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Abstract. There are growing concerns for reserves estimation of Incurred But Not
Reported (IBNR) claims in actuarial sciences. In this paper, we propose a copula-based
dependency model to capture the relationship between two main IBNR reserve variables,
i.e., the \time between two successive occurrences" and \delay time". A maximum
likelihood estimation method is used to estimate the parameters of the model. A simulation
study is conducted to evaluate the validity of the theoretical results. Moreover, the proposed
method is applied to predict the number of claims for the next years of a portfolio from
a major automobile insurer and is compared to the classical Chain-Ladder (CL) model
forecasting.

© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

Reserves estimation for Incurred But Not Reported
(IBNR) losses in the insurance policy period is one of
the concerns of the actuarial profession. IBNR claims
can stay open for a long period of time due to the
juristic regulation processes and the size of claims.
The di�erence between the time of occurrence and the
time of payment by insurer will change the insurer's
expected obligations and result to wrong amount of
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claim reserves. This is the place that the role of
predicting and computing IBNR claim loss reserving
is highlighted. In this paper, we aim to estimate the
number of IBNR claims by considering the dependency
between the event time and report time of the losses for
insurance companies. To do so, we use copula function
to build the joint distribution of event and report
times of the claims. In order to compute the IBNR
claim loss reserves, the classical methods apply data
exploration to predict future expected losses, such as
Bornhuetter-Ferguson (BF) method proposed by Born-
huetter and Ferguson [1], Benktander-Hovinen method
proposed by Benktander [2] and Hovinen [3], Cape Cod
method proposed by B�uhlmann and Straub [4] and
Stanard [5], and Chain-Ladder (CL) method proposed
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by Mack [6]. For more information about de�ciency
and properties of these methods, one can refer to
Refs. [7{9]. Another method to estimate the IBNR
claim reserves is copula approach which models the
dependency between occurring time and reporting time
of an event. Copula is a powerful tool for modeling
the dependency between di�erent random variables.
In statistical literature, there are many applications
of copula such as [10] in aborts data, [11] in travels
data, and [12] in biological networks. For insurance
data, Pettere and Kollo [13] modeled the size of claims
and delay time (between occurrence and report of the
claims) by using Archimedean copula family. Zhao
et al. [14,15] presented a model for individual claims
development by using semiparametric techniques of
survival analysis and copula methods. Moreover, Shi
and Frees [16] used a copula regression model to predict
the unpaid losses to obtain the dependency between
di�erent lines of a business. Badescu et al. [17] showed
that reported and IBNR claim processes are marked
Cox processes, while Avanzi et al. [18] used Cox process
method to predict the number of IBNR claims by using
a dataset of Australian general insurer to model the
reporting delay and risk exposure. Landriault et al. [19]
computed the moments oftotal discounted IBNR claims
by using a compound renewal process at a given time
greater than zero. Also, they considered joint moments
of total discounted IBNR claims and incurred and
reported claims by using reporting lags and arrival
times. Crevecoeur et al. [20] considered the problem
of Incurred But Not Yet Reported (IBNYR) by using a
granular method to model the time between occurrence
and observation ofclaims. For more information about
modeling IBNR and IBNYR claims, see [21{26].

Another method to compute the insurance re-
serves for future obligations is multiplying the average
of claims size to the average of claims number in each
development time unit. The development time refers
to the di�erence between the time that loss is occurred
and the time that the loss is reported to the insurance
company. In this paper, we estimate the number of
IBNR claims through the following three steps:

Step 1: Copula is applied to model the joint
distribution of two marginal variables i.e., the \event
time" and \report time" or equivalently \time be-
tween two successive occurrences" and \delay time";
Step 2: The individual conditional probability of
reporting a claim happened in the development
years is estimated based on Step 1 modeling;
Step 3: The average claim size of a IBNR in the
development years is estimated.

Similar to Weissner [27], we assume that the marginal
distributions i.e., \di�erence between two occurrences"
and \delay time", are exponential distributions with

two di�erent rates. We use copula to obtain the
dependence between \di�erence between two successive
occurrences" and \delay time". This is while that Zhao
and Zhou [15] applied copula approach to obtain the
dependency between event time and report time.

The rest of the paper is organized as follows.
Section 2 reviews CL method and copula model. Sec-
tion 3 speci�es Clayton copula with event-report time
variables as marginal distributions, and demonstrates
estimation procedure of the IBNR claim numbers.
Section 4 conducts simulation study and real data
application by using an automobile insurance dataset.
Finally, Section 5 concludes remarks.

2. Model speci�cation

Copula is a tool to obtain the joint distribution of
random variables, when the marginal distributions are
available. It is also a strong technique to measure the
size of both linear and nonlinear dependency between
random variables. Similar to Zhao and Zhou [15], we
use copula approach to model the dependence struc-
ture of IBNR claim loss reserving but with di�erent
marginal distributions. Zhao and Zhou [15] applied
copula approach to model the event and delay time for
individual claim loss modeling. But, we use copula
to obtain the joint distribution and the dependence
structure of the duration time between two successive
events and the waiting time (reporting delay). In the
Archimedean copula family, the Clayton copula [28] is
the only absolutely continuous copula, which preserves
the bivariate truncation. Oakes [29] applied Clayton
model to obtain the joint distribution of the survival
times, T1 and T2, which is interpreted as the ratio of the
hazard rates of the conditional distribution of T1 given
T2 = t2 to T1 given T2 > t2. In order to obtain the joint
distribution and the dependence structure of the event
and delay times to predict the number of IBNR claims,
we propose a new dependence model via copula based
on individual number of claims. In our approach, the
joint distribution of the marginal distributions i.e., the
\di�erence between two successive occurrences" and
\delay time", are modeled by a parametric copula.
Moreover, a Poisson process is �tted to the arrival
process of claims. Similar to Jewell [30,31], the
di�erence between the two successive occurrences and
delays are �tted by using two exponential distribu-
tions. This model framework is more exible than
the competitive models for modeling IBNR claims.
Moreover, we expect this framework generates more
impressive and precise prediction for the number of
IBNR claims. The evaluation of the accuracy of our
framework is compared to the competitive models in
the Section 4. Here, we de�ne the speci�cation of
our model framework and a traditional method for
modeling the number of IBNR claim called CL method.
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First, we introduce the CL approach.

2.1. Chain-ladder method
Consider a portfolio of an automobile insurance com-
pany which is consist of N > 1 run-o� triangles of
observations. Suppose that n (1 � n � N) indicates
the number of portfolios (triangles), i (0 � i � I) shows
the accident years (rows), and j (0 � j � J) stands
for the development years (columns). The number of
claims in a portfolio with sample size n for the accident
year i and development year j is given by Xn

i;j and
the cumulative claims of the accident year i up to the
development year j are denoted by:

Cni;j =
jX

k=0

Xn
i;j ; (1)

where Xn
i;j = 0 for all j > J . The individual develop-

ment factors for the accident year i and development
year j are given as:

fni;j =
PI�j
i=1 C

n
i;jPI�j

i=1 Cni;j�1

; fni;j = (f1
i;j
; � � � ; fN

i;j
)>; (2)

eCni;j = Cni;I�i
J�1Y
j=I�i

fnj ; (3)

where n 2 f1; : : : ; Ng; i 2 f1; : : : ; Ig and j 2
f1; : : : ; Jg, and eCni;j is the estimated number of IBNR
reserve for the accident year i and the development year
j [32]. Recently, the CL method faced high interest in
insurance applications such as [33{36].

2.2. Copula speci�cation
The concept of copula was introduced by Sklar theo-
rem [37]. Nowadays, copula is a main technique to build
the dependence structure for insurance and �nance
datasets. A copula C� : [0; 1]n �! [0; 1] is a multivari-
ate cumulative distribution function on [0; 1] � [0; 1]
with marginal uniform distributions, where � is an
unknown dependence parameter of the copula. Sklar's
theorem states that any multivariate joint distribution
can be written in terms of their univariate marginal
distribution functions together with a copula. In the
bivariate case, any joint distribution function FT;S
corresponding to a bivariate random variable (T; S)
with univariate marginal distribution functions FT and
FS can be obtained by:

Ft;s(x; y) = C�(FT (t); FS(s));

where C�(�) is the copula function with the dependence
parameter �. One of the well-known class of copulas is
Archimedean copulas. The advantage of Archimedean
copula family is that the majority of copulas in this
family have closed-form distribution functions. This

is while that the copulas in the Gaussian copula
family does not have closed-form distribution functions.
Another characteristic of Archimedean copulas is that
they allow to model the dependence structure of ran-
dom variables in arbitrarily high dimensions with only
one parameter. Here, we de�ne Archimedean copulas.
Let � be a continuous and strictly decreasing function
from [0; 1] to [0;1] such that ' (1) = 0. The pseudo-
inverse of � is the function �[�1] with domain [0;1]
and range I = [0; 1] which is given by:

�[�1](z) =

(
��1(z); 0 � z � �(0)
0; �(0) � z � 1 (4)

Notice that �[�1] is continuous and non-increasing
function on [0;1], and strictly decreasing function on
[0; �(0)]. Furthermore, we have �[�1](�(u)) = u on I,
and:

�(�[�1](z))=

(
z; 0�z��(0)
�(0); �(0)�z�1=min(z; �(0)): (5)

Finally, if �(0) =1 then �[�1] = ��1 [28]. Let C be a
copula function from I2 to I given by:

C�(u; v) = '(�1) (' (u) + ' (v)) : (6)

It is easy to see that the copulas are invariant under
monotone transformations of the marginal distribution.
Therefore, monotone association measures such as
copula-based Kendall's tau with the expression:

� = 4
Z

[0;1]2
C (u; v) dC (u; v)� 1 2 [�1; 1 ]; (7)

are used to obtain the size of dependency between
marginal random variables [38]. This is while that
the classical correlation measures such as Pearson's
correlation coe�cient only measures linear associations
between marginal distributions. There are many stud-
ies to discuss how to select a copula for a given dataset,
see [13,39]. The Clayton copula is an asymmetric
Archimedean copula, which is able to measure positive
dependency between random variables. It is also the
most often applied and famous Archimedean copula
in experimental applications [40]. The Clayton copula
function with association parameter � is de�ned as:

C�(w; t) = (t�� + w�� � 1)�1=�; � � 0: (8)

Therefore, the joint density function of the Clayton
copula is obtained as:

c (t;w) = (� + 1)� (tw)�(�+1)

� �t�� + w�� � 1
��(2+ 1

� ) ; � � 0: (9)

For further illustration and additional properties of the
Clayton copulas, see [38,41,42]. Since the association
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parameter in Clayton copula only accepts positive val-
ues, this copula is convenient merely for positively asso-
ciated random variables. When the dependence param-
eter � converges to zero, Clayton copula demonstrates
the independent between marginal random variables.
The relationship between copula-based Kendall's �
correlation measure and Clayton copula is given as

� =
�

� + 2
, which enables us to measure the size of the

copula-based Kendall's � with known �. Moreover, the
maximal value of � is captured when � goes to in�nity.
For more information, one can refer to [43,44].

3. Estimation of IBNR claim number

3.1. The number of IBNR claim with
event-report time modeling

Let Ti and Si denote the occurring time and the report-
ing time of an event, respectively. One can model the
relationship between Ti and Si, directly, to predict the
number of IBNR claims. Alternatively, we model this
relationship indirectly according to the duration time
between two successive events and the waiting time
(reporting delay). Following Jewell [30,31], we assume
that the positive random waiting times, denoted by
Wi's, are independent and identically distributed (i.i.d)
according to a common exponential distribution. We
show the corresponding density of this distribution by
fWi(:j�2), where �2 is an unknown parameter. In
our indirect method, the period of time for occurring
the next event plays a pivotal role. We denote the
duration time between two successive events by T � that
has exponential distribution with parameter �1. The
joint density function of (T �;W ) based on copulas is
given as:

f(T�;W ) (t; wj�1; �2) =fT� (tj�1) fW (wj�2)

c [FT� (tj�1) ; FW (wj�2)] ; (10)

where c (t; w) = @2C(t;s)
@t@w is the density function of the

copula C. Unfortunately, the recording of (T �i ;Wi)'s
are not possible, and so we cannot obtain the likeli-
hood function of (�1; �2) based on the joint density
function de�ned in Eq. (10). Instead, observations of
the occurring event time Ti and the reporting time Si
are available. Therefore, we obtain the joint density
function of (Ti; Si) by using the joint density function
of (T �i ;Wi) represented in Eq. (10).

Notice that the occurrence time of the ith event,
Ti, is obtained by summing over all duration times
between two successive events up to that time, i.e., Ti =
T �1 +T �2 +� � �+T �i = Ti�1+T �i . Then, Ti has the Gamma
distribution �(i; �1), because T �i 's are iid and follow
exponential distribution. On the other hand, it is easy
to see that Si = Ti +Wi = Ti�1 + T �i +Wi. Therefore,

the joint density function of (Ti; Si) is obtained as:

f(Ti;Si)(t; s) =f(Ti;Wi)(t; s� t) = f(T�i +Ti�1;Wi)(t; s�t)

=
Z t

0
f(T�i ;Ti�1;Wi)(t�u; u; s�t)du

=
Z t

0
f(T�i ;WijTi�1)(t�u; s�tju)fTi�1(u)du

=
Z t

0
f(T�i ;Wi)(t�u; s�t)fTi�1(u)du; (11)

where the (i � 1)th event time, Ti�1, is independent
from (T �i ;Wi) and has Gamma distribution �(i�1; �1):
Moreover, the joint distribution between T �i and Wi is
obtained by using the Clayton copula de�ned in Eq. (9)
as follows:

f(Ti;Si)(t; s) =
Z t

0

e�(t�u)�1(t� u)(i�2)�(i�1)
1

�(i� 1)
)

�1�2(� + 1)� e�(�1u)e��2(s�u)

((1� e�(�1u))(1� e��2(s�u)))�(�+1)

� ((1� e�(�1u))��

+(1�e��2(s�u))���1)�(2+ 1
� )du: (12)

Then, the likelihood function of (�1; �2) based on
(Ti; Si) is as follows:

L(�1; �2; �; (t1; s1); � � � ; (tn; sn)) =
nY
i=1

f(Ti;Si)(ti; si)

=
nY
i=1

Z ti

0
(
e�(ti�u)�1(ti�u)(i�2)�(i�1)

1
�(i�1)

)�1�2(�+1)

� e�(�1u)e��2(si�u)((1�e�(�1u))(1�e��2(si�u)))�(�+1)

�((1�e�(�1u))�� + (1�e��2(si�u))���1)�(2+ 1
� )du: (13)

The Maximum Likelihood Estimation (MLE) of �1, �2,
and � can be obtained by maximizing the likelihood
function in Eq. (13).

3.2. Delay probability
After estimating the joint density function of
f(Ti;Si)(t; s) de�ned in Eq. (11), we are able to predict
the number of claims reported in the next years. By us-
ing the information about ith event occurrences in the
jth year, we can estimate the probability of reporting
this event in the next (i+ j)th years as follows:
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p̂(l)
i;j =P̂ (Si 2 Ij+ljTi 2 Ij)

=
P̂ (Ti 2 Ij ; Si 2 Ij+l)

P̂ (Ti 2 Ij) ; l = 1; : : : ; nJ � j; (14)

where nJ is the upper bound of delay time.

3.3. IBNR claim number estimation
In order to estimate the number of IBNR claims, we
need to obtain N̂ l

j , which is the expected number of
occurrences related to the reporting the event in the
next (j+ l)th years for j = 1; � � � ; nJ . Therefore, it can
predict the number of claims incurred in the year (j+l).
Hence, one needs to estimate the expected number of
IBNR claims by using following equation:

N̂ l
i;j =

niX
k=1

p̂(l)
k;j ; i = 1; � � � ; nI : (15)

4. Data analysis

In this section, we apply the proposed methods in
Section 3 in simulation study and a real dataset. We
conduct comparison study to compare the proposed
methods with the competitor methods. Moreover,
the performance of the maximum likelihood estimator
of (�1; �2; �) de�ned in Eq. (13) is considered. By
using the estimator introduced in Eq. (15), we predict
the claim number in the next years in a third-party
insurance policy of an insurance company in Iran. The
performance of the proposed model is compared with
the CL model forecasting.

4.1. Simulation study
As mentioned in Section 3, T �i 's andWi's are dependent
random variables and have exponential distributions

with di�erent rate parameters. In order to gen-
erate a sequence of dependent observations t�i and
wi from random variables T �i and Wi, respectively,
we apply accept-reject algorithm as follows. Let
Yi = fWijT�i =t�(wjt�) and V = fWi(w) � exp(�1),
where fYi and fWi have common support with M =
sup fYi=fWi <1. consider Y � fYi . Then,

a) Generate U � uniform(0; 1) and V = fWi(w)
independently;

b) If U <
1
M
fY (V )=fV (V ), set Y = V ; otherwise,

return to step a.

Here, our goal is to generate the data from Wi
which are dependent of T �i . That is we have Yi =
fWijT�i =t�(wjt�). The simulated datasets are generated
by using the accept-reject algorithm to be used to
estimate di�erent parameters of the model, i.e., �1, �2,
and �. The MLE of the parameters are conducted for
di�erent sample sizes, i.e., 50, 150, and 200, where the
number of replication is 100,000. Moreover, the initial
values of the scale parameters for the MLE algorithm
are considered as the mean of random sample. For
determining the initial values for �, we computed the
Kendall's tau (�̂) for generated samples and obtained
the initial value of � by using � = 2�=(1 � �). The
mean of the MLEs, mean square errors, and bias of
the estimated parameters are reported in Table 1. Note
that in this simulation, we selected the real parameters
as �1 = 0:5; �2 = 0:5; � = 1:5. Table 1 demonstrates
the average of MLE's, their Mean Squared Error
(MSE)'s and biases for parameters �1, �2, and � with
real values 0.5, 0.5, and 1.5, respectively.

In Table 2, the ratios of the simulated number
of claims reported in a typical year, i.e., 2016, but

Table 1. The average of MLE (Maximum Likelihood Estimation), MSE (Mean Squared Error), and biases for parameters
(�1; �2; �) with real values (�1 = 0:5; �2 = 0:5; � = 1:5) for sample size n = 50; 150; and 250.

MLE Kendall's tau MSE Bias
n �̂1 �̂2 �̂ � �1 �2 � �1 �2 �
50 0.570 0.587 1.746 0.466 0.051 0.063 0.097 0.07 0.087 0.246
150 0.545 0.561 1.675 0.456 0.009 0.006 0.013 0.045 0.061 0.175
200 0.507 0.523 1.537 0.434 0.004 0.008 0.009 0.007 0.023 0.037

Table 2. Simulation results for the ratio of the number of claims reported in the year 2016 to the number of claims
occurred over the years 2010{2016 with di�erent sample sizes (n = 50, 150, and 200).

Ratios
Years

n 2016 2015 2014 2013 2012 2011 2010
50 0.6400 0.2200 0.0600 0.0400 0.0200 0.0200 0.00

150 0.6933 0.1400 0.0733 0.0600 0.0200 0.0067 0.0067

200 0.7400 0.1600 0.0700 0.0150 0.000 0.0050 0.0050



S. Zaroudi et al./Scientia Iranica, Transactions E: Industrial Engineering 31 (2024) 1596{1605 1601

Table 3. Estimated numbers of cumulative claims based on CL method for the years 2010{2015.

Accident
year

Development year
0 1 2 3 4 5

2010 5,866 9,237 9,720 9,785 9,805 9,810
2011 19,295 23,307 23,897 24,067 24,113 24,125
2012 20,987 25,298 25,978 26,117 26,168 26,181
2013 18,923 22,757 23,281 23,427 23,473 23,485
2014 18,977 22,539 23,176 23,321 23,367 23,379
2015 19,329 23,719 24,389 24,542 24,590 24,603

fni;j 1.227132 1.028251 1.006276 1.001950 1.000510

Table 4. Estimated number of cumulative claims based on the CL method for the years 2010{2016.

Accident
year

Development year
0 1 2 3 4 5 6

2010 5866 9237 9720 9785 9805 9810 9813
2011 19295 23307 23897 24067 24113 24131 24138
2012 20987 25298 25978 26117 26174 26192 26206
2013 18923 22757 23281 23397 23445 23469 23484
2014 18977 22539 22977 23113 23191 23213 23223
2015 19329 22769 23368 23517 23605 23634 23655
2016 10946 13332 13683 13763 13792 13801 13805

fni;j 1.21794 1.02632 1.00591 1.00205 1.00068 1.00031

occurred over the past 7 years, i.e., during 2010{2016,
are reported.

4.2. Real data application
In this section, we apply our proposed copula model
and CL method to a real dataset from a major
automobile insurer in Iran. In particular, we used
the observations of a subsample of 140,228 policies
recorded in the portfolio of the insurance company
during 7 years from 2010 to 2016. We �tted the
exponential distribution to marginal distributions, i.e.,
the \duration time between two successive events" and
the \reporting delay time" in our dataset. We carried
out Kolmogorov-Smirnov test in which p-values are
0.141 and 0.214, respectively. Therefor, we can assume
that the marginal distributions of our copula model
are following exponential distributions. As mentioned
in Section 3, we estimate all parameters using the
MLE method. First, we apply CL method to this
dataset. The upper triangle of Table 3 provided the
real number of cumulative claims and the lower triangle
of this table demonstrated the estimated number of
cumulative claims based on the CL method for the
years between 2010 and 2015. In Table 3, �rst, we
obtained the number of claims in each development
year for di�erent accident years by using Eq. (3).
Then, we obtained the number of cumulative claims.

The development year refers to the di�erence between
the year that loss is occurred and the year that the loss
is reported to the insurance company. For example, the
development year equal zero means that the occurrence
time and reporting time of the losses are in the same
year and the development year equal 3 means that the
losses are reported 3 years after occurrence of the loss.
Also, fni;j is the individual development factors for the
accident year i and development year j de�ned in Eq.
(2). Similarly, we provided the predicted number of
cumulative claims based on the CL method for the
years 2010{2016 in Table 4. Now, we apply copula
method to this dataset. We provided the estimated
number of cumulative claims based on the copula
method for the years between 2010 and 2015 in Table
6, and for the years 2010 to 2016 in Table 7. We
obtained the number of claims in each development
year for di�erent accident years by using Eq. (15).

In order to compare the performance of our
proposed copula model and CL method in predicting
the number of reported claims during di�erent de-
velopment years, we provided the percentage of the
proportional absolute value of errors based on CL
method for the years 2010{2015 in Table 5 and based
on copula model for the years 2010{2015 in Table 8.
The percentage of the proportional absolute value of
errors in Table 5 is computed by subtracting the value
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Table 5. The percentage of the proportional absolute value errors of number of claims based on CL method in compared
with the values presented in Table 4.

Accident
year

Development year
0 1 2 3 4 5

2010 { { { { { {
2011 { { { { { 0.0249
2012 { { { { 0.0229 0.0420
2013 { { { 0.8586 0.1193 0.0681
2014 { { 0.8586 0.8919 0.7532 0.7100
2015 { 4.0052 4.1863 4.1765 4.0057 3.9385

Table 6. Estimated number of cumulative claims based on the copula method for the years 2010{2015.

Accident
year

Development year
0 1 2 3 4 5

2010 5866 9237 9720 9785 9805 9810
2011 19295 23307 23897 24067 24113 24140
2012 20987 25298 25978 26117 26177 26189
2013 18923 22757 23281 23386 23465 23484
2014 18977 22539 22981 23143 23210 23234
2015 19329 22779 23389 23550 23620 23651

Table 7. Estimated number of cumulative claims based on the copula method for the years 2010-2016.

Accident
year

Development year
0 1 2 3 4 5 6

2010 5866 9237 9720 9785 9805 9810 9813
2011 19295 23307 23897 24067 24113 24131 24137
2012 20987 25298 25978 26117 26174 26198 26206
2013 18923 22757 23281 23397 23453 23477 23480
2014 18977 22539 22977 23144 23197 23216 23223
2015 19329 22769 23379 23557 23618 23648 23653
2016 10946 15096 15677 15833 15887 15914 15918

Table 8. The percentage of the proportional absolute
value errors of number of claims based on copula method
in compared with the values presented in Table 7.

Accident
year

Development year
0 1 2 3 4 5

2010 { { { { { {
2011 { { { { { 0.0373
2012 { { { { 0.0115 0.0344
2013 { { { 0.0470 0.0511 0.0298
2014 { { 0.0174 0.0043 0.0560 0.0775
2015 { 0.0439 0.0428 0.0297 0.0085 0.0127

of Table 4 from corresponding value of Table 3, which
result is divided to the corresponding values of Table 3.
Similarly, The percentage of the proportional absolute
value of errors in Table 8 is computed by subtracting

the values of Table 7 from corresponding values of Table
6, which result is divided to the corresponding values of
Table 6. Obviously, there is not any error value for the
year 2016 in Tables 5 and 8. For more illustration, we
provided an example, which shows how to compute the
error values in Tables 5 and 8. The predicted number
of claims based on CL method in Table 3 for accident
year 2015 and development year 1 is 23719. This is
while that the real value of the number of claims in
Table 4 is 22769. The percentage of the proportional
absolute value of error based on CL method in Table 7
is equal to j22769� 23719j � 100=23719 = 4:0052. The
corresponding percentage of the proportional absolute
value of error based on copula method in Table 8 for
accident year 2015 and development year 1 is obtained
as j22769�22779j�100=22779 = 0:0439. Therefor, the
percentage of the proportional absolute value of error
based on copula method (0:0439) is smaller than the er-
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ror term based on CL method 4:0052. Similarly, we can
obtain all percentage of the proportional absolute value
of error in Table 5 and 8. By comparing the results
of the percentage of the proportional absolute value
of errors based on CL method in Table 5 and copula
method in Table 8, we can conclude that our proposed
copula method is performing better than CL method.

5. Conclusions

In this paper, we proposed a copula method to predict
the IBNR claims. To do so, we applied a well-
known family of copulas called Archimedean family.
Particularly, we used Clayton copula to �nd the joint
distribution between reserving methods. We reviewed
the existing individual claim loss reserving models, and
then, we proposed a model according to \di�erence
between two occurrences" and \delay time". In order
to assess the performance of the proposed method,
we applied a well-known and competitive CL method
and compared the results through simulation and real
data application. The simulation study indicates that
the proposed procedure can produce e�cient estimates
and improve predictions for the event delay numbers
for the next year. Moreover, we used an empirical
observation dataset from an insurance portfolio of
a major automobile insurer in Iran. The results
indicated that the performance of our proposed copula-
based method has superior to CL method. As future
directions, our method can be extended to the case that
the actual event times are forgotten. Moreover, one can
extend this method to the non-exponential marginal
distributions.
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