0
0
0
0
0
0
0
0
4
0
0
0
0
0
0
0
0
3
9
0
0
0
0
0
0
0
0
2

0.00
0.00
23.29
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1.41
0.00
3.80
1.60
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
2.64
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
2.00
1.60
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1.03

0.00
0.00
0.25
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.02
0.00
0.04
0.02
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.03
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.02
0.02
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
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Table 1. Spatial relationship between each e�ective factor and landslide locations based on the FR and SE models
(continued).

Class No. of
pixels in domain

No. of
landslides

FR Eij Hj Hjmax Ij Wj

Lithology 3.4 6.64 0.49 0.13
pCgr
pCk

pCmb
pCmt1
pCmt2

pCr
pd
Pd

PeEf
PeEz

Pla.bv
Plmb1
Plmb2
Plms
PlQc
PlQm

Pr
Qabv
Qbv
Qft1
Qft2
Qsf
Qsl
Qtr
sp
sr

TRe
TRJs
TRsh

45744
38036
1000

153162
123508
28120
3829
35632
7927
1679
2521
5852
9328
31082
62974
15018
192755
9981

125207
613205
158016
8842
71960
2919
68322
2698
7594
22752
7609

1
1
0
4
1
0
0
0
0
0
0
0
0
1
0
0
0
0
1
8
2
0
0
0
0
0
0
3
0

1.05
1.26
0.00
1.25
0.39
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1.54
0.00
0.00
0.00
0.00
0.38
0.62
0.61
0.00
0.00
0.00
0.00
0.00
0.00
6.31
0.00

0.01
0.01
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.02
0.00
0.00
0.00
0.00
0.00
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.07
0.00

Land use/ cover 2.41 5.04 0.52 0.41
agri

airport
bagh

bareland
denseforest
dryfarming
�sherypool
goodrange

island
lowforest

mix(agri bagh)
mix(agri dryfarming)

mix(agri follow)
mix(agri X)
mix(bagh X)

mix(dryfarming x)

12170
217

159115
42267
16477
40261
2032

363469
7

15644
308717
50912
1643
5282
50874
926712

0
0
6
0
3
0
0
2
0
3
0
1
0
0
0
37

0.00
0.00
1.83
0.00
8.81
0.00
0.00
0.27
0.00
9.28
0.00
0.95
0.00
0.00
0.00
1.93

0.00
0.00
0.07
0.00
0.34
0.00
0.00
0.01
0.00
0.36
0.00
0.04
0.00
0.00
0.00
0.07
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Table 1. Spatial relationship between each e�ective factor and landslide locations based on the FR and SE models
(continued).

Class No. of pixels
in domain

No. of
landslides

FR Eij Hj Hjmax Ij Wj

Land use/ cover 2.41 5.04 0.52 0.41
mix(goodrang x)
mix(lowforest x)
mix(modforest x)
mix(modrange x)
mix(poorrange x)
mix(woodland x)

modforest
modrange
poorrange

rock
saltlake
saltland
urban

verylowforest
water

wetland1
wetland2

166383
34965
17490
73449
17775
8660
15128
448181
895493
1156
1333
360

19632
1192
8044
9097
12555

2
0
0
1
0
0
0
6
16
0
0
0
0
0
0
0
0

0.58
0.00
0.00
0.66
0.00
0.00
0.00
0.65
0.86
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.02
0.00
0.00
0.03
0.00
0.00
0.00
0.03
0.03
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Soil 1.18 2.81 0.58 1.33
Rock outcrops/entisols

Rock outcrops/inceptisols
Water body

Aridisols
Entisols/aridisols

Entisols/inceptisols
Inceptisols

1632502
307784
43606
322585
18265
19576

1371498

37
11
0
1
0
5
23

1.09
1.72
0.00
0.15
0.00
12.33
0.81

0.07
0.11
0.00
0.01
0.00
0.77
0.05

the Area Under the Receiver Operating Characteristic
(AUROC) was recorded. For the iteration parameter
and seed parameter, numbers from 10 to 20 and from
1 to 10 were used, respectively. The results of RF and
RF-BA modeling are shown in Table 2. According
to Figure 4, the sensitivity, transparency, accuracy,
and ROC values of the hybrid model (RF-BA) are
higher than those of the single model (RF), indicating
the better performance of the hybrid model than that
of the other. After training the hybrid models, the
modeling process was generalized to the whole study
area and then, to the landslide susceptibility map
using RF-BA and RF models in ArcGIS 10.3 software.
Upon use of the natural breaks classi�cation method,
the landslide susceptibility map was divided into �ve
categories: very low susceptibility, low susceptibility,
medium susceptibility, high susceptibility, and very
high susceptibility. The landslide susceptibility maps
prepared by RF and RF-BA modeling are shown in
Figures 6 and 7, respectively.

Table 2. Result of the RF and RF-BA models.

Criterion RF-BA RF
Train Test Train Test

TP 75 30 73 28
TN 76 31 74 29
FP 2 3 4 6
FN 1 2 3 5

Sensitivity 0.962 0.797 0.948 0.778
Transparency 1 0.933 0.906 0.917

Accuracy 0.981 0.897 0.926 0.833
AUC 0.993 0.923 0.984 0.897

3.4. Validation of the results
Based on the success rate and prediction rate meth-
ods, the results of the landslide susceptibility maps
were evaluated by comparing them with the existing
landslides [8]. Success rate results were obtained based
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Figure 4. Landslide susceptibility map prepared by the
FR model.

Figure 5. Landslide susceptibility map prepared by the
SE model.

Figure 6. Landslide susceptibility map prepared by the
RF model.

Figure 7. Landslide susceptibility map prepared by the
RF-BA model.
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Figure 8. Results for the ROC curve.

on the training data, and the prediction rates were
obtained from validation datasets. The areas under
the prediction rate curve are 0.88, 0.89, 0.91, and
0.92 for FR, SE, RF, and RF-BA models, respectively
(Figure 8). The results indicate that the hybrid data
mining model is more e�cient than other models,
even the single data mining model. In addition,
data mining models, in general, are characterized by
higher accuracy than bivariate statistical models. The
�ndings of the present study are in agreement with the
results obtained in [12,47].

4. Discussion

Landslides have complex mechanisms and many factors
are involved in their occurrence. Identi�cation of the
locations with the highest potential for this type of
mass movement helps managers and planners with land
use planning and land development programs. To this
end, in this study, 12 parameters were �rst identi�ed
as the primary factors a�ecting landslides. Then, they
were analyzed and used for landslide susceptibility
mapping through FR, SE, RF, and RF-BA models.
The results from the ROC curve indicated that RF-
BA had the highest accuracy of modeling in landslide
susceptibility mapping, followed by RF, SE, and FR.
In addition, it was observed that data mining models
were more accurate than statistical methods. The
fundamental di�erence between the statistical and data
mining methods lies in their assumptions or the nature
of data being processed [45]. Generally, it is assumed
in statistical techniques that data distribution is clear
and normal; further, the accuracy or inaccuracy of

the �nal results depends on the accuracy of the initial
assumption. On the contrary, data mining methods
do not make any assumptions about the data. Data
mining methods operate much better when the data
is incomplete or contradictory because in such cases,
the missing data is somehow retrieved based on the
pattern of the data. On the other hand, in statistical
methods, the problem of the lack of some data yields an
incomplete outcome. While statistical methods are not
capable of detecting complex nonlinear patterns, data
mining methods due to their exploratory properties
begin to model behavior of the data without any initial
assumptions, hence adaptable over time [45]. Through
data mining, the algorithm becomes more and more
vibrant. In addition, the nonlinear, robust structure of
these models facilitates simulating the behavior of both
social and real environments. The obtained results in
this study revealed that the RF-BA model was more
accurate than the RF model alone, mainly because
in the bagging method, clusters from di�erent sets of
initial datasets guaranteed diversity condition and the
accuracy increased by averaging sample classi�cations
of di�erent datasets. The �ndings of the present study
are in agreement with the results obtained in [34,48].
Furthermore, according to the results, the entropy
model exhibited higher accuracy than the FR model
since it employed the results of the FR model. The
results from the present study are consistent with those
obtained by Hong et al. [49].

5. Conclusion

The main objective of this study was to compare
Random Forest (RF) and RF-BA data mining mod-
els with Frequency Ratio (FR) and SE bivariate F-
statistical models for landslide susceptibility mapping.
The following results were achieved:

1. According to the Receiver Operating Characteristic
(ROC) curve, the RF-BA, RF, FR, and SE models
obtained the accuracy rates of 0.92, 0.91, 0.89, and
0.88, respectively;

2. According to the ROC curve and AUC, RF and
RF-BA data mining models exhibited higher accu-
racy than that of statistical methods in landslide
susceptibility mapping;

3. Hybrid models were more accurate than single
models in dual data mining and statistical models;

4. Based on the SE model, soil, land use, and distance
from fault were the most important factors in
landslide occurrence in the study area;

5. According to the results of the FR model, the
probability of landslide occurrence in the study area
was higher with altitudes between 1562{1942 m,
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slope angles between 10.5�{17.7�, south slope as-
pect, distances from fault less than 500 m, distances
from river less than 500 m, distances from road
between 5000 { 10000 m, rainfalls between 543 { 700
mm, drainage densities between 0.19 { 0.34, road
densities between 0.07 { 0.13, Eva lithology, low
forest land use, and Entisols/Inceptisols soil order.

References

1. Keesstra, S.D., Quinton, J.N., van der Putten, W.H.,
et al. \The signi�cance of soils and soil science
towards realization of the United Nations", SOIL,
2(3), pp. 111{128 (2016). https://doi.org/10.5194/soil-
2-111-2016

2. Bordoni, M., Meisina, C., Valentino, R., et al. \Site-
speci�c to local-scale shallow landslides triggering
zones assessment using TRIGRS", Nat Hazards Earth
Syst. Sci., 15(5), pp. 1025{1050 (2015).

3. Tsangaratos, P. and Benardos, A. \Estimating land-
slide susceptibility through a arti�cial neural network
classi�er", Natural Hazards, 74(3), pp. 1489{1516
(2014).

4. Dilley, M., Chen, R.S., Deichmann, U., et al., Natural
Disaster Hotspots: a Global Risk Analysis, The World
Bank Hazard Management Unit", Washington (2005).

5. Lee, S. and Choi, J. \Landslide susceptibility mapping
using GIS and the weight-of-evidence model", Inter-
national Journal of Geographical Information Science,
18(8), pp. 789{814 (2004).

6. Li, Z., He, Y., Li, H., et al. \Antecedent rainfall
induced shallow landslide-A case study of Yunnan
landslide, China", Scientia Iranica, 26(1), pp. 202{212
(2019).

7. Lee, S. and Sambath, T. \Landslide susceptibility
mapping in the Damrei Romel area, Cambodia using
frequency ratio and logistic regression models", Envi-
ronmental Geology, 50(6), pp. 847{855 (2006).

8. Pak, A. and Sarfaraz, M. \Lattice boltzmann method
for simulating impulsive water waves generated by
landslides", Scientia Iranica, 21(2), pp. 318{328
(2014).

9. Pandey, V.K., Pourghasemi, H.R., and Sharma, M.C.
\Landslide susceptibility mapping using maximum
entropy and support vector machine models along
the Highway Corridor, Garhwal Himalaya", Geocarto
International, 35(2), pp. 168{187 (2020).

10. Yilmaz, I. \Landslide susceptibility mapping using
frequency ratio, logistic regression, arti�cial neural
networks and their comparison: a case study from Kat
landslides (Tokat-Turkey)", Computers & Geosciences,
35(6), pp. 1125{1138 (2009).

11. Gadtaula, A. and Dhakal, S. \Landslide susceptibility
mapping using Weight of Evidence Method in Haku,
Rasuwa District, Nepal", Journal of Nepal Geological
Society, 58, pp. 163{171 (2019).

12. Chen, Z., Liang, S., Ke, Y., et al. \Landslide suscepti-
bility assessment using evidential belief function, cer-
tainty factor and frequency ratio model at Baxie River
basin, NW China", Geocarto International, 34(4), pp.
348{367 (2019).

13. Devkota, K.C., Regmi, A.D., Pourghasemi, H.R., et
al. \Landslide susceptibility mapping using certainty
factor, index of entropy and logistic regression models
in GIS and their comparison at Mugling-Narayanghat
road section in Nepal Himalaya", Natural Hazards,
65(1), pp. 135{165 (2013).

14. Nohani, E., Moharrami, M., Shara�, S., et al. \Land-
slide susceptibility mapping using di�erent GIS-based
bivariate models", Water, 11(7), p. 1402 (2019).

15. Pascale, S., Parisi, S., Mancini, A., et al. \Landslide
susceptibility mapping using arti�cial neural network
in the urban area of senise and san costantino albanese
(basilicata, southern Italy)", In International Confer-
ence on Computational Science and Its Applications,
Springer, Berlin, Heidelberg, pp. 473{488 (2013).

16. Aghdam, I.N., Varzandeh, M.H.M., and Pradhan, B.
\Landslide susceptibility mapping using an ensemble
statistical index (Wi) and adaptive neuro-fuzzy in-
ference system (ANFIS) model at Alborz Mountains
(Iran)", Environmental Earth Sciences, 75(7), p. 553
(2016).

17. Pourghasemi, H.R., Jirandeh, A.G., Pradhan, B., et
al. \Landslide susceptibility mapping using support
vector machine and GIS at the Golestan Province,
Iran", Journal of Earth System Science, 122(2), pp.
349{369 (2013).

18. Hong, H., Kornejady, A., Soltani, A., et al. \Land-
slide susceptibility assessment in the Anfu County,
China: comparing di�erent statistical and probabilistic
models considering the new topo-hydrological factor
(HAND)", Earth Science Informatics, 11(4), pp. 605{
622 (2018).

19. Kim, J.C., Lee, S., Jung, H.S., et al. \Landslide sus-
ceptibility mapping using random forest and boosted
tree models in Pyeong-Chang, Korea", Geocarto Inter-
national, 33(9), pp. 1000{1015 (2018).

20. Oliveira, A., Fernandes, J., Bateira, C., et al. \In-
uence of digital elevation MODELS ON landslide
susceptibility with logistic regression model", Revista
do Departamento de Geogra�a, 36, pp. 33{47 (2018).

21. Park, S., Choi, C., Kim, B., et al. \Landslide sus-
ceptibility mapping using frequency ratio, analytic
hierarchy process, logistic regression, and arti�cial
neural network methods at the Inje area, Korea",
Environmental Earth Sciences, 68(5), pp. 1443{1464
(2013).

22. Dano, U.L., Balogun, A.L., Matori, A.N., et al. \Flood
susceptibility mapping using GIS-based analytic net-
work process: A case study of Perlis, Malaysia",
Water, 11(3), p. 615 (2019).



A. Aram et al./Scientia Iranica, Transactions A: Civil Engineering 29 (2022) 1077{1094 1093

23. Chen, W., Hong, H., Panahi, M., et al. \Spatial pre-
diction of landslide susceptibility using GIS-based data
mining techniques of an�s with whale optimization
algorithm (WOA) and grey wolf optimizer (GWO)",
Applied Sciences, 9(18), p. 3755 (2019).

24. Huang, F., Zhang, J., Zhou, C., et al. \A deep learning
algorithm using a fully connected sparse autoencoder
neural network for landslide susceptibility prediction",
Landslides, 17(1), pp. 217{229 (2020).

25. Nguyen, V.V., Pham, B.T., Vu, B.T., et al. \Hybrid
machine learning approaches for landslide susceptibil-
ity modeling", Forests, 10(2), p. 157 (2019).

26. Pham, B.T., Prakash, I., Dou, J., et al. \A novel hybrid
approach of landslide susceptibility modelling using
rotation forest ensemble and di�erent base classi�ers",
Geocarto International, 35(12), pp. 1267{1292 (2020).

27. Bui, D.T., Hoang, N.D., Nguyen, H., et al. \Spatial
prediction of shallow landslide using Bat algorithm
optimized machine learning approach: A case study in
Lang Son Province, Vietnam", Advanced Engineering
Informatics, 42, p. 100978 (2019).

28. Tien Bui, D., Shahabi, H., Omidvar, E., et al. \Shallow
landslide prediction using a novel hybrid functional
machine learning algorithm", Remote Sensing, 11(8),
p. 931 (2019).

29. Chen, W., Shahabi, H., Zhang, S., et al. \Land-
slide susceptibility modeling based on GIS and novel
bagging-based kernel logistic regression", Applied Sci-
ences, 8(12), p. 2540 (2018).

30. Shirzadi, A., Soliamani, K., Habibnejhad, M., et al.
\Novel GIS based machine learning algorithms for
shallow landslide susceptibility mapping", Sensors,
18(11), p. 3777 (2018).

31. Pham, B.T., Khosravi, K., and Prakash, I. \Appli-
cation and comparison of decision tree-based machine
learning methods in landside susceptibility assessment
at Pauri Garhwal Area, Uttarakhand, India", Environ-
mental Processes, 4(3), pp. 711{730 (2017).

32. Stocking, M.A. and Murnaghan, N., A Handbook for
the Field Assessment of Land Degradation, 1st Ed.,
Routledge (2002). https://doi.org/10.4324/97818
49776219

33. Hong, H., Liu, J., and Zhu, A.X. \Modeling landslide
susceptibility using LogitBoost alternating decision
trees and forest by penalizing attributes with the
bagging ensemble", Science of the Total Environment,
718, p. 137231 (2020).

34. Wu, Y., Ke, Y., Chen, Z., et al. \Application of
alternating decision tree with AdaBoost and bag-
ging ensembles for landslide susceptibility mapping",
Catena, 187, p. 104396 (2020).

35. He, S., Pan, P., Dai, L., et al. \Application of kernel-
based �sher discriminant analysis to map landslide sus-
ceptibility in the Qinggan River delta, Three Gorges,
China", Geomorphology, 171, pp. 30{41 (2012).

36. Xu, C., Dai, F., Xu, X., et al. \GIS-based support
vector machine modeling of earthquake-triggered land-
slide susceptibility in the Jianjiang River watershed,
China", Geomorphology, 145, pp. 70{80 (2012).

37. Li, X., Yang, H., Zhang, J., et al. \Time-domain analy-
sis of tamper displacement during dynamic compaction
based on automatic control. coatings", 11(9), 1092
(2021). DOI: 10.3390/coatings11091092

38. Yang, W., Chen, X., Xiong, Z., et al. \A privacy-
preserving aggregation scheme based on negative
survey for vehicle fuel consumption data", Infor-
mation Sciences, 570, pp. 526{544 (2021). DOI:
10.1016/j.ins.2021.05.009

39. Li, B., Feng, Y., Xiong, Z., et al. \Research on AI
security enhanced encryption algorithm of autonomous
IoT systems", Information Sciences, 575, pp. 379{398
(2021). DOI: 10.1016/j.ins.2021.06.016

40. Li, B., Yang, J., Yang, Y., et al. \Sign lan-
guage/gesture recognition based on cumulative dis-
tribution density features using UWB radar", IEEE
Transactions on Instrumentation and Measurement,
70, pp. 1{13 (2021). DOI: 10.1109/TIM.2021.3092072

41. Weng, L., He, Y., Peng, J., et al. \Deep
cascading network architecture for robust auto-
matic modulation classi�cation", Neurocomputing
(Amsterdam), 455, pp. 308{324 (2021). DOI:
10.1016/j.neucom.2021.05.010

42. Chao, L., Zhang, K., Wang, J., et al. \A comprehensive
evaluation of �ve evapotranspiration datasets based on
ground and GRACE satellite observations: Implica-
tions for improvement of evapotranspiration retrieval
algorithm", Remote Sensing (Basel, Switzerland),
13(12), p. 2414 (2021). DOI: 10.3390/rs13122414

43. Zhang, K., Wang, S., Bao, H., et al. \Characteristics
and inuencing factors of rainfall-induced landslide
and debris ow hazards in Shaanxi Province, China",
Natural Hazards and Earth System Sciences, 19(1), pp.
93{105 (2019). DOI: 10.5194/nhess-19-93-2019

44. Zuo, Y., Jiang, S., Wu, S., et al. \Terrestrial heat
ow and lithospheric thermal structure in the Chagan
Depression of the Yingen-Ejinaqi Basin, north central
China", Basin Research, 32(6), pp. 1328{1346 (2020).
DOI: 10.1111/bre.12430

45. Xu, J., Wu, Z., Chen, H., et al. \Study on strength be-
havior of basalt �ber-reinforced loess by digital image
technology (DIT) and Scanning Electron Microscope
(SEM)", Arabian Journal for Science and Engineering
(2021). DOI: 10.1007/s13369-021-05787-1

46. Zhang, K., Chao, L., Wang, Q., et al. \Using multi-
satellite microwave remote sensing observations for
retrieval of daily surface soil moisture across China",
Water Science and Engineering, 12(2), pp. 85{97
(2019). DOI: 10.1016/j.wse.2019.06.001

47. Kordestani, H., Zhang, C., Masri, S.F., et al. \An
empirical time-domain trend line-based bridge signal
decomposing algorithm using Savitzky-Golay �lter",
Structural Control and Health Monitoring, 28(7), n/a-
n/a (2012). DOI: 10.1002/stc.2750



1094 A. Aram et al./Scientia Iranica, Transactions A: Civil Engineering 29 (2022) 1077{1094

48. Zhou, W., Liu, J., Lei, J., et al. \GMNet: Graded-
feature multilabel-learning network for RGB-thermal
urban scene semantic segmentation," in IEEE Trans-
actions on Image Processing, 30, pp. 7790{7802
(2021). DOI: 10.1109/TIP.2021.3109518

49. Hong, H., Chen, W., Xu, C., et al. \Rainfall-induced
landslide susceptibility assessment at the Chongren
area (China) using frequency ratio, certainty factor,
and index of entropy", Geocarto International, 32(2),
pp. 139{154 (2017).

Biographies

Azad Aram received his BSc degree in Water Engi-
neering and an MSc degree in Civil Engineering with a
focus on water from the Islamic Azad University, Ma-
habad Branch. His master thesis is entitled \Hydraulic
simulation of river ow to determine the maximum
values of ood zone using software Mike 11".

Mohammad Reza Dalalian holds a PhD degree in
Physics and Soil Conservation. He conducted several
research on wind erosion, modeling the uptake of soil
contaminants, and soil improvement. Since 2004, he
has been an Assistant Professor at the Department
of Soil Science at the Islamic Azad University, Tabriz
Branch. In addition to teaching, research activities in
the form of master and doctoral students' theses and
research projects, he is the Director of the Department
of Soil and Environmental Engineering.

Siamak Saedi holds a PhD in Soil Science. Since
2001, he has been an Assistant Professor at the De-
partment of Soil Science at the Islamic Azad University,
Tabriz Branch. In addition to teaching, research activi-
ties in the form of Master and doctoral students' theses
and research projects, he was titled as a distinguished

professor in 2011. In fact, he is known as the founder of
Soil Science major at the Azad University of Tabriz as
well as the Director of the Department of Soil Science
for a few years. In addition, he was the executive
manager of a private soil, plant and water laboratory
for four years. Since 2009, he has worked as an o�cial
expert of justice and has studied land reform processes
in rural societies in North-Western of Iran.

Omid Ra�eyan holds a PhD degree in Natural Re-
sources Engineering. He has been interested in Remote
Sensing and GIS since 2000 and has specialized in his
master's and doctoral dissertations on the application
of RS&GIS in natural resources. His other research
interests include multi-criteria decision-making, urban
green space, and interpretation of aerial photographs.
From 2002 to 2008, he was the Director of scienti�c-
executive projects entitled \Updating vegetation maps
using satellite images" and \Preparing the forest type
and density map using aerial photographs" in the
Yekom Consulting Engineers Company. Since 2008,
he has been an Assistant Professor at the Department
of Environmental Engineering at the Islamic Azad
University, Tabriz Branch. In addition to teaching,
research activities in the form of master and doctoral
students' theses and research projects, he is the Head
of the Scientometrics O�ce of the university.

Samad Darbandi holds a PhD degree in Irrigation
and Drainage. Since 2000, he has been an Assistant
Professor at the Department of Water Engineering at
the Islamic Azad University, Tabriz Branch. He is
interested in modeling and simulation in the �elds of
water and soil. In addition to teaching, he conducts
research activities in the form of master and doctoral
students' theses and research projects.




