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Abstract. This paper presents the application of discriminant analysis in an Electrical
Discharge Machining (EDM) process to determine the comparative contribution of each of
its input parameters on the measured responses. It also identi�es the most signi�cant EDM
process parameters inuencing those responses. For this process, voltage, current, pulse-on
time, and pulse-o� time are treated as the input parameters, whereas, material removal
rate, electrode wear rate, and surface roughness are the responses. Based on the past
and simulated experimental data, both simultaneous and step-wise estimations are carried
out for each of the three responses showing the relationships between the EDM process
parameters and the considered responses. It is observed that in both these estimations,
pulse-o� time, current and pulse-on time respectively evolve out as the most signi�cant
parameters for material removal rate, electrode wear rate, and surface roughness. Step-wise
estimation identi�es voltage as the least signi�cant input parameter for all these responses.
The developed discriminant functions, which can also help in predicting the responses, are
�nally cross-validated.

© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

Electrical Discharge Machining (EDM) is a popular
industrially-accepted non-traditional machining pro-
cess, used for machining various advanced engineering
materials which are di�cult to cut by the conventional
machining processes. It is particularly suitable for
generating complex contours, patterns, and cavities,
especially on electrically conductive materials, like
tungsten and its alloys, bronze, copper, carbon and
stainless steels, inconel, titanium and its alloys, carbon
graphite, composites and other selected ceramic mate-
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rials [1]. In this process, material removal takes place
by a series of periodic and controlled electric discharges
between two electrodes (the tool and the workpiece),
with a very small gap maintained between them [2].
During EDM operation, the workpiece and the tool are
submerged in a dielectric liquid (kerosene or deionized
water), which acts as an insulator to control the spark
discharges.

In the EDM process, on increasing the voltage
between the electrodes, the electric �eld intensity in
this region increases, until it exceeds the dielectric
strength. At higher voltage, the dielectric breaks down
and allows the current to ow between the electrodes
in the form of sparks, which erode material from the
workpiece. After stopping the current ow, another
volume of dielectric liquid is used to ush into the
inter-electrode gap, carrying away the solid debris, so
that the dielectric property of the medium is restored.



B. Sarker and S. Chakraborty/Scientia Iranica, Transactions E: Industrial Engineering 31 (2024) 186{205 187

Thus, EDM is a thermal process where the material
is removed by the application of heat. The electrical
discharges between the tool and the workpiece act
as the source of heat. The points between the tool
and the workpiece, where the spark begins and ends
respectively, are heated to such an extent that the work
material melts and then vaporizes [2].

Due to its unique material removal characteristics,
it can generate intricate shape geometries on materials
irrespective of their hardness and brittleness properties.
Since there is no direct contact between the tool and
the workpiece, there is almost no force applied during
the machining operation, enabling the use of soft
and easy-to-machine electrodes even while machining
extremely hard workpiece materials [3]. Another major
advantage of the EDM process is that there is almost
no mechanical vibration and residual stress generation
during the machining operation. It can also machine
components with higher dimensional accuracy while
maintaining close tolerances. There are mainly three
types of EDM processes, i.e. hole-drilling EDM, die-
sinking EDM, and wire-EDM. Although the material
removal mechanism is almost the same in these EDM
processes, they have been employed to machine dif-
ferent components to satisfy the end requirements of
varying manufacturing industries. The performance of
an EDM process can often be characterized by various
responses, like Material Removal Rate (MRR), Tool
Wear Rate (TWR), Surface Roughness (SR), Electrode
Wear Rate (EWR), etc.

As EDM is a complex and transient micro-
physical process, its stochastic material removal mecha-
nism is a�ected by multiple factors, making it di�cult
to establish an appropriate model to investigate the
relations between the input parameters and responses
[4]. Past researchers have already attempted to im-
plement di�erent techniques, like multiple regression
analysis [5{8], Response Surface Methodology (RSM)
[9{12], Support Vector Machine (SVM) [13,14], Arti�-
cial Neural Network (ANN) [15{18], Adaptive Neuro-
Fuzzy Interference System (ANFIS) [19,20] etc. to
ascertain these relationships between the input and
output parameters of the EDM processes. A list of
the input parameters, responses, and mathematical
techniques adopted by past researchers for parametric
analysis of EDM processes is provided in Table 1. It
can clearly be noticed from this table that there exists
no research work where any of the binary statistical
classi�cation techniques has been successfully applied
for the modeling of conventional or non-traditional
machining processes. Binary classi�cation techniques,
like logistic regression, probit model, decision tree, dis-
criminant analysis, etc. are the methods of categorizing
objects of a particular set into two groups on the
basis of a classi�cation rule, and thus predicting the
group in which an object would be positioned. They

can determine the relationships between the input
and output variables, and identify the most signi�cant
input variable for each of the output variables.

As observed from Table 1, di�erent techniques,
like multiple regression analysis, RSM, SVM, ANN,
ANFIS, etc. have already been deployed for machining
performance prediction of EDM processes. But, they
all have their own drawbacks. The SVMs cannot
specify the score of the observations due to the lack of
a linear combination of independent variables or func-
tions, thereby indicating a paucity of transparency in
the result. Thus, the contribution of each independent
variable to the dependent variable cannot be de�nitely
represented. Similarly, the ANN is a black-box type
approach that cannot provide the causal relationship
between the independent and dependent variables.
Besides su�ering from the inability to deal with high-
dimensional data, ANFIS also faces a problem similar
to SVM and ANN, i.e., lack of ability to establish
a relationship between independent and dependent
variables in the form of an equation [21]. Thus,
the inuence of each independent variable, absolute
or comparative, on the dependent variable cannot be
explained by these techniques due to the lack of an
appropriate equation or function. Interpretation of the
derived results and classi�cation of further observations
may also be di�cult to achieve. Furthermore, all these
three techniques su�er from over�tting of observations
and are complex, requiring higher computational time.

On the other hand, discriminant analysis is a sta-
tistical approach that �nds its application in compre-
hending the relation between a non-metric dependent
variable and multiple metric independent variables
while predicting the category into which an observation
can be classi�ed. It has evolved as an e�ective
prediction tool in marketing, �nance, social sciences,
and other allied areas. It develops a discriminant
function, similar to a multivariate regression equation
to enable prediction and explanation of the contri-
bution of each independent variable on the behavior
of the dependent variables. The discriminant score
calculated based on the discriminant function helps
in the classi�cation of the observations into relevant
groups. While the independent variables can be
compared based on their individual contributions to
the changing values of the dependent variables during
simultaneous estimation, the discriminant analysis also
allows step-wise estimation, which can identify only the
signi�cant independent variables, while removing the
insigni�cant ones from further analysis.

Although discriminant analysis is analogous to
multiple regression analysis, it has an added advantage
based on its ability to compute the di�erence between
group means and the inuence of the independent
variables behind this di�erence. Since, it attempts to
maximize the di�erence between the group means and
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Table 1. List of input parameters, responses, and mathematical tools for parametric study of EDM processes.

Sl.
no.

Author(s) Input parameters Responses Tool(s)

1 Debnath et al. [5] Pulse-on time,
pulse-o� time, current

MRR, SR, TWR Multiple regression analysis

2 Singh et al. [6]
Pulse-on time,
pulse-o� time,

induced current
MRR, SR Multivariate regression analysis

3 Gudipudi et al. [7]
Pulse-on time,
pulse-o� time,

current

MRR, average
recast layer thickness

Multiple regression analysis

4 Kishan et al. [8]
Pulse-on time,
pulse-o� time,

discharge current
MRR, TWR Multivariate regression analysis

5 Kumar et al. [9]

Pulse-on time,
pulse-o� time,
peak current,

types of tool and
powder material

MRR, TWR RSM, desirability function

6 Sinha et al. [10] Current, pulse-on
time, voltage

MRR, TWR RSM

7 Rajneesh et al. [11]
Pulse-on time,
pulse-o� time,

discharge current
EWR, MRR, SR RSM

8 Soundhar et al. [12]
Pulse-on time,
pulse-o� time,

voltage, current
MRR, EWR, SR RSM

9 Aich and Banerjee [13]
Pulse-on time,
pulse-o� time,

current
MRR, SR SVM

10 Jiang et al. [14]
Pulse-on time,
pulse-o� time,

current
MRR, SR SVM

11 Rajesh and Anand [15]

Discharge current,
discharge voltage,

pulse-on time,
pulse-o� time,
oil pressure,
gap width

MRR, SR ANN

12 Bharti [16] Pulse-on time,
current, voltage

MRR, SR ANN
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Table 1. List of input parameters, responses, and mathematical tools for parametric study of EDM processes (continued).

Sl.
no.

Author(s) Input parameters Responses Tool(s)

13 Ong et al. [17]
Pulse interval,
pulse duration,
peak current

MRR, EWR
Radial basis function
neural network, moth

search algorithm

14 Moghaddam and
Kolahan [18]

Pulse-on time,
pulse-o� time,

voltage, duty factor,
peak current

MRR, TWR, SR ANN, particle swarm
optimization

15 Sethuramalingam and
Sundararaj [19]

Pulse-on time,
pulse-o� time,
pulse current

MRR, EWR, SR ANFIS

16 Fazlollahtabara and
Gholizadeh [20]

Pulse-on time,
duty cycle,

current
MRR, SR, EWR ANFIS

17 This paper
Pulse-on time,
pulse-o� time,

voltage, current
MRR, EWR, SR

Simultaneous and
step-wise discriminant

analysis

subsequently, the separation between the groups, it is
a more e�cient technique to identify the inuence of
the independent variables and their signi�cance on the
dependent variables. On the other hand, the RSM
technique attempts to �t the data of a system to a
polynomial even if it is not adequately explained by
second-order polynomials [22]. When the equation
developed using the RSM technique fails to explain
the system behavior properly, it becomes necessary to
reduce the range of values of the independent variables.
Discriminant analysis is a causal model that maximizes
the group di�erence by computing weights associated
with the independent variables. Hence, the inuence of
each independent variable on the dependent variable
is mirrored in the developed discriminant function.
Apart from this, it is not inuenced by the range of
the independent variable. It also runs faster with less
over�tting of observations.

The separation between the observations, classi-
�ed into binary groups, is usually accounted by the
Mahalanobis distance (D2), providing an acceptable
notion of distance with respect to standard deviation.
Its higher value signi�es more e�ectiveness of the dis-
criminant function correlating the independent and de-
pendent variables. On the contrary, multiple regression
analysis is based on the calculation of the Euclidean
distance using least square estimation. Similarly, while
classifying new observations into binary groups, their

corresponding D2 values from the group means are
calculated and it is allotted to the group having the
minimum D2 value.

It can be considered similar to principal compo-
nent analysis based on the aspect of dimensionality
reduction. It reduces the problem to a single dimen-
sion using the discriminant scores of the observations.
These observations are segmented into corresponding
groups formed by maximizing the separation between
the group centroids while minimizing the scatter or
variation across the scale. A two-group discriminant
analysis can also be considered similar to multiple
linear regression analysis. Both permit analysis of the
causal relationship between the independent variables
and dependent variables while envisaging the behavior
of each of the dependent variables for di�erent values
of the independent variables. Both these techniques
have the same set of assumptions and have provi-
sions for step-wise estimation. However, discriminant
analysis takes into account only non-metric dependent
variables, while multiple linear regression deals with
metric or continuous variables. Multiple regression is
observed to be inadequate if the dependent variables
are categorical. However, discriminant analysis can be
used to search out the causal relationships even for
continuous variables, if they are converted into cate-
gorical ones. All the measured values of the considered
dependent variables are segmented into high and low
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categories for successive application of discriminant
analysis. This paper thus presents the distinctive
application of discriminant analysis in the parametric
study of an EDM process to analyze the inuences
of its various input parameters on the responses and
identify the relative importance of those parameters in
enhancing the process performance.

The organization of this paper is structured as
follows: After providing a brief overview of the EDM
process and the need for discriminant analysis for its
study in the Introduction section, the mathematical
background of discriminant analysis is presented in
Section 2. Section 3 exhibits the past experimen-
tal data considered for discriminant analysis. The
discriminant functions for the EDM process based
on simultaneous estimation and step-wise estimation
methods are respectively provided in Sections 4 and 5.
Discussions and conclusions are respectively furnished
in Sections 6 and 7.

2. Discriminant analysis

Discriminant analysis is a multivariate statistical tech-
nique deployed for separating distinct sets of objects
(observations) and assigning new objects to previously
de�ned groups [23]. It evaluates the connection be-
tween dependent variables, which are categorical (non-
metric or nominal), and independent variables, which
are metric. A discriminant function, which is the linear
combination of two or more independent variables,
precisely discriminating the objects within a group
with a priori, is developed in this analysis [24]. The
discriminant function can be represented as follows:

Zqr = �+ �1X1r + �2X2r + ::::::::+ �nXnr; (1)

where Zqr denotes the score of discriminant function q
for object r, � is the intercept, Xnr is the independent
variable n for object r and �n represents the discrimi-
nant coe�cient for independent variable n.

Discriminant analysis �ttingly validates the hy-
pothesis of equality of group means of all the inde-
pendent variables for two or more groups [24]. The
group mean is determined by calculating the simple
average of the discriminant scores for all the elements
within a certain group. This group is also referred to
as a centroid, with one group centroid for each group.
The group centroid indicates the most representative
position of an element in a particular group, while a
comparison of group centroids shows the separation
between the groups due to discriminant function. It
can also predict the group in which a certain obser-
vation would �t depending on the proximity of the
discriminant score of the observation to the group
centroids. The test for statistical signi�cance of the
discriminant function is a hypothesized measure of the

distance between the group centroids [24]. For this,
the discriminant score distributions of the considered
groups are contrasted and the function is tested on the
basis of overlap between the groups. A small overlap
indicates that the discriminant function signi�cantly
separates the groups, while a large overlap symbol-
izes that the groups cannot be properly segmented.
The discriminant analysis generates more than one
discriminant function if the dependent variables consist
of more than two groups. In fact, this analysis
produces (g�1) functions, where g denotes the number
of groups, with each function calculating a di�erent
discriminant score. This paper deals with dependent
variables containing two groups, with a combination
of independent variables and their relationships with
the dependent variables through a single discriminant
function, where the responses of the considered EDM
process are treated as the dependent variables and
input parameters as the independent variables.

The application methodology of discriminant
analysis is depicted in the form of a owchart in
Figure 1. The �rst step involves in identi�cation of the
problem statement and objectives of the analysis. Dis-
criminant analysis can act as a pro�le analysis, where it
can provide an objective assessment of the di�erences
between groups on a set of independent variables [24].
The aim of this paper is focused on adopting this binary
classi�cation technique in identifying the e�ects of
various EDM process parameters on the responses and
also �nding out the most signi�cant process parameter
inuencing each of the outputs. In the next step, the
research framework is built. Determination of the input
and output variables takes place, followed by classi�-
cation of the output variables into the corresponding
binary categories. If the output variable is metric, it
is converted into non-metric data. The sample size
is also required to be checked at this stage. Brown
and Tinsley [25] suggested that the ratio between the
sample size and the number of independent variables
(input variables) should be a minimum of 10:1.

Then, the assumptions of discriminant analysis
need to be validated. These assumptions are related
to normality, multicollinearity, and equality of covari-
ance matrices. The independent variables must be
checked for univariate normality because it is the most
e�ective measure of con�rming multivariate normality
[24]. Multicollinearity indicates that two or more
independent variables are highly correlated, and one
independent variable in the analysis can be predicted
and described by the other independent variables,
adding little to the explanatory power of the entire
dataset [24]. Hence, the absence of multicollinearity
among the independent variables is highly desired.
Multicollinearity can be tested by the Variance Ina-
tion Factor (VIF). It measures the degree to which
variance for each variable would be higher for multi-
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Figure 1. Flowchart showing steps of discriminant analysis.

collinear data than for orthogonal data [26]. Equality
of covariance matrices or homoscedasticity signi�es
whether all the variance-covariance matrices across the
groups are equal or not [27]. It is veri�ed by the Box's
M test, which assumes the null hypothesis that the
within-class covariance matrices are equal; hence, an
insigni�cant result is desired, which cannot reject the
null hypothesis. Suppose that a particular dependent
variable is classi�ed into a number of groups with nj
observations in each group and the estimated within-
group covariance is Sj . The Box's M can then be
calculated using the following equation:

M = (N � a) ln jSj �
aX
j=1

(nj � 1) ln jSj j; (2)

where N =
aP
j=1

nj and S =

aP
j=1

(nj�1)Sj

(N�a) :

In the next step, the corresponding discriminant
functions are developed based on both the simultaneous
estimation and step-wise estimation methods. In the
simultaneous estimation method, all the variables are
involved in the model, irrespective of their ability
to discriminate objects between the groups. The
discriminant function would thus be a function of all
the independent variables considered in the analysis.
Step-wise estimation is applied to determine the set of
the most signi�cant independent variables, i.e. those
variables having the maximum discriminating powers.
The discriminant model is constructed in steps, where
after every step, the variables, not included in the
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model, are assessed to identify the one having the
highest discriminating power. This results in the
selection of the signi�cant independent variables and
the process would continue step-wise until all the
signi�cant variables are involved in the model. The
inclusion and exclusion of the variables in the model
are respectively controlled by the `F to enter' and
`F to remove' values. The F -value for a particular
independent variable denotes the statistical signi�cance
in discriminating between the groups of dependent
variables. The result of both the simultaneous and
step-wise estimation methods is the development of the
discriminant function, as shown earlier in Eq. (1). The
model �t of the developed function can be evaluated
here with the help of eigenvalue and Wilks' lambda.
The eigenvalue can be explained as the ratio of the
between-groups sum of squares to the within-group
sum of squares [28]. A higher eigenvalue is always
desired for establishing the model �t. The Wilks'
lambda is a likelihood ratio statistic for validating
the hypothesis that the group means are equal in the
population and approach zero if any two groups are well
separated [29]. Thus, an insigni�cant Wilks' lambda
value is always preferred. Suppose B is the `between-
groups' matrix and W is the `within-group' matrix, the
Wilks' lambda (�) can then be calculated as below [30]:

� =
det(W )

det(W +B)
: (3)

The discriminant functions are usually interpreted
with the help of standardized coe�cients, unstandard-
ized coe�cients, and structure matrix. Each indepen-
dent variable has a standardized coe�cient in each of
the discriminant functions. The size of the standard-
ized coe�cient is proportional to the inuence of the
respective independent variable on the discrimination
power to segregate observations between the corre-
sponding groups. These coe�cients help comparison
between the independent variables, which are measured
in di�erent scales. The standardized coe�cients of
the independent variables with larger absolute values
represent their higher discriminating ability. Another
way to understand how each independent variable
explains a discriminant function is to analyze the
related structure matrix. The structure coe�cients,
also known as discriminant loadings or structure cor-
relations, are the correlations between the independent
variables and discriminant functions. Thus, they can
be considered similar to factor loadings in measuring
the relative inuences of all the independent variables
in the discriminant function. One distinct feature of
structure correlations is that they can be computed for
all the variables, irrespective of their selection in the
model during step-wise estimation of the discriminant
function. The unstandardized coe�cients, calculated
for each of the independent variables, are used to form

the discriminant function, which in turn, is employed to
calculate the corresponding discriminant score. These
scores are quite helpful during cross-validation and
allocation of the objects, which are not classi�ed into
the relevant groups. The prediction of the group
to which an object would relate is indicated by its
discriminant score and its proximity to the group
centroid. Group centroids are basically the group
means of the discriminant scores. The group centroids
are employed to estimate the cut-o� score, which acts
as the standard with respect to which the discriminant
scores are compared to �nd out the group in which
an object is to be categorized. The cut-o� score
(ZC) between the two groups is calculated using the
following expressions:

a) For unequal groups:

ZC =
NAZB +NBZA

NA +NB
; (4)

where NA and NB represent the group sizes, and
ZA and ZB denote the group centroids respectively.

b) For equal groups:

ZC =
ZA+ZB

2
: (5)

Finally, the results derived from this analysis are
validated, while measuring the degree of accuracy of
the discriminant function in categorizing the objects.
This validation can be performed in two ways, i.e.
calculating the hit ratio and cross-validation. The
discriminant analysis begins with a sample of objects
classi�ed into pre-de�ned groups. So, when the analysis
is completed and the discriminant scores are calculated,
the objects are re-classi�ed into di�erent groups ac-
cording to the proximity of their discriminant scores
with respect to those of the group centroids. Thus, the
hit ratio is the percentage of objects classi�ed correctly
by the discriminant function. Besides calculating the
hit ratio, cross-validation also needs to be performed.
In discriminant analysis, the discriminant coe�cients
are computed so as to maximize the di�erence between
the groups [31]. While doing this, discriminant analysis
takes advantage of the di�erences among the groups
that occur only because of the speci�c characteristics of
the sample. Thus, there is a requirement to generalize
the �ndings for all samples, in order to demonstrate
the universality of the analysis and computed function
based on cross-validation. In this paper, the leave-one-
out approach of cross-validation is adopted [24], where
one object from the sample is methodically left out and
the analysis is performed on the remaining items. The
observation, which was previously excluded, is then
categorized into any of the binary groups based on the
discriminant score calculated using the discriminant
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function derived by the analysis. This process is
continued until all the objects in the sample are left
out and categorized into groups. High values of hit
ratio and cross-validation are recommended to validate
the results obtained from the discriminant analysis.

3. Discriminant analysis of an EDM process

As mentioned earlier, this paper aims to determine the
e�ects of di�erent input parameters of an EDM process
on each of its responses based on discriminant analysis.
Using a central composite design plan, Soundhar et
al. [12] performed 30 experiments on a die-sinking EDM
set-up (Grace D-6030S make). A specially treated
titanium alloy (TZN) (Ti-13Zr-13Nb) was chosen as
the work material having a 20 mm diameter and
35 mm length. Four EDM process parameters, i.e.
voltage, current, pulse-on time, and pulse-o� time are
considered here as the independent variables, whereas,
MRR (in g/min), EWR (in g/min), and SR (in �m)
are the dependent variables (responses) in this analysis.
In order to achieve higher MRR and lower EWR,
a graphite electrode having a 10 mm diameter with
negative polarity was used. All the specimens were
machined for 20 min and commercial-grade kerosene
was utilized as the dielectric uid. The MRR measures
the amount of material removed from the workpiece
during unit machining time, whereas, EWR denotes
the amount of material removed from the tool electrode
during unit machining time. On the other hand, SR
characterizes the surface quality of a machined compo-
nent. It is quanti�ed by the deviations in the direction
of normal of a machined surface from its ideal form.
A machined surface would be rough if there are large
deviations; otherwise, it would be smooth. Separate
discriminant analyses are now performed here for all
three dependent variables, using both simultaneous
estimation and step-wise estimation methods. For the
said purpose, IBM SPSS Statistics 25.0 software is
employed.

To study the inuences of the EDM process
parameters on the responses, Soundhar et al. [12] varied
the values of the four input variables at three di�erent
operating levels, as provided in Table 2. The experi-
mental plan and the measured responses are displayed
in Table 3. Soundhar et al. [12] identi�ed the operating
levels of the considered EDM process parameters based
on several pilot runs and the availability of di�erent
settings of the control parameters in the EDM set-
up. This experimental data is considered in this paper
for the development of the subsequent discriminant
functions for the responses.

As all the values of the measured responses in
Table 3 are metric, they need to be categorized into
two non-metric groups, i.e., high and low, based on
their calculated median values. The response values

Table 2. Input variables and their levels in the EDM
process [12].

Input variable Symbol Unit Level
{1 0 1

Voltage Vo V 50 60 70
Current I A 8 12 16
Pulse-on time Ton �s 6 8 10
Pulse-o� time Toff �s 7 9 11

Vo: Voltage; I: Current; Ton: Pulse-on time;
Toff : Pulse-o� time.

higher than their corresponding medians are considered
here as high and indicated by 2, whereas, the response
values having less than the medians are treated as
low and are denoted by 1. Among the three re-
sponses, MRR requires higher values as the machining
e�ciency/productivity of an EDM process is directly
proportional to MRR. On the contrary, lower values
for EWR and SR are always preferred. The EWR
represents wearing out of the tool electrode during
the EDM operation and higher EWR incurs additional
machining costs due to frequent tool replacement. The
quality of the machined components is appraised using
SR values. Now, for carrying out the discriminant
analysis, the number of experimental runs in Table 3
is supposed to be not enough. According to Brown
and Tinsley [25], the ratio between the sample size and
number of independent variables should be a minimum
of 10:1. Pituch and Stevens [32] recommended a
ratio of 20:1, with a minimum of 20 members in the
group having the least number of objects. In order
to ful�ll this requirement, another 170 experimental
runs are simulated to make the total sample size equal
to 200. Table 4 shows the number of members in
each group for all three responses in this discriminant
analysis. These experimental runs are simulated in
such a way that all the EDM process parameters and
measured responses must lie within their respective
minimum and maximum values. As evident from
Table 4, groups for all the responses are almost similar
in size. The discriminant analysis would be particularly
robust if the di�erence in group sizes is preferably low.
Besides this, group sizes also play an important role in
calculating the cut-o� discriminant score, which would
identify the groups for each member according to this
analysis.

The assumptions required to be tested here are
normality, non-multicollinearity, and homogeneity of
covariance matrices. The results of normality and mul-
ticollinearity tests are equally applicable to both the
simultaneous and step-wise estimation methods, while
the results of the test for homogeneity of covariance
matrices for simultaneous and step-wise estimations
can be di�erent from each other. Hence, the test for ho-
mogeneity of covariance matrices is separately carried
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Table 3. Experimental details of the EDM process [12].

Exp.
no.

Vo I Ton Toff MRR MRR group EWR EWR group SR SR group

1 70 8 10 7 0.23 1 0.003 1 11.558 1
2 60 12 8 9 0.473 2 0.007 2 14.717 2
3 60 12 8 9 0.441 2 0.005 1 14.867 2
4 70 8 6 7 0.0789 1 0.004 1 7.647 1
5 50 8 6 11 0.5075 2 0.0004 1 6.245 1
6 50 16 10 7 0.2574 1 0.0115 2 14.514 2
7 60 12 10 9 0.6162 2 0.007 2 13.608 2
8 70 16 6 11 0.086 1 0.004 1 10.168 1
9 60 12 8 9 0.4731 2 0.006 1 10.325 1
10 60 12 8 9 0.4482 2 0.008 2 15.851 2
11 70 8 6 11 0.4272 1 0.0004 1 9.04 1
12 70 16 10 11 0.616 2 0.0117 2 14.514 2
13 60 12 8 9 0.4623 2 0.017 2 16.24 2
14 60 16 8 9 0.5707 2 0.0101 2 11.728 1
15 60 12 8 9 0.4572 2 0.007 2 12.485 2
16 50 16 6 7 0.2193 1 0.008 2 10.008 1
17 60 12 8 7 0.322 1 0.008 2 12.512 2
18 50 8 6 7 0.099 1 0.0042 1 6.301 1
19 70 16 6 7 0.3206 1 0.0105 2 9.577 1
20 50 12 8 9 0.205 1 0.0076 2 12.629 2
21 50 8 10 11 1.051 2 0.0043 1 10.389 1
22 60 12 8 11 0.6305 2 0.0057 1 12.196 1
23 60 12 6 9 0.34 1 0.0044 1 7.545 1
24 50 16 6 11 0.0448 1 0.003 1 6.753 1
25 50 8 10 7 0.2004 1 0.0039 1 13.289 2
26 60 8 8 9 0.7129 2 0.0041 1 9.149 1
27 70 12 8 9 0.2412 1 0.0085 2 18.214 2
28 50 16 10 11 0.525 2 0.0107 2 16.758 2
29 70 16 10 7 0.4086 1 0.0133 2 14.814 2
30 70 8 10 11 1.0208 2 0.0036 1 14.322 2

Median 0.4341 0.0065 12.3405
Vo: Voltage; I: Current; Ton: Pulse-on time; Toff : Pulse-o� time; MRR: Material Removal Rate;
EWR: Electrode Wear Rate; SR: Surface Roughness.

Table 4. Number of members in each group for the
discriminant analysis.

Number of members
in each group

Group MRR EWR SR

1 104 106 104
2 96 94 96

out in this paper for each of the estimation methods.
In order to validate the normality assumption for the
independent variables, the corresponding skewness and

kurtosis values are estimated using Eqs. (6) and (7)
respectively. Table 5 provides the results of normality
and multicollinearity tests for the considered input
(independent) variables.

Moment measure of skewness =
m3

�3 =
m3

(pm2)3 ; (6)

Kursotis =
m4

�4 � 3; (7)

where � is the standard deviation of the observations,
and m2 and m3 are the second and third-order central
moments of the observations respectively.
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Table 5. Tests for normality and multicollinearity.

Input variable Normality test Multicollinearity test
Skewness Kurtosis Tolerance VIF

Vo 0.105 {1.348 1.000 1.000
I {0.009 {1.322 1.000 1.000
Ton 0.000 {1.365 1.000 1.000
Toff {0.088 {1.353 1.000 1.000

Vo: Voltage; I: Current; Ton: Pulse-on time; Toff : Pulse-o� time;
VIF: Variance Ination Factor.

Table 6. Assessment of the model �t for simultaneous estimation.

Output variable Eigenvalue Canonical correlation Wilk's lambda Chi-square Df p-value

MRR 0.703 0.643 0.587 104.404 4 < 0:001
EWR 0.986 0.705 0.503 134.519 4 < 0:001

SR 0.741 0.652 0.574 108.661 4 < 0:001

MRR: Material Removal Rate; EWR: Electrode Wear Rate; SR: Surface Roughness; Df: Degree of Freedom.

According to Pituch and Stevens [32], the abso-
lute skewness and kurtosis values must be smaller than
2 to validate the conclusion that the distribution is
practically consistent and normal. It can be observed
from Table 5, that the absolute values of skewness
and kurtosis values are less than the corresponding
threshold value of 2. Hence, it can be inferred that the
input variables have normal distributions. Tolerance is
the degree of variability in one independent variable
that cannot be explained by the other independent
variables. Its value ranges between 0 and 1, where
1 indicates that an independent variable cannot be
explained at all by the other independent variables.
The VIF is the reciprocal of tolerance. In Table 5,
values of tolerance and VIF are both 1 for all the inde-
pendent variables, which indicates that these variables
are orthogonal in nature with no multicollinearity [33].

4. Simultaneous estimation of the discriminant
function

As mentioned earlier, in this estimation method, all the
independent variables are involved in the model and the
corresponding discriminant function is then developed.
At �rst, the equality of covariance matrices based on
the Box's M test needs to be checked. The Box's M
values for MRR, EWR, and SR responses are estimated
as 102.14, 62.625, and 45.565 respectively. However,
the p-values are smaller than 0.001, rendering them
signi�cant and thereby rejecting the null hypothesis
that the within-group covariance matrices are equal for
the discriminant analyses for the three responses. It
thus violates one of the basic assumptions as mentioned
in the earlier section. However, violation of the
assumption of equality of covariance matrices bears
less signi�cance during a discriminant analysis and the

Table 7. Group centroids for simultaneous estimation.

Group centroids
Group MRR EWR SR

1 (Low) {0.802 {0.931 {0.823
2 (High) 0.869 1.049 0.891

MRR: Material Removal Rate; EWR: Electrode
Wear Rate; SR: Surface Roughness.

discriminant analysis may also be robust in spite of this
violation [31]. Table 6 depicts the assessment of the
model �t based on Wilks' lambda. The Wilks' lambda
is a degree of ability of the discriminant function in
separating objects into a given number of groups. A
smaller value of the Wilks' lambda indicates a higher
discriminating power of the developed function. On
the other hand, a lower p-value (p < 0:05) reiterates
the same conclusion. As the discriminant analyses for
the three responses show very low p-values, it can be
inferred that the developed functions would perform
well in separating objects into the corresponding binary
groups. Tables 7{9 cumulatively help in investigating
the e�ects of voltage, current, pulse-on time, and pulse-
o� time on the EDM responses, i.e., MRR, EWR, and
SR.

4.1. Discriminant analysis for MRR
Table 7 exhibits that for MRR, the group with higher
values of MRR (more than 0.4341 g/min) has a positive
centroid. As a result, it can be propounded that the
input variables with positive standardized discriminant
coe�cients would attract the discriminant score of
observation towards the group with higher values of
MRR (group 2). Similarly, the negative coe�cients
would attempt to attract the discriminant score of
observation towards the group with lower MRR values
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Table 8. Standardized discriminant function and structure coe�cients for simultaneous estimation.

MRR EWR SR

Input
variable

Standardized
discriminant

function
coe�cient

Structure
coe�cient

Standardized
discriminant
mfunction
coe�cient

Structure
coe�cient

Standardized
discriminant

function
coe�cient

Structure
coe�cient

Vo {0.082 {0.096 0.073 0.06 0.066 0.041

I {0.260 {0.18 0.955 0.69 0.383 0.191

Ton 0.699 0.458 0.557 0.282 0.98 0.876

Toff 0.900 0.695 {0.557 {0.322 {0.309 {0.209

Vo: Voltage; I: Current; Ton: Pulse-on time; Toff : Pulse-o� time; MRR: Material Removal Rate; EWR: Electrode Wear Rate;

SR: Surface Roughness.

Table 9. Unstandardized discriminant function
coe�cients for simultaneous estimation.

Unstandardized discriminant
function coe�cient

Input variable MRR EWR SR

Vo {0.011 0.009 0.008

I {0.085 0.373 0.125

Ton 0.477 0.368 0.782

Toff 0.665 {0.374 {0.2

Constant {8.217 {4.593 {6.443

Vo: Voltage; I: Current, Ton: Pulse-on time;

Toff : Pulse-o� time; MRR: Material Removal Rate;

EWR: Electrode Wear Rate; SR: Surface Roughness.

(group 1). As evident from Table 8, pulse-on time and
pulse-o� time have positive coe�cients, and would thus
increase the discriminant score towards the centroid of
group 2. As a result, it can be concluded that with
an increase in the values of pulse-on time and pulse-o�
time, MRR would increase. Conversely, with increasing
values of voltage and current, MRR would tend to
decrease. The absolute values of these coe�cients also
indicate the strengths of the e�ect of the independent
variables on the discriminating power of the function,
which can be deployed to infer their comparative e�ects
on the output variable. Here, MRR depends mostly
on pulse-o� time, followed by pulse-on time, which is
in close agreement with the �ndings of Soundhar et
al. [12]. Based on Analysis of Variance (ANOVA) re-
sults, Soundhar et al. [12] determined the contributions
of pulse-o� time and pulse-on time on MRR as 25.01%
and 24.49% respectively. The structure coe�cients
(structure correlations) which denote correlations be-
tween the input variables and discriminant variable
(MRR) are respectively computed as �0:096, �0:18,
0.458, and 0.695 for voltage, current, pulse-on time,
and pulse-o� time.

In the EDM process, pulse-on time is the duration
when the electrical discharges take place between the

tool and the workpiece after the breakdown voltage of
the dielectric is achieved. So, more sparking would
result in more material removal in less machining time.
An increase in pulse-o� time also increases MRR.
According to Singh et al. [34], if there is insu�cient
time available for cooling and removal of debris because
of shorter pulse-o� time, the dielectric liquid gets
inadequate time to deionize at the beginning of the
next cycle, causing the next electrical discharges to
be unstable and thus slowing down the rate at which
material is removed from the workpiece. During these
experiments, current causes expansion of the plasma
channel. A decrease in MRR at a higher current may
be due to plasma column contamination resulting from
fragmentation of the electrodes (tool and workpiece)
[35]. Thus, an increase in current leads to decrement in
MRR value. With increasing values of voltage, the gap
distance for the initiation of a discharge increases [36].
This leads to an increase in the path of travel for the
spark, causing reduced intensity of the spark, thereby
decreasing the amount of material removed. Table 9
shows the unstandardized discriminant function co-
e�cients, based on which the following discriminant
function for MRR is developed.

ZMRR = �8:217� 0:011Vo � 0:085I + 0:477Ton

+0:665Toff : (8)

Now, using Eq. (8), the corresponding cut-o�
score is computed as 0.0669. It symbolizes that the ob-
servations having discriminant scores (computed using
Eq. (8)) higher than 0.0669, would be categorized into
group 2 (MRR more than 0.4341 g/min). Similarly,
observations with scores smaller than the cut-o� value
would be classi�ed into group 1, having MRR values
smaller than 0.4341 g/min.

4.2. Discriminant analysis for EWR
Table 7 already shows how di�erent input EDM pa-
rameters a�ect EWR. The group with higher values
of EWR has also a positive centroid. As observed
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from Table 8, voltage, current, and pulse-on time have
positive coe�cients, while pulse-o� time has a negative
coe�cient for EWR. As a result, it can be realized
that EWR would increase with increasing values of
voltage, current, and pulse-on time, while it would
decrease at higher values of pulse-o� time. The EWR
mostly depends on current, followed by pulse-on time
and voltage, which is also in close congruence with
the observations of Soundhar et al. [12]. The ANOVA
results indicated that the contribution of current on
EWR was 40.14%. The correlations between the EDM
process parameters and discriminant variable (EWR)
are respectively calculated as 0.06, 0.69, 0.282, and
�0:322 for voltage, current, pulse-on time, and pulse-
o� time.

An increase in pulse-on time increases EWR due
to higher spark intensity during the EDM operation.
Thus, the discharge energy during longer pulse-on time
dissipates more heat which would cause the tool to
wear out more due to excess heat [37]. Voltage and
current also show similar e�ects on EWR, as both of
them are responsible for increased discharge energy,
resulting in intense heating of the tool, wearing it
out at a higher rate. Increased pulse-o� time permits
heat dissipation during sparking, while ushing away
the debris from the machining zone, thus decreasing
the amount of heat generated [37]. Hence, the tool
wears out less, when pulse-o� time increases. Based on
Table 9, the following discriminant function for EWR
is now developed.

ZEWR = �4:593 + 0:009Vo + 0:373I + 0:368Ton

�0:374Toff : (9)

The corresponding cut-o� score is estimated as
0.1184. It symbolizes that the observations with
discriminant scores (calculated applying Eq. (9)) higher
than 0.1184, would be classi�ed into group 2 (EWR
more than 0.0065 g/min). On the other hand, observa-
tions with discriminant scores less than 0.1184, would
be allocated to group 1 (EWR less than 0.0065 g/min).

4.3. Discriminant analysis for SR
As evident from Table 7, the group with higher SR
values has a positive centroid. From Table 8, it can be
observed that voltage, current, and pulse-on time have
positive coe�cients, while pulse-o� time has a negative
coe�cient. As a result, it can be anticipated that SR
would increase with an increase in the values of voltage,
current, and pulse-on time, while it would decrease at
higher values of pulse-o� time. The absolute values of
these coe�cients also indicate that SR mostly depends
on pulse-on time, followed by current. It closely
matches with the �ndings of Soundhar et al. [12].
The ANOVA-based results determined a contribution
of 45.92% for pulse-on time on SR. The structure

coe�cients for SR response are respectively obtained
as 0.041, 0.191, 0.876, and �0:209 for voltage, current,
pulse-on time, and pulse-o� time.

When pulse-on time increases, the surface ma-
chined by the EDM operation may have deep overlying
craters, formed due to a series of sparks, extreme heat,
melting, and vaporization of the workpiece material at
discrete positions. The molten material, left over after
ushing by the dielectric liquid, undergoes solidi�ca-
tion to form lumps of debris, thus deteriorating the sur-
face quality [38]. An increase in pulse-o� time results
in a decrease in SR. Longer pulse-o� time enables the
wearing away of the workpiece material, simultaneously
providing a good cooling e�ect and time to rinse out the
debris from the machining zone. On increasing current,
discharge energy increases, leading to more erosion of
the workpiece and subsequently, an increase in SR
[38]. Higher voltage is also responsible for increasing
discharge energy, resulting in poor machined surface
quality due to increased erosion. Using the information
from Table 9, the following discriminant function for
SR is derived:

ZSR = �6:443 + 0:008Vo + 0:125I + 0:782Ton

�0:2Toff : (10)

The related cut-o� score is calculated as 0.0683.
It indicates that the observations with discriminant
scores more than 0.0683 would be assigned to group
2 (SR values more than 12.3405 �m). On the contrary,
observations with discriminant scores smaller than
0.0683 would be allocated to group 1 (SR values less
than 12.3405 �m).

4.4. Validation of the discriminant analysis
Finally, it is necessary to validate the discriminant
analysis results in order to justify whether the de-
veloped discriminant functions can be employed as
e�ective classi�cation and prediction tools for the said
EDM process. Table 10 provides the original and cross-
validation results for the discriminant functions devel-
oped based on the simultaneous estimation method. It
can be revealed from Table 4 that for MRR response,
among 200 simulated experimental observations, 104
have low MRR values (less than 0.4341 g/min) and
the remaining 96 have high MRR values (more than
0.4341 g/min). In Table 10, the discriminant function
developed for MRR can correctly identify 80 group 1
observations (out of 104) and 58 group 2 observations
(out of 96). So, the percentages of correct classi�cation
are 76.9% and 60.4% respectively. Thus, the hit ratio
for the discriminant function for MRR is 69% (138
out of 200), with a misclassi�cation error of 31%.
It has already been mentioned that the prediction
performance of the discriminant function is cross-
validated using the leave-one-out approach based on



198 B. Sarker and S. Chakraborty/Scientia Iranica, Transactions E: Industrial Engineering 31 (2024) 186{205

Table 10. Classi�cation results for the simultaneous estimation method.

Output
variable

Type of validation Count Group Predicted group
membership

Total

1 2

MRR

Original

Count 1 80 24 104
2 38 58 96

% 1 76.9 23.1 100
2 39.6 60.4 100

Cross-validated

Count 1 72 32 104
2 38 58 96

% 1 69.2 30.8 100
2 39.6 60.4 100

EWR

Original

Count 1 95 11 106
2 30 64 94

% 1 89.6 10.4 100
2 31.9 68.1 100

Cross-validated

Count 1 95 11 106
2 30 64 94

% 1 89.6 10.4 100
2 31.9 68.1 100

SR

Original

Count 1 85 19 104
2 35 61 96

% 1 81.7 18.3 100
2 36.5 63.5 100

Cross-validated

Count 1 85 19 104
2 35 61 96

% 1 81.7 18.3 100
2 36.5 63.5 100

MRR: Material Removal Rate; EWR: Electrode Wear Rate; SR: Surface Roughness.

IBM SPSS Statistics 25.0 software. For MRR, the
percentages of correct classi�cation for group 1 and
group 2 objects based on cross-validation are 69.2% and
60.4% respectively. Hence, the overall cross-validation
percentage is 65% (130 out of 200). Similarly, for
EWR, the hit ratio and cross-validation percentage
are both 79.5%. For SR, these values are also the
same as 73%. All these higher values indicate that
the discriminant functions developed based on the
simultaneous estimation method have the ability to
classify the response values in appropriate lower and
higher groups.

5. Step-wise estimation of the discriminant
function

The step-wise estimation of the discriminant function
is generally useful in selecting the most signi�cant
independent variables, which should be included in
the developed model for further analysis. The Wilks'

lambda values are considered to select the signi�cant
input variables. The variable with the lowest Wilks'
lambda which reduces the overall Wilks' lambda max-
imally, has the �rst preference to be included in the
model. This method starts with the model having no
input variable. In every step, the input variable whose
`F to enter' value is the highest and exceeds the entry
criterion, is added to the model. On the contrary, the
`F to remove' value is employed to eliminate a speci�c
variable from the model. The `F to enter' and `F
to remove' values, which are set at 3.84 and 2.71 as
default in the software, correspond to p-values of 0.05
and 0.1 respectively. The process continues until all the
variables, that meet the entry criterion, are included in
the model. But before this analysis starts, the earlier
assumptions need to be validated. Assumptions of
normality and multicollinearity are already tested in
Table 5, which also hold true for this analysis. The
Box's M test to validate the assumption of equality
of covariance matrices is again performed here for the
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Table 11. Assessment of model �t for step-wise estimation.

Output variable Eigenvalue Canonical correlation Wilk's lambda Chi-square Df p-value

MRR 0.699 0.641 0.589 104.120 3 < 0:001
EWR 0.981 0.704 0.505 134.340 3 < 0:001

SR 0.738 0.652 0.575 108.574 3 < 0:001

MRR: Material Removal Rate; EWR: Electrode Wear Rate; SR: Surface Roughness; Df: Degree of Freedom.

Table 12. Variables included/not included in the model for MRR.

Variable included Variable not included
Input

variable
Tolerance F -value Wilks'

lambda
Input

variable
Tolerance Minimum

tolerance
F -value Wilks'

lambda
Toff 0.922 88.353 0.854

Vo 0.999 0.922 0.546 0.587Ton 0.929 45.230 0.725
I 0.992 5.643 0.606

Vo: Voltage; I: Current; Ton: Pulse-on time; Toff : Pulse-o� time.

Table 13. Variables included/not included in the model for EWR.

Variable included Variable not included
Input

variable
Tolerance F -value Wilks'

lambda
Input

variable
Tolerance Minimum

tolerance
F -value Wilks'

lambda

I 0.881 130.121 0.840

Vo 0.997 0.881 0.519 0.503Toff 0.939 33.732 0.592

Ton 0.923 32.212 0.588

Vo: Voltage; I: Current; Ton: Pulse-on time; Toff : Pulse-o� time.

Table 14. Variable included/not included in the model for SR.

Variable included Variable not included
Input

variable
Tolerance F -value Wilks'

lambda
Input

variable
Tolerance Minimum

tolerance
F -value Wilks'

lambda

Ton 0.955 124.909 0.942
Vo 0.995 0.953 0.361 0.574I 0.963 12.601 0.612

Toff 0.989 8.406 0.600

Vo: Voltage; I: Current; Ton: Pulse-on time; Toff : Pulse-o� time.

three responses. The values of the Box's M for MRR,
EWR, and SR are obtained as 72.170, 61.396, and
37.877 respectively, with p-values of less than 0.001
for all the analyses. Even though the assumption of
the equality of covariance matrices is violated here, it
can be assured that the discriminant analysis would
be robust enough in spite of this violation [31]. The
model �ts need to be assessed using the Wilks' lambda
values which test the signi�cance of the discriminant
functions for the three responses. Table 11 provides
the eigenvalues and Wilks' lambda values for all the
dependent variables, which test the signi�cance of the
discriminant functions. As all the Wilks' lambda
and p-values are observed to be low, it can be pro-

pounded that the developed discriminant functions
would perform satisfactorily as e�ective evaluation and
prediction tools. Tables 12{14 show the variables
entered into the models and removed from the models
during the development of the step-wise discriminant
functions for the three responses.

From Table 12, it becomes evident that the
variables to be included in the analysis for MRR are
pulse-o� time, pulse-on time, and current. The input
variables that inuence EWR most are current, pulse-
o�, and pulse-on time. On the other hand, pulse-on
time, current, and pulse-o� time are the most impor-
tant input variables for SR. Based on the calculated
F -values, it can be unveiled that pulse-o� time has
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Table 15. Group centroids for step-wise estimation.

Group centroid
Group MRR EWR SR

1 (Low) {0.799 {0.928 {0.821
2 (High) 0.866 1.047 0.889

MRR: Material Removal Rate; EWR: Electrode
Wear Rate; SR: Surface Roughness.

the most signi�cant discriminating power in the case
of MRR, followed by pulse-on time and current. For
EWR, the most signi�cant input variable is current,
while SR is most signi�cantly inuenced by pulse-on
time. All these �ndings are in close agreement with
the observations of Soundhar et al. [12].

The voltage is identi�ed as the least signi�cant
contributor in all three discriminant analyses. In
discriminant analysis, an independent variable can
separate objects only when there exists a signi�cant
di�erence between the group means of the independent
variables. The di�erence in group means of voltage
is not signi�cant enough to create discrimination and
hence, the changes in the values of MRR, EWR, and
SR due to voltage seem to be insigni�cant. Like the
simultaneous estimation method, as discussed earlier,
Tables 15{17 highlight the e�ects of the input variables
on the responses.

5.1. Discriminant analysis for MRR
Table 15 shows that for MRR, the centroid of group
2 with higher values is positive, while the centroid of
group 1 with lower values is negative. Thus, pulse-
on time and pulse-o� time have positive e�ects on
MRR, while MRR decreases with increased values of
current. The structure coe�cients, denoting corre-
lations between the input variables and discriminant
variable (MRR) are respectively estimated as �0:014,
�0:180, 0.460, and 0.697 for voltage, current, pulse-
on time, and pulse-o� time. Both the standardized
coe�cient and structure coe�cient indicate that pulse-

Table 17. Unstandardized discriminant function
coe�cients for step-wise estimation.

Unstandardized
discriminant

function coe�cient
Input variable MRR EWR SR

I {0.085 0.374 0.126
Ton 0.478 0.368 0.782
Toff 0.669 {0.376 {0.203

Constant {8.881 {4.008 {5.918
Vo: Voltage; I: Current, Ton: Pulse-on time;
Toff : Pulse-o� time; MRR: Material Removal Rate;
EWR: Electrode Wear Rate; SR: Surface Roughness.

o� time has the maximum discriminating power on
MRR, and it is the most signi�cant input variable
inuencing MRR. Now, based on the unstandardized
discriminant function coe�cients of Table 17, the
following discriminant function is developed for MRR.

ZMRRS=�8:881�0:085I+0:478Ton+0:669Toff : (11)

The cut-o� score is estimated as 0.0668. It
indicates that the observations with discriminant scores
higher than 0.0668 would be categorized into group
2 (MRR more than 0.4341 g/min). Similarly, the
observations with discriminant scores lower than 0.0668
would be categorized into group 1 (MRR less than
0.4341 g/min).

5.2. Discriminant analysis for EWR
Based on Table 16, it can be noticed that current
and pulse-on time have positive e�ects on EWR, while
longer pulse-o� time decreases EWR. For this response,
the structure coe�cients are respectively determined as
�0:013, 0.692, 0.282, and �0:323 for voltage, current,
pulse-on time, and pulse-o� time. Both the standard-
ized coe�cient and structure coe�cient indicate that
current is the most signi�cant input parameter inu-
encing EWR. The corresponding discriminant function

Table 16. Standardized discriminant function and structure coe�cients for step-wise estimation.

MRR EWR SR

Input
variable

Standardized
discriminant

function
coe�cient

Structure
coe�cient

Standardized
discriminant

function
coe�cient

Structure
coe�cient

Standardized
discriminant

function
coe�cient

Structure
coe�cient

Vo { {0.014 { {0.013 { {0.025

I {0.262 {0.180 0.956 0.692 0.384 0.192

Ton 0.700 0.460 0.556 0.282 0.980 0.878

Toff 0.905 0.697 {0.562 {0.323 {0.313 {0.210

Vo: Voltage; I: Current, Ton: Pulse-on time; Toff : Pulse-o� time; MRR: Material Removal Rate;

EWR: Electrode Wear Rate; SR: Surface Roughness.
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Table 18. Classi�cation results for step-wise estimation.

Output
variable

Type of
validation

Count Group Predicted group
membership

Total

1 2

MRR

Original

Count 1 98 6 104
2 38 58 96

% 1 94.2 5.8 100
2 39.6 60.4 100

Cross-validated

Count 1 98 6 104
2 38 58 96

% 1 94.2 5.8 100
2 39.6 60.4 100

EWR

Original

Count 1 106 0 106
2 38 56 94

%

1 100 0 100
2 40.4 59.6 100

Cross-validated

Count 1 77 29 106
2 38 56 94

% 1 72.6 27.4 100
2 40.4 59.6 100

SR

Original

Count 1 85 19 104
2 43 53 96

% 1 81.7 18.3 100
2 44.8 55.2 100

Cross-validated

Count 1 85 19 104
2 43 53 96

% 1 81.7 18.3 100
2 44.8 55.2 100

MRR: Material Removal Rate; EWR: Electrode Wear Rate; SR: Surface Roughness.

for EWR is developed as below:

ZEWRS=�4:008+0:374I+0:368Ton�0:376Toff : (12)

The observations whose discriminant scores are
higher than the cut-o� score (0.1187) would be assigned
to group 2 (EWR more than 0.0065 g/min) and those
with scores less than the cut-o� score would be allotted
to group 1 (EWR less than 0.0065 g/min).

5.3. Discriminant analysis for SR
It can be revealed from Table 16 that on increasing
current and pulse-on time, SR increases; while it
decreases with longer pulse-o� time. The values of
the standardized coe�cient and structure coe�cient
highlight that pulse-on time has the maximum dis-
criminating power on SR, followed by current. The
computed discriminant function for SR is shown below:

ZSRS=�5:918+0:126I+0:782Ton�0:203Toff : (13)

The corresponding cut-o� score is estimated as
0.0683. The observations with discriminant scores

higher than 0.0683 would be assigned to group 2 (SR
more than 12.3405 �m). Similarly, the observations
with scores less than 0.0683 would be allotted to group
1 (SR less than 12.3405 �m).

5.4. Validation of the discriminant analysis
In Table 18, numbers of the correctly classi�ed items
in each group and hit ratios for each group for all three
output variables are provided along with the cross-
validation results. For MRR, the hit ratio and cross-
validation percentage are both 78%. In the case of
EWR, the hit ratio is 81%, while the cross-validation
percentage is 66.5%. The hit ratio and cross-validation
percentage for SR are both 69%.

6. Discussions

Based on the developed discriminant functions, it is
observed that voltage is an insigni�cant input pa-
rameter for MRR, TWR, and SR responses of the
considered EDM process. The MRR is increased with
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Figure 2. E�ects of EDM process parameters on discriminant scores of the responses.

the increasing values of both pulse-on time and pulse-
o� time, and it tends to decrease with a higher current.
Similarly, higher values of pulse-o� time and lower
values of pulse-on time and current would contribute to
lower TWR. Excellent quality of the machined surface
with lower SR can only be attained at higher pulse-
o� time, and lower pulse-on time and current. These
observations would tremendously help the concerned
process engineer to �x the settings of various input
(control) parameters of the EDM set-up. Voltage
can be set at any value. In order to simultaneously
optimize all the responses, pulse-o� time is to be
maintained at its higher setting, while pulse-on time
and current should be set at moderate and lower
settings respectively. Thus, it would lead to multi-
objective optimization of the said EDM process. The
e�ects of various input parameters of the considered

EDM process on the calculated discriminant scores
of the three responses are also exhibited through the
surface plots in Figure 2(a){(i). They show the same
trends of inuences of the EDM process parameters
on the responses as observed from the unstandardized
discriminant function coe�cients in the developed dis-
criminant functions.

7. Conclusions

This paper presents the application of discriminant
analysis in an Electrical Discharge Machining (EDM)
process to envisage the e�ects of its four input parame-
ters on three responses and identify the most signi�cant
input parameter for each of the responses. After
verifying the corresponding assumptions of normal-
ity, multicollinearity, and homogeneity of covariance
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matrices, the respective simultaneous and step-wise
estimation-based discriminant functions are developed.
In both these methods, pulse-o� time, current, and
pulse-on time are respectively observed to be the most
signi�cant input variables for Material Removal Rate
(MRR), Electrode Wear Rate (EWR), and Surface
Roughness (SR). It can thus be realized that lower
values of voltage and current, and higher values of
pulse-on time and pulse-o� time would lead to an
increase in MRR. For a better surface �nish, higher
pulse-o� time, and lower values of voltage, current and
pulse-on time are essential. Similarly, EWR can be
reduced by increasing pulse-o� time, and decreasing
voltage, current and pulse-on time. The discriminant
analysis for all the responses reveals that the absolute
values of the standardized discriminant function coe�-
cient and structure coe�cient for voltage are always
less than 0.10. It can also be validated from the
step-wise estimation method that voltage does not
signi�cantly a�ect MRR, EWR, and SR and hence,
it is not included in the discriminant functions during
step-wise analysis. Higher hit ratio and cross-validation
percentages, computed for both simultaneous and step-
wise estimation methods, indicate the capability of
the developed functions in discriminating experimental
observations of the EDM process into well-de�ned
groups.

The step-wise estimation method �nds its ap-
plication when a relatively large number of indepen-
dent variables are considered while constructing the
function. As mentioned earlier, the input variables,
which do not signi�cantly discriminate the observations
between the groups, are not included in the �nal
discriminant function. The reduced function, without
the insigni�cant input variables, is proved to be as
good as the one with all the variables included in the
model. The Wilks' lambda values for simultaneous
discriminant analysis for the dependent variables are
marginally less than those computed during step-wise
estimation. A smaller value of the Wilks' lambda is
an indication of the higher ability of the function to
discriminate observations between the groups. Hence,
although simultaneous estimation is a more e�ective
method, the discriminant functions developed based on
step-wise estimation are also capable of discriminating
experimental observations between the groups. Due to
several added advantages of discriminant analysis over
the other existing statistical tools, it can be successfully
applied as an e�ective statistical tool for multivariate
analysis of di�erent machining processes to identify the
most signi�cant input parameters a�ecting the outputs.
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