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1. Introduction

The problem of non-response is common in sample survey due to many reasons such as non-
availability at home or unwilling to respond due to social desirability concerns or the fear of
catching some contagious disease such as Covid-19 virus by having a contact with interviewer.
Hansen and Hurwitz [1] were the first who floated the indigenous idea of nonresponse. Much
work has been done since then to deal the non-response by constructing composite types of
estimators. The ratio, product, exponential-ratio and regression type estimators are commonly in
this context. Some notable work is due to Gupta and Shabbir [2], Khan and Shabbir [3], Verma
et al. [4], Bhushan and Kumar [5], Kumar et al. [6], Kumar and Bhoughal [7], Saleem et al. [8],
Ahmed et al. [9], Waseem et al. [10] and Yaqub and Shabbir [11, 12]. .

Most of this work is based on estimation of finite population mean, total and variance but very
little attention has been paid to estimating the distribution function (DF). Some works on
estimating the DF can be found in Ahmad and Abu-Dayyah [13], Wang and Dorfman [14],
Singh et al. [15] and Munoz et al. [16]. Some other useful references are, Irfan et al. [17], Abid et
al. [18], Abid et al. [19], Javed et al. [20], Naz et al. [21], Younis and Shabbir [22], Ahmed and
Shabbir [23] and Nazir et al. [24].

In our study, we propose a general class of estimators for estimating the DF under subsampling
of non-respondents when nonresponse exists on the study variable as well as on the auxiliary

variables.

Consider a finite population U ={U,,U,,..,U} of N units portioned into two classes i.e. (i)
response class with size N, and (ii) nonresponse class with size N, . Using Hansen and Hurwitz

[1] technique, a sample of size n is drawn from U by using simple random sampling without

replacement (SRSWOR). We assume that n, of the sampled units respond and n, do not. Let a

sub-sample of r units be drawn from the n, non-responding units by SRSWOR and we collect
the information on these r units by the interviewing method as r =%,(K >1). Let y, and

(x,z,) (1=12,......,n) be the values of the study variable (Y) and the auxiliary variables (X,Z)

N
respectively. We are interested in estimating the DF defined as Fy(ty):%ZI(yi <t,),
i=1
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—oo<t, <oo, where I(.) is the indicator function such that I =(1,0). Similarly, we can define

N N
Fx(tx)=%z_l“l(xistx) and anZ):%Zl:'(ziStz)- The DF under stratification is

=

Y(t,)

N
+GZF(2) where G. :% (I =1 2), F(l) _izl(yl Sty) and

Y(t,)! i Y(t,) T N, &
1 i=

=G,R{

Y(t,)

N,
FY((Zt’y) =Niz I(y, <t,). Hansen and Hurwitz [1] estimator of DF under nonresponse is defined

2 i=1
as F =0 R0 +g,F2), where g =2 (i=12), FY =iil(y <t,)and
R () 17y () 2y () T 1 L) Yt T - i=1
1 i=
Z (2 1 r - - . 2 x 2 (1 2 (2
R = FZ I(y, <t,). Similarly, we can define K, =g,F% +9,F%) and

i=1

P Y ) (2r) 2 _ 2 =
Fe,o) = BFzq) T 9.Fr,) - Let S,y = Ry (1-Fgy ) St ) = Py (1-Fxey) @nd
y y y

Sty =F

FZ(tz) - Z(tz) (1_F

Z(tz)) be the finite population variances for Y, X and Z respectively for the

response class. Similarly, the population variances for the non-response class are defined as:

22) _p@ _E® 22) _ @ _E®@ 2(2) _E(@ _E®
SFY(ty) - FY(ty) (1 FY(ty) ) ! SFx (t) — FX (t) (1 FX (tx)) and SFZ(IZ) - Fz(tz) (1 Fz(tz)) ' Let
_ N110N220 — N120N210 _ N101N202 — N102N201 _ N011N022 — N012N021 be
Frx (tyt) N 2 1SR () N 2 VSR () T N 2

the population covariances for the response class in their respective subscripts and similarly the
population covariances for the non-response class in their respective subscripts are

(OINIY) OINEY) (BINIG) (OINIY) (OINIY) (OINIY)
(2) _ N11o szo — N1zo N210 (2) _ N101 Nzoz — NlOZ N201 (2) _ N011N022 — N012 N021

Frx (tyty) N(Z)Z TURz () T N(2)2 TSR (o) T N(2)2

The layout for response and non-response classes are given in Tables 1-6.

[Table 1 Here]

Here N,,, N,,, N,, and N, are the number of units in the population and similarly n,,

NLo» Ny @and N, be the number of units in the sample in their respective cells of respondents.

[Table 2 Here]



Here N2, N2, N{2 and N are the number of units in the population and similarly n?,

n? . n{ and n{2 be the number of units in the sample in their respective cells of respondents.
[Table 3 Here]

Here N,,,, Ny,, N,, and N,, are the number of units in the population and similarly n,,,

N Ny, and n,,, be the number of units in the sample in their respective cells of respondents.
[Table 4 Here]

Here N2, N&, N2 and N2 are the number of units in the population and similarly n),

n@, n{2 and n{2) be the number of units in the sample in their respective cells of respondents.
[Table 5 Here]

Here N,,, Ng,, Ny, and N, are the number of units in the population and similarly n,;, ,

Ny s Nyyy @nd ny,, be the number of units in the sample in their respective cells of respondents.
[Table 6 Here]

Here N2, N, N2 and N2 are the number of units in the population and similarly n{,

n), ni2 and n{2) be the number of units in the sample in their respective cells of respondents.

Now we define some error terms to obtain the biases and MSEs up to first order of

approximation.

. F. -F . F..,—F . F. —F .
Ay=— O AT = X XE) AT 2 20 gch that E(A])=0 for (i=0,1,2)
FY (ty) X(ty) Z(t,)
and
E(ABZ)_T{ASFYG)+QQSIEY2)(§Y)}:A2007 E(AIZ)—T{%SF (t)+125|(=2)(2t)}= 020
Y X
E(AZZ) = T{%SFZO ) +/123é:)(f )} = o2
Z
* * 1 *
E(AA)=—— s® A,
(o8 = ey oy Vet * AR a0} = M
* * 1 (2) *
E(AoAz):m{ﬂl Fez (ty.1,) +4,3 Rz (t t)} Asors



1

B(A:) = F (t)F, (t,) {ASe 0+ S 00 f = Mo
1 1 N, (K —1)
where 4 =|--—|, L, =—4+——=,
A (n Nj & Nn

. E l:{ FY*(ty) - FY (ty)}d {F):(tx) - I:x (tx)}e {FZ*(IZ) - I:z (tz)}f :l
_ (R O] (RO (R |

Now we discuss some estimators of DF using single auxiliary variable and two auxiliary

variables.

2. Existing estimators

(i) The variance of the usual estimator If;Y ) = Ifo*, is given by

*

Var(Fy) = R Aso - (1)

(i) The traditional ratio estimator, is given by

- o [F
=R | = | )
R )] g

[FX(IX)

The bias and MSE respectively of Iij , to first order of approximation, are given by

B( 'fR*l )= FYZ(ty) {Agzo - ALo } (3)

and

*

200 + A’(;20 - ZAIIO} : (4)
(iii) The traditional exponential-ratio type estimator, is given by

N Fooy—Fr

. P ) ~ X

Fe, =R, exp E E I (5)
xt) T Fx)

MSE (F;) = R, {A

The bias and MSE respectively of IfE*1 , to first order of approximation, are given by

e 3A,,, A
B(FEl) = I:\(Z(ty) { 8020 _%} (6)

and



2 x * A* *
MSE(FEl) = FYZ(ty) {Azoo + % _Allo} : (7)

(iv) The usual difference estimator, is given by

o = F*(ty)+do(FX<tx)_F>:(tx>)’ (8)
where d, is the constant.
.. . A ; FY(ty)AIm .
The minimum variance of F, at the optimum value of d,,,, = ——=—, is given by
I:x (t,)% *020
Var(lf;l)min = MSE(lfI;)mm = sz(ty)A;oo (1_10;120)’ (9)
where p;, = # :
AZOO AOZO
(v) Rao [25] difference type estimator, is given by
'fF:ao = dllfY*(ty) +d, (Fx ) If):(tx) ), (10)
where d, (i=1,2) are the constants.
The bias and minimum MSE respectively of F,,_ at optimum values of
o)Ay
Oy = —— L —— and d,,, = W R are given by
1+ Ao (- pryo Fy (tX)A020 {1+ Ao (- pno)}
Bias(Fr,) = (d, ~DFy, (11)

and

Ao (1_ Piio )

MSE (Foo )i = F’ - A (12)
" o 1+ Ay (1_/01120)
(vi) Gupta and Shabbir [2] estimator using two auxiliary variables, is given by
Foe =3P+ 32 (Feay — P P
Gs — V1l v(,) + 2( X(t) X(tx))} If* ) (13)
X (t)

where J, (i=1,2) are the constants.



The bias and minimum MSE respectively of F}; at optimum values of

BC.—-DE. +B. F. . (AD —C.E +D,-E) _
Jl(opt): i~i 121 I and ‘]2(Opt): MOANE S j 12 j j , are given by
AB,-E’+B, Fee,(AB, —EZ+B))
Bias(Fss) = (3, —DF ) +91F, C; + P D, (14)
and

MSE(lfGS) = FYZ(t )

min —

(15)

{ A.D.2+B.C.2—2C.D.E.+ZB.C.—2D.E.+B}
1 ] ] ] ) J2 ] ] ] ’
(AB,~E?+B))

* * *
*

* * * 3A A A
where A, = Ajg +Agy —2A10, Bj = Ay, C; :%—?ﬂ’, D, = ;20

(vii)  The traditional ratio estimator using two auxiliary variables, is given by

~n 2. |F F
F,=FK t,) A)i(tX) # : (16)
FX (t) FZ (t;)

The bias and MSE respectively of IfR*z to first order of approximation are given by

E AOZO AllO

B(F ) (t ) {Azzo + A;oz + Ac*nl - Afm - AIOl} (17)
and
MSE(F ) Y(t ) {Azoo + Aozo + A002 2AIlO - 2A101 + 2A;11} . (18)

(viii) The traditional exponential ratio estimator using two auxiliary variables, is given by

N Fo —Fr Fo +F
I:E2 = V) exp M exp M (19)
FX(t)+FX(t) F. +F

Z(t,) Z(t,)

The bias and MSE respectively of IfE*Z to first order of approximation, are given by

3/ .« . 1, . N 1 .
B(F ) (t){8<AOZO+A002)_§(A110_A101)+ZA011} (20)

and

*

1, x « 1.
MSE(F ) Y(t ) {Azoo += 4 (Aozo +A002)_(A11o +A101)+EA011} : (21)

(ix) The usual difference estimator using two auxiliary variables, is given by

A%

|£ F +d (Fx(tx) FX(t)>+d (Fz(tz)_lfz*(tz))’ (22)



where d. (i=1,2) are constants.

The minimum variance or MSE of If,; at the optimum values of d. (i=12) i.e.

FY (ty) (A101A011 - AoozAno )

_ FY (t,) (AonAno - A0201\101)
1(opt) — *2 * *
I:x (t) (Aon - Aozvozz )

2(opt) —
FZ(tX)(AOn Aozvozz)
*2 *2
A101A020 2A101Ao11A110+A011A200 AozvoozAzoo A110A002}
Aon Aozvooz

d and d

, IS given by

MSE(F )mln - Y(t){

or

MSE (F )mm ~ Y(t ) Azoo {1_ ,0110 +,0101 2/0110/0101:0011} (23)
1- p011

where o, =

T T T

(x) Kumar et al. [6] estimator using two auxiliary variables, is given by

.. . [F S F., —F
F -F Ai(tx) a eXp Z(ty) Z(ty) + (l a )exp Z(ty) Z(ty) , (24)
KU t,) 0 0
Fy ) Freg + FZ(t ) an AT

where «, is the constant.

The bias and minimum MSE respectively of If;U to first order of approximation at optimum

1 (Azn - AIOl)

value of ooy = ST are given by
002
« 1 x « 11 .
B(FKU) (t ) {Aozo +[§_aoj(/\101 _Aon) (8 2 O]AOOZ} (25)
and
. * \2
s . . . Ay —A
MSE(FKU )mln = I:Yz(t ) (AZOO +A020 _2A110)_M ' (26)

002

(xi) On the lines of Chami et al. [25], Guha and Chandra [26] and Singh and Usman [27]

estimators using two auxiliary variables, we have

re a |aFl  +(1-a)F aF . +(l-a,)F
FCh:Fy(ty){ 1 X(tx),\( 1) X(tx)}{ 2 Z(tz),\( 2) Z(tz)}’ (27)

(1-a)F, T o, Fy ®) (l1-a,) anz) +a, quz)




where ¢; (i=1,2) are the constants.

The bias and minimum MSE respectively of ﬁgh at the optimum values of «; (i1=12) i.e.

1 (AzmAzn - A;ozAIm ) 1 (AgzoAIm - A:mAIm )
al(opt) = E 1+ and az(opt) = E 1- y (28)
(Aon Aozvozz ) (Aon Aozvozz )

are given by

Bias(Fy,) = Fy( ) {(224 —1) Al +(20, —1) Ajgy + (204 —1) (2, —1) Agy,

+(1- 04 ) (1-204) Ay + (11, ) (1- 20, ) Ay, } (29)

and

MSE(F), . = R

min = © Y (t,)

{AzglASZO — ZAIOlA?)llAIlO + AzzllAZOO AOZOAOOZAZOO + AllOAOOZ } (30)

AOll AOZOAOOZ

The minimum MSE of F., is equal to minimum MSE of the difference estimator If,;:

(ix) Singh and Usman [27] estimator using two auxiliary variables, is given by

e (ee ae o\ 7P+ @=7)Fey | | 7P + -72)F
Fsu :{Fv(ty)+ﬁ110(FX(tX)_FX(tX))} 1 x(t) 170 X(t,) 2tz 2/ z(,) , (31)
(1- 7/1)Fx(t)+71 X (t,) (- 72)Fz(t)+72|:2(t)

Y (t, )Auo

£

X (t,)4 2020

where y, (i =1,2) are constants and ,31*10 = is the sample regression coefficient with the

K t,) AV

X (t,)4 2020

corresponding population regression coefficient 3, =

It is observed that MSE(F,),.in oin = MSE(F2) i

=MSE(F,)
3. Proposed estimator

We propose the following general class of difference type estimators of DF using two auxiliary

variables. This estimator is constructed by using the ratio and exponential-ratio type estimators

with the difference type estimator as:

A

Fots) = {wley) t @, (Fx )~ Fxay ) + @, ( Foe) — Fza )} X



51 2%
F}\)i (tx) exp 5 FX (tx) B FAi(tx) , (32)
2
Fye Py T Fxeo

where @ (i=1,2,3) are the constants and (0< . <1) (i =1,2) are known scaler values.

*

Rewriting pr([slﬁz) in terms of errors terms, we have

2%

FP(b‘l,(SZ) - FY(ty) = (o -1 FY(ty) +w1FY(ty) I:A; _él*AI + 5;AIZ _@.*A;AI]

—0,Fy ) [AI —5 A7 ] —aF, [AZ ~ S AN, ] , (33)

where & = 5.}_& and & = 5152+51(51+1)+52(52 +2) .
1 1 2 2 2 2 8

From (33), the bias of F ;. is given by
BiaS(F;(sl,gz)) = (e -1) FY(ty) + a)lFY(ty) {5;/\;20 _5;/\;10} -
+F, (tz)é‘l* (a’zA(*Jzo + 0)3A311) : (34)

*

Squaring and then taking expectation on (33), we get MSE of 'EP(aaﬁz)’ which is given by

MSE(Fy s 5)) = (4 —1)°FY, ) + 07 F), | A+l F7 B+aiFf, C—2aF} D

Y(t,)
—2m,F, ) Fea E— 2a)3FY(ty) F o) F +200,F ) Fee)C
+2m,m;F, ) F, ®©) H +20,0,F, ®) F, ®©) l,
where
A=Npy +(87 +25 ) Ay =48, ALy, B=Agy, C=Agy, D=6;A00—3 Ay, E =6, Agy,
F=06Ay,,G=25 Ay — Ay H=25 Ay, — Ay, | = Ay,

The minimum MSE of If;(é.lﬁz) at optimum values of @ (1=1,2,3) i.e,,

I I:Y(t )IG FY(t )|7
_Js _ _ ..
Duopy =1+ Potom) T E | - | and @y, _F—y, is given by
1 X ()1 Z(t,)"1
2 L+l +1
* ~ 2 2 Tl Ty
MSE(Fo (5.5, Jmin = FY(ty) [—l , (35)
1

where

l, = ABC -BH?—AlI*+BC -CG”* +2GHI - 17,
|, =—ABF? - BCD? + 2BDFH + ABC — ACE” + 2AEFI — 2BCD - BF* + 2BFH — BH?

10



|, = 2CDEG + D’1? —2DEHI - 2DFGI + E’H? - 2EFGH + F*G* — Al* -CE?,
|, =2CEG —CG? + 2DI* + 2EFI — 2EHI — 2FGI + 2GHI ,

|, = BCD-BFH + BC —CEG - DI’ +EHJ + FGI — 12,

|, = ACE — AFl —CDG + DHI —EH? + FGH + CE-CG - FI + HI ,

|, = ABF — BDH — AEI + BF —BH + DGI + EGH — FG* —El +Gl .

We can generate many estimators from this proposed class of estimators as follows:

(i) Putting 6, =0 and &, =0 in (32), we get
If;(O,O) = a)llfY*(ty) T @, (Fx t) 'f;(tx))"' Wy ( Foe,)— IfZ*(tZ)) .
(i) Putting o, =1 and &, =0 in (32), we get

2%

Fy
_ 2% = * = x (tx)
Fowo = {a)lFY(ty) + o, (Fx(tx) - FX(tx)>+a)3(FZ(tz) -F, )}[ £ .

X(ty)

(iii) Putting 6, =1 and &, =1 in (32), we get

A A

Foay = {a’lFY(ty) T, ( Py = Fray ) + Wy (anz) —F, )} '

FX(tx) exp FX(tx)_FX(tx)
Fy, Fewy + Fxay

(iv) Putting 6, =0.5 and o, =0.5 in (32), we get

A A A

FP(o.s,o.s) = {a)lFY t,) T @ (Fx t) Fx ) ) + @, ( FZ(tZ) - FZ(tZ) )}

05 A s
F Fo)—F
A)i(tx) eXp 0.5 X (tx) Ai(tx) .
Fe) Fewy T Fxay

(vi) Putting 6, =0 and &, =1 in (32), we get

Fyw) T Fray

£ laf . v (Fy —F FoF Frar=Fra
P =12 T\ Fxey = Fxey ) T\ P2,y = Fzqy) )11 EXP oy .

(36)

(37)

(38)

(39)

(40)

The biases and minimum MSEs of above estimators can be obtained by substituting the different

values . (i=1,2) in (34) and (35). Also, we can generate many more estimators by substituting

the different values of 6, and @, (i=1,2)in (32).

11



4. Comparison of estimators

We compare the proposed generalized class of estimators with some other competing estimators.

(i) By (1) and (35), MSE(Fo; 5))mn <Var(r) if

min

. L+, +1
{AZOO—(—Z I3 4]}>0.
1

(ii) By (4) and (35), MSE(Fy; 5))mn < MSE(F;) if

. . . L, +1;+I
{Azoo +A020 - 2A110} _EMJ} >0.

Il

(if) By (7) and (35), MSE(Fo; 5))mn < MSE(F:) if

(. A ) L +1, +
Azoo"'ﬂ_/\no | 2_3 4 >0.
I 4 ,

(iii) By (9) and (35), MSE(Fy )

< MSE(If,;l)min if

min

. . L+, +1
{Azoo (1_:01120)_(%}} >0.
1

(iv) By (12) and (35), MSE(If;(élﬁz)) <MSE(F.,) . if

AZoo(l_pflzo) _(|2+|3+|4j 20
1+ Agg (1_ Piro ) I,
(V) By (15) and (35), MSE(Fss 5 )min < MSE(Fgs) iy if

2 2
, AD[+BC{-2CDE +2BC ~2DE +B | (I+L+L)| .
(AB,—E2+B))

Il

(vi) By (18) and (35), MSE(Fo;.5,)min < MSE(Fy ) if

min

* . . - * . L+, +I
{AZOO Aoz Aoz = 2(AllO + Ay _A01l)} _(MH >0.

(vii) By (21) and (35), MSE(Fo; ) )min < MSE(F.) if

U O I OC ISR e B S
e (4o
1

12



(vii) By (23) and (35), MSE(Fy; 5))min < MSE(F) )y if

{A;oo {1_ pflzo + pfgl - 2/0;10/0:01/0;11 } _[ L, +1;+1, j} 0.

1_/0;1 I,
(vii) By (26) and (35), MSE(Fos.5,))min < MSE(Fey )in if

. * \2

. . . Aoy = Ay L+l +1
(A200+A020_2A110)_( A ) - =——1|>0.
002

5. Numerical study
We use the following three data sets for numerical study.
Population 1. Source: Singh [28]

Let Y, X and Z be the number of immigrants admitted in the USA during 1996, 1995 and 1994
respectively. Let I(y, <t ))=1for t =17702.76 and I(y, >t ) =0, otherwise; 1(x <t,)=1 for
t, =13903.24 and I(x, >t ) =0, otherwise; 1(z <t,)=1 for t, =15483.67 and 1(z; >t,) =0,
otherwise. Last 25% observations i.e. 13 units are considered as non-responding units.

N =51 n=20, F,,=0.8039 F,,=0.7647, F,, , =0.8039, Sém ) =0.1576, Séxm =0.1799,

(ty) (t;)

S2. =0.1576, N;jp =39, Nyyo =02, Ny =00, Nyyy =10, Nyg, =40, Ny, =01, N,y =01

N,,, =09, Ny, =39, Ny;, =00, Ny, =02, N, =10.
For non-response, we have:

N3 =13, FfQ) =0.7692, K ) =0.6923, F{)) =0.7692, sﬁjii) =0.1775, S7 =0.2130,
Se =0.1775, Njjg =09, Nj =01, N33 =00, N7 =03, Ng} =09, Nji) =01, N33} =01,
N =02, N& =09, ND =00, N& =01, N& =03.

Population 2: Source: Gujarati and Porter [29]
Let Y, X and Z be the production of eggs in USA during 1992, 1991 and 1990 respectively.

Let 1(y; <t,)=1for t =1377.854 and I(y; >t ) =0, otherwise; I(x <t,)=1 for t, =75.872
and 1(x, >t,) =0, otherwise; 1(z, <t,)=1for t,=78.276 and 1(z, >t,) =0, otherwise. Last

25% observations i.e. 13 units are considered as non-responding units.

13



N =50, n=18, F,,, =0.6600, Fy,,, =0.5800, F;, =0.5800, S} ~=02244, 7 ~=0.2436,

(t;)

S2., =0.2436, N,y =17, Nppy =16, N,y =12, Npyy =05, Nygy =17, Nyg, =16, Ny, =12,

Ny, =05, Ny =28, Ny, =01, Ny, =01, Ny, =20.
For nonresponse, we have:

N;? =13, FQ) =0.7692, Fy ) =0.5385, F;, =0.6154, S =0.1775, SZ) = 0.2485,
Se.) =0.2366, Njjj =04, N{;) =06, Njjp =03, Nz =00, Ni) =05, N, =05, Ny =03,
N =00, N&) =07, N =00, N2} =01, N =05.

Population 3: Source: Singh [28]

Let Y, X and Z be the estimated number of fish caught by marine recreational fisherman by
species group during 1995, 1994 and 1993 respectively.

Let 1(y, <t,)=1for t =4514.90 and I(y, >t ) =0, otherwise; 1(x <t,)=1 for t, =4954.43
and I(x, >t,) =0, otherwise; 1(z <t,)=1 for t, =4591.07 and I(z, >t,) =0, otherwise. Last
25% observations i.e. 17 units are considered as non-responding units.

N =69, n=23 F,=07246, F,,=0.768L F,, =07391, S; ~=0.1995 S = =0.1781
S,Ez(t) =0.1928, N110 =47, N120 =03, Nz1o = 06, szo =13, N101 =48, N102 =02, N201 =03,

N,;, =16, N, =49, N, =04, N,,, =02, N,,, =14.
For nonresponse, we have:

(2) _ 2 _ 2 _ (2 _ 2(2) _ 2(2) _
N{ =17, R, =0.8824, Ry, =0.8824, F7)) =0.8824, S2? =0.1038, S7* =0.1038,

S22 =0.1038, N§ =15, N2 =00, N =00, N2 =02, N3 =15, N{) =00, N{>) =00,

P
N33 =02, Ni =15, N{ =00, N, =00, N3 =02.

202

The MSE values of all estimators based on three populations are given in Tables 7-9.
[Table 7 Here]
[Table 8 Here]

[Table 9 Here]
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*

From Tables 7-9, we observed that the proposed general class of estimators pr( 5.5, 1s performing

better than all considered estimators at different choices of K.

5. Conclusion
We proposed a general class of DF estimators F}’:M) using two auxiliary variables under non-
response in simple random sampling. It is clear from Tables 7-9, that the proposed general class

of estimators Fy; ,,

for different values of K, is more efficient as compared to the estimators
Ifi* (i=0,R,E,D,,Ra0,GS,R,,E,,(D,,Ch,SU),KU) when non-response exists on all the study
variable (Y) and the auxiliary variables (X, Z) . It is also observed that the MSE values of all
estimators increase with increase in the values of K from 1.5 to 3.5 in all Populations 1-3, which

are expected results. The ratio estimator If;; shows poor performance in Tables 7 and 9 but in
Table 8, the ratio, exponential-ratio and Kumar et al. [6] estimators i.e. F (i=R,R,,E,,E,,K)
perform poorly as compared to all other estimators. The difference estimator (IfD*z ), Chami [26]

estimator (lfc*h) and Singh and Usman [27] estimator (Ifs*u) give the same MSE values. Among

*

proposed general class of estimators pr( 5.5, the performance of the estimator If,:(oyl) is the best in

terms of MSE.

Acknowledgements: Authors are thankful to the Editor and the anonymous referees for their

valuable suggestions which helped improve the quality of the manuscript.
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Table 1. Layout of the response class for Y and X.

X <F (t,) X>F(t) Total
Y < I:Y (ty) nllO / NllO r1120 / NlZO Nln
Y > FY (ty) r]210 / NZlO r]220 / N220 NZn
Total N.. N.,. N
Table 2. Layout of the non-response class for Y and X.
X2 < F)EZ) (tx) X2 > F)§2) (tx) TOtaI
Y, <FA(t,) N0 / Nijo Nz / Nizg Ny
Y, > F2(t,) Moo / Na Nozo / Nag N;2)
Total N N&) N
Table 3. Layout of the response class for Y and Z.
Z<F(t) Z>F(t) Total
Y<K (ty) r‘101/ N101 Mgy / Nio2 N...
Y > FY (ty) nZOl/ NZOl r]202 / N202 NZn
Total N.. N.., N
Table 4. Layout of the non-response class for Y and Z.
Z,<F2(t,) Z,>F2(t,) Total
Y, <FA(t,) Mot / Nigy Mo / Ni Ny
Y, > F2(t,) Noo2 / Naoy Naz / Nagy N;2)
Total N2 N2 N




Table 5. Layout of the response class for X and Z.

Z<F,(t) Z>F(t) Total

x S FX (tx) rlOll/ NOll n012 / N012 N-l-

X > FX (tx) n021/ NOZl r-]022 / N022 N-Z-
Total N.. N.., N

Table 6. Layout of the non-response class for X and Z.

Z2 S I:Z(Z) (tz) ZZ > I:2(2) (tz) TOtaI

X, <F(t,) no / Ngi) nie / Ng32 N2

X, >FA(t,) Nt/ Ngy) NGy / Nz N2
Total N .(.21) N .(3 N

Table 7. MSE values of different estimators for different values of K in Population 1.

Estimator K=15 K=20 K=25 K =3.0 K=35
F 0.005922  0.007054  0.008185  0.009316  0.010448
F 0.001744  0.002235  0.002726  0.003217  0.003708
. 0.001947  0.002383  0.002820  0.003256  0.003692
F, 0.001369  0.001742  0.002113  0.002484  0.002853
Fos 0.001366  0.001737  0.002106  0.002474  0.002841
Fo 0.001361  0.001729  0.002095  0.002459  0.002822
F 0.009717  0.012198  0.014679  0.017160  0.019640
. 0.001523  0.002136  0.002749  0.003362  0.003975
o, Fou Fsu 0001311 0001726 0002112  0.002481  0.002840
= 0.001567  0.001935  0.002293  0.002643  0.002983
0] 0.001308  0.001721  0.002105  0.002472  0.002828
= 0.001308  0.001721  0.002105  0.002472  0.002827
<A 0.001307  0.001722  0.002107  0.002475  0.002832
Fo 0.001304  0.001716  0.002097  0.002461  0.002814

P(0.5,0.5)
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2

F

P(0,1)

0.001303 0.001713 0.002094 0.002457 0.002809

Table 8: MSE values of different estimators for different values of K in Population 2.

Estimator K=15 K=20 K=25 K=3.0 K=35
F 0.009261 0.010543 0.011825 0.013107 0.014390
Iij 0.028014 0.033371 0.038728 0.044085 0.049442
IfE*1 0.015253 0.017991 0.020730 0.023468 0.026207
IfDl 0.008759 0.009779 0.010781 0.011772 0.012756
Frso 0.008586 0.009564 0.010521 0.011463 0.012393
Fas 0.008513 0.009468 0.010399 0.011313 0.012212
e 0.070830 0.083730 0.096630 0.109540 0.122440

2 %

0.027187  0.032177  0.037166  0.042156  0.047146
o, Fou sy 0008754 0009776  0.010780  0.011772  0.012755
" 0011939  0.014108  0.016271  0.018429  0.020586
0.008582  0.009562  0.010520  0.011462  0.012392
0.008576  0.009554  0.010509  0.011447  0.012373
0.008721  0.009740  0.010740  0.011729  0.012709
0.008525  0.009488  0.010425  0.011345  0.012251

0.008509 0.009488 0.010425 0.011345 0.012251
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Table 9: MSE values of different estimators for different values of K in Population 3.

Estimator K=15 K=20 K=25 K=3.0 K=35
F 0.006340 0.006896 0.007451 0.008007 0.008563
Iij 0.003569 0.003570 0.003572 0.003573 0.003574
IfE*1 0.003682 0.003837 0.003992 0.004147 0.004302
IfDl 0.003305 0.003342 0.003373 0.003399 0.003421
Foo 0.003284 0.003321 0.003351 0.003377 0.003399
Fo 0.003275 0.003311 0.003340 0.003365 0.003386
IfR*Z 0.007953 0.008426 0.008900 0.009374 0.009848
IfE*2 0.002231 0.002232 0.002232 0.002233 0.002233
Fo Foi Fey 0001928  0.001936  0.001943  0.001949  0.001954
=0 0.003471 0.003473 0.003474 0.003476 0.003477
A;(OVO) 0.001921 0.001929 0.001936 0.001942 0.001947
A,:(l‘l) 0.001921 0.001919 0.001936 0.001942 0.001947
If;(l,O) 0.001928 0.001936 0.001943 0.001949 0.001953
Frosos) 0.001917  0.001925  0.001931  0.001937  0.001941
If;(o,l) 0.001916 0.001923 0.001929 0.001935 0.001939
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