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Abstract. A well-planned humanitarian logistics aiming to rescue people and provide
on-time lifesaving facilities in disaster-a�ected areas can signi�cantly mitigate the
repercussions of disasters. However, damaged bridges and blocked roads can hinder
last-mile deliveries in disaster-a�ected areas to ground vehicles only. In this regard, the
present study attempts to propose Ground Vehicle (GV) and Unmanned Air Vehicle
(UAV) collaborative delivery system to be implemented in such areas. To this end, a

eet of homogenous ground vehicles, each equipped with a certain number of UAVs, was
deployed for last-mile deliveries. UAVs make the 
ight from GVs, deliver to the end
locations, and return to the GV for battery replacement and/or start another 
ight. The
main objective of the proposed model is to minimize the total delivery time within UAV

ight endurance and payload constraints. First, K-means algorithm was used to cluster
the disaster-a�ected region into di�erent sectors. Then, GV-touring and UAV-routing
were scheduled using the nearest neighbor heuristics to serve the ground approachable
locations and UAV served locations, respectively. Finally, the levy 
ight-based Ant Colony
Optimization-based (ACS RW) algorithm was developed to further optimize the overall
travel time. Experimentation results show the potential superiority of the proposed
algorithm over other available truck-drone collaborative transportation models.
© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Large-scale disasters have major impacts on our lives
that cause damages and loss to human and animal
lives, buildings, materials, etc. In recent years, several
natural and man-made disasters have hit di�erent parts
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of the world, caused signi�cant losses to economic
growth, and claimed a number of human lives. For
instance, Tsunami (Indian Ocean, 2005), Hurricane
Katrina (hitting coastal areas in the US, 2005), Haiti
earthquake (2011), 
ooding (India, 2013), and forest
wild�re (Australia, 2019) were some of the natural
disasters that shocked the world in the past decades.
Casualties as well as loss of homes and communities are
the direct and immediate aftermaths of such natural
disasters. Furthermore, people living in the disaster-
a�ected areas also su�er shortage of food, fresh/clean
water, medicines, and other basic necessities. In the
absence of proper planning, governments and NGOs
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are often unable to meet the demands of disaster-
a�ected areas and cater for the needs of people in such
areas. Generally, it takes days for response teams to
reach disaster-a�ected areas. Transportation activities
initiated in response to natural/ manmade disasters are
known as humanitarian logistics.

Currently, Unmanned Air Vehicles (UAVs gener-
ally called drones) are frequently used to supply the or-
dered products to end-users. Given that drones are not
restricted by road transportation, they are widely used
for timely deliveries. By enjoying this potential, drones
can play an important role in humanitarian logistics, as
well. However, the major challenge in the application
of UAVs as a means of transportation is their low power
source which limits their 
ight range to comparatively
shorter distances. The other disadvantages are their
small time-intervals and limiting payloads.

Since a well-planned routing and scheduling of
truck-drone cooperative delivery can signi�cantly re-
duce the delivery timing and total transportation cost,
researchers have turned their attention to such issues
during the last �ve years. The majority of the existing
works in this �eld have focused on the commercial
package delivery using a combined 
eet of drones and
trucks, where some of the customers are served by
drones while the remaining ones are served by trucks.
In [1{3], joint routing was considered using truck-
assisted UAVs. However, only single UAVs were used
for last-mile deliveries. As a result, they are not very
e�cient in covering multiple locations simultaneously.
Moreover, they may not be able to deliver items
promptly which can be a critical issue in humanitar-
ian logistics. Keeping this in mind, we proposed a
multi-truck-multi-UAV last-mile delivery of emergency
supplies in disaster-a�ected areas in this study which
could be expected to signi�cantly reduce the trans-
portation time. To this end, the humanitarian logistics
was �rst modeled as Multi-Vehicle-UAV collaborative
Humanitarian Logistics (MVUHL) and then, a meta-
heuristic was developed to solve that model e�ciently
and e�ectively. In this study, �rst, the endpoints
(disaster-a�ected locations) in di�erent sectors were
clustered and then, at least, one location in each sector
that could be served using the ground vehicle, i.e.,
truck, was identi�ed. This speci�c location is called
\anchor point" that is used to launch the drone(s) to
serve the customers of that cluster, retrieve them back
on the truck, and recharge the batteries after delivering
the items. Second, a routing plan was scheduled to visit
all these anchor points using an available 
eet of trucks.
Third, a routing plan of UAVs was prepared from each
anchor point for last-mile deliveries. Fourth, the above-
mentioned two routing plans were optimized to meet
the temporal requirements of trucks and drones.

The methods for solving the delivery problems are
broadly classi�ed into two categories:

(i) Exact algorithms;
(ii) Approximate algorithms [4{6].

Exact algorithms such as branch and cut, mixed-
integer linear programming, dynamic programming,
etc. can solve small-sized instances within a reasonable
time, while the ideal solution to large-sized delivery
problems requires a signi�cant and expensive amount of
computation time. The inability of exact algorithms to
solve large-sized problems has motivated researchers to
develop approximate methods that can solve such NP-
Hard problems e�ectively and e�ciently in a reasonable
time [5,7{9]. Approximate methods namely the genetic
algorithms, particle swarm optimization, simulated an-
nealing, and swarm intelligence-based Ant Colony Op-
timization (ACO) algorithms are widely used in solving
delivery problems [4{6,8,10{13]. However, many of
these methods including GA, PSO, SA, Tabu search,
etc. su�er premature convergence due to local optima
and lack of population diversity [4,7{10]. On the other
hand, ACO-based algorithms are found more successful
in solving complex delivery problems owing to their
simple population generation and balance between the
exploration and exploitation capabilities. Moreover,
asynchronous agent cooperation at the colony level
gives ACO algorithms their distinct ever [5,12,14{16].

To the best of the authors' knowledge, this study
is the �rst of its kind that considers multiple ground
vehicles and UAVs simultaneously for transportation as
well as their applications to last-mile emergency supply
deliveries. The rest of this paper is organized as follows.
Section 2 discusses other existing studies on the appli-
cation of UAVs in humanitarian logistics. Section 3
proposes the model considering the application of GV-
UAV for disaster relief transportation. Section 4 elab-
orates on the proposed approach. Section 5 analyzes
the results obtained from the proposed algorithm on
certain datasets. Finally, Section 6 ends the paper
with the concluding remarks and suggests the future
direction.

2. UAVs in humanitarian logistics

The �rst 72 hours after the disasters are of critical
importance for preserving human life; therefore, Search
And Rescue (SAR) operations must be scheduled ef-
fectively and e�ciently. In this context, the American
Red Cross report supports the application of UAVs as a
powerful and robust tool for SAR operations [11]. This
report explored the signi�cant role of drones in disaster
planning, preparation, and response stages based on
di�erent policy recommendations, use cases, platforms,
and di�erent payloads. Use of emergent technologies in
developing an automated emergency response system
was elaborated in [12]. A Cyber-Physical System
(CPS) was also developed where heterogeneous ve-
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hicle 
eets (�xed-wing aircraft, ground vehicles, and
drones) were combined, controlled, and coordinated via
cyberspace to address complex humanitarian disaster
response operations.

Murray and Chu [3] modeled the disaster relief
transportation as:

(i) Flying Sidekick Traveling Salesman Problem
(FSTSP);

(ii) Parallel Drone Scheduling TSP (PDSTSP).

In PDSTSP, drones can 
y from the depot to deliver
parcels to customers and return to the depot. However,
in case the delivery locations are not in the range
of drones from the central depot, both drone and
truck work cooperatively for last-mile deliveries as
FSTSP. Ferrandez et al. proposed a truck-drone system
in tandem delivery networks in [2]. They employed
K-means algorithm to identify the launching points
of drones from trucks and further used a genetic
algorithm to route the trucks among these launching
points. They also discussed the bene�ts of using
multiple drones despite the fact that drones are not
limited by 
ight endurance. Chowdhury, et al. [13]
modeled the disaster relief operations as a continuous
approximation problem. They aimed to minimize the
overall distribution cost (trucks and drones) through
optimal selection of the locations of the distribution
centers, optimal assignment of the serving locations,
and e�cient prediction of the ordering quantities.

Luo et al. [1] modeled truck-drone delivery as a
two-echelon cooperated routing problem where Ground
Vehicles (GV) travel on road networks and UAVs serve
customers far beyond the roads and launch and land
on GVs. Rabta et al. developed a new mathematical
model to simulate last-mile deliveries in post-disaster
scenarios in [14]. The model was constructed con-
sidering UAV payload, 
ight endurance, and disaster-
speci�c circumstances as the function values. The
numerical examples showed that prioritization of cus-
tomers and optimal assignment of the recharging sta-
tions could signi�cantly extend the operational dis-
tance of the drones. Researchers in [15] proposed
a procedure to assist decision-makers in setting up
disaster aid distribution networks using UAVs and
Geographical Information Systems (GIS). The overall
process was divided into �ve di�erent stages. Chauhan,
et al. presented an Integer Linear Programming (ILP)
model to identify the facility locations and assign
drones for last-mile deliveries in post-disaster scenar-
ios [16]. Three di�erent solution methodologies namely
MIP solver, greedy approach, and three-Stage Heuristic
(3SH) were taken into account and compared with
each other. According to their �ndings, 3SH can
achieve balanced performance on high coverage areas
by economically deploying drones. Kitjacharoenchai

et al. [17] formulated MTSP-UAV routing as Mixed
Integer Programming (MIP) to minimize the delivery
time of both trucks and UAVs. Recently, Murray and
Raj [18] formulated the last-mile parcel deliveries as
a multiple FSTSP (mFSTSP) problem using a single
truck and multiple UAVs. They also proposed a three-
phased heuristic to solve the problem. Analysis of
the results revealed that additional drones would yield
diminishing marginal make-span improvements and
large 
ight endurance UAVs would be more bene�cial
when used to serve customers in larger areas. Liu et
al. [19] proposed a new two-echelon routing using truck-
drone cooperative scheduling. Their proposed model
considered energy consumption as a function of payload
weight. Furthermore, simulated annealing with a Tabu
search-based approach was proposed to enhance the
quality of the obtained results.

Although considerable research has been done on
the application of drones in disaster relief systems, use
of multi-UAVs and Multi-GVs in this area has not
been properly explored yet. In this regard, this study
explored the cooperative application of multiple GVs
and multiple UAVs in humanitarian logistics.

3. Problem formulation

The proposed problem consists of a set of target
locations situated in disaster-a�ected areas, each of
which is to be served with a kit of daily need items,
as shown in Figure 1a. Given that no-land deliveries
are possible for all locations due to blocked/damaged
roads, a 
eet of GVs, each with a �xed number of
UAVs, was employed for last-mile deliveries. The
locations which are directly approachable by land
roads are referred to as Direct Points and those for
which no land deliveries are possible are regarded
as Remote Locations, as shown in Figure 1b. While
all Remote Locations can be served by UAVs only,

Figure 1a. Cluster sectors.
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Figure 1b. Identi�cation of DPs and RLs.

Direct Points are served by GVs as well as UAVs.
Each location receives a packet (containing food,

water, medical kit, and hygiene items) weighing ap-
proximately q units, and each UAV once fully charged
can 
y up to Dmax(= 7 km) with a payload of Q
units. The 
ight endurance limit of a fully charged
UAV is Tmax(= 30 minutes). However, without loss
of generality, it is assumed that GVs (usually trucks)
are not restricted by any capacity, distance, and time
constraints. For simplicity, other assumptions are
summarized below:

- Coordinates of all locations are known in advance;
- Both GV and UAV travel at constant speeds;
- Speed of UAV (V elU ) is 1:25 times that of GV, i.e.,
V elU = 1:25�V elV );

- UAVs are capable of automatic launch, 
y, package
delivery, and rendezvous back to GV;

- The required time to deliver packages and replace
batteries is negligible.

Let G(V; E) be the set of vertices (V) and set of edges
(E), respectively. V is divided into two subsets of (i)
Va = fa1; a2; � � � ; amg as a �nite set of m Direct Points
(DP) and (ii) Vc = fc1; c2; � � � ; cng as a �nite set of n
Remote Locations (RL), such that:

Vc [ Va = V; (1)

and:

Vc \ Va = ;: (2)

Eqs. (1) and (2) imply that all nodes must be classi�ed
either as DP or RL, and no node should belong to both
classes, respectively.

A special node acts as a central depot where GVs
start their tour and return to the same depot. How-
ever, di�erent notations a0 and am+1 are employed to
represent the starting and ending nodes, respectively.

A distance matrix D = fdijg8i; j 2 V with dij = dji
is de�ned on E which corresponds to the distance
between nodes i and j.

Furthermore, a set of GVs denoted by V =
fV1; V2; � � �VKg is available at the central depot, each
equipped with a �nite set of UAVs denoted by U =
fU1; U2; � � � ; UNg. The set of routes traveled by GVs
to cover DPs is denoted by r = fr1; r2; � � � rKg such
that ri = fa0; a1; � � � ak; � � � am+1g, ai 2 Va. Similarly,
the set of routes to cover all the RLs allocated to a
particular DP (ai) is denoted by < = f<1

i ;<2
i ; � � � ;<Ki g

where <ji = fai; c1; � � � ck; � � � ai0g, ci 2 Vc. Let xkij =
f0; 1g be a binary variable with the value of 1 if the
kth ground vehicle visits the DP aj after serving ai;
otherwise, it takes the value of 0. Similarly, ykij = f0; 1g
is another binary variable with the value of 1 if the
kth UAV visits node j after serving i (i; j 2 V);
otherwise, it takes the value of 0. Let the binary
variable  (i; j; k) check whether or not the arc (i � j)
(i; j 2 V) belonging to the route started from the
anchor point (aj). Here, anchor point is a special DP
from which UAVs start their route to cover all the RLs
associated with those DPs. In addition, 	(i; j; k; l) is
used as a binary variable representing whether or not
lth UAV of kth GV was launched from the anchor point
(ai) and recollected at the anchor point (aj). Let the
binary variable  (i; j; k) check whether or not the edge
(i� j) belonging to the route started from the anchor
point (aj).

The arrival time of the kth GV at the jth DP
is calculated as the sum of departure time from the
ith DP and travel time between the ith and jth DP
provided that the kth GV travels directly to the jth
DP from the ith DP.

AT kj (GV ) = [DT ki (GV ) + dij=V elV ]�xkij

8 i; j; i 6= j;2 Va: (3)

The launch time (or departure time) of the lth UAV
(associated with the kth GV) at the jth DP is equal
to the maximum of the arrival time of GV or UAV at
that DP. In other words:

LT klj (UAV) = max
�
AT kj (GV); AT klj (UAV)

�
: (4)

The arrival time of the lth UAV (associated with kth
GV) at the jth RL is equal to the sum of the departure
time from the ith DP and the time taken to travel up
to jth DP provided that the kth GV is scheduled to
serve the jth DP.

AT klj (UAV) =

264
8><>:DT kli (UAV)
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+

P
a2V

P
b2V

ylab
� (a; b; i)�dab

V elU

9>=>; �	(i; j; k; l)

375
+ [(1�	(i; j; k; l))�AT kj (GV)]

8 i; j; i 6= j;2 Va: (5)

Recollection time of the lth UAV (associated with kth
GV) at the jth anchor point after serving all the end
customers on the route <lj is calculated as follows:

RT klj (UAV )= LT klj (UAV ) +

P
a

P
b
ylab
� (a; b; j)�dab
V elU

:
(6)

The departure time of the kth GV from the jth DP
is the maximum recollection time of all the UAVs that
are scheduled to be recollected at the jth DP which is
given by:

DT kj (GV ) = max(RT klj (UAV )) 8 l 2 U: (7)

The MIP formulation of the proposed humanitarian
logistic is as follows:

min(max(ATi)) 8 i 2 V; (8)

where ATi is the arrival time (i.e., the delivery timing)
at the ith node calculated as:

ATi =

(
AT ki (GV ) if i 2 Va
AT kli (UAV ) otherwise

(9)

s.t.:X
k2V

X
i2Va

xkij � jV j 8 j 2 Va; i 6= j; (10)

X
j2Va

xka0j =
X
j2Va

xkjam+1
� 1 8 k 2 V; (11)

X
i2Va[a0

X
j2Va;
i 6=j

xkij=
X
i2Va

X
j2Va[am+1;

i 6=j

xkij 8 k 2 V; (12)

X
8 k2V

X
j2Va[am+1;

i 6=j

	(i; j; k; l) � jUij 8 i2Va[ a0;
(13)

2	(i; j; k; l) =
X
h2Va;
i 6=h

xkhi +
X
h2Va;
j 6=h0

xkjh0

8 k 2; 8 l 2 Ui; j 2 Va; i 6= j; (14)

D(<li) =

 X
a2V

X
b2V

ylab �  (a; b; i) � dab
!

�	(i; j; k; l)�Dmax 8 j 2 Va; 8 k 2 V; (15)

T(<lj) = RT klj (UAV ) � Tmax

8j 2 Va; 8 k 2 V; (16)0B@X
a2V

X
b2V
b6=j

ylab �  (a; b; i) � q
1CA �	(i; j; k; l) � Q

8 j 2 Va; 8 k 2 V; (17)0BBBBB@Xa2V X
b 2 V
b 6= j

ylab� (a; b; i) �q

1CCCCCA �	 (i; j; k; l) � Q

8j 2 Va; 8k 2 V; (18)

xkij = f0; 1g 8 i; j 2 Vak 2 V; (19)

ykij = f0; 1g 8 i; j 2 Vck 2 U; (20)

	(i; j; k; l)=f0; 1g 8 i; j2Vck 2 V; l 2 U; (21)

 (i; j; k) = f0; 1g 8 i; j 2 Vck 2 U: (22)

Objective function (9) minimizes the delivery timing of
all locations Inequ. (10) restricts the maximum number
of the employed GVs, and Eqs. (11) and (12) ensure
that a GV that starts from the central depot must
return to it. Eq. (12) guarantees that in case a GV
visits a DP, it must leave for the next node except
in the case of the last node, i.e., the central depot.
Eq. (13) ensures the limitation on the number of UAVs
launching from any GV at any anchor node. Eq. (14)
ensures that in case a UAV launching from the ith
anchor node is recollected at the jth anchor node, the
GV must visit the jth anchor node after visiting the
ith anchor node. Eqs. (15), (16), and (17) guarantee
the 
ight endurance, total 
ight time, and capacity
constraints of UAVs, respectively. Constraints (18){
(21) determine the types and ranges of the variables.

4. Proposed MVUHL approach

The above-mentioned problem is more complex than
other common NP-hard VRP problems since it consists
of two-level VRP scheduling, i.e., cooperative routing
using GVs and UAVs. Therefore, it can be concluded
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that exact mathematical methods such as Branch &
Bound, column generation, etc. are capable of solving
only small-size problems (up to 10 nodes) in a reason-
able time. The computational e�orts and time increase
exponentially as the problem size increases to the
medium (50 nodes) or large (100 or more nodes) sizes.
For such types of middle- and large-size problems, we
proposed an Ant Colony System (ACS) optimization-
based metaheuristic to solve the proposed model.

The overall routing and scheduling process is
divided into three phases:

(i) Phase-I: Initial solution construction;

(ii) Phase-II: Optimization using the proposed
ACS RW approach;

(iii) Phase-III: Post processing.

At the �rst phase, GV tours and UAVs routes are ini-
tialized and then, optimized at the second phase using
the proposed metaheuristic. The obtained solutions
(delivery timings) are further optimized at the third
phase by implementing a route optimization strategy.

4.1. Initial solution construction
Since last-mile delivery in disaster-a�ected regions is a
very challenging task, pre-processing of test data such
as clustering delivery locations is very bene�cial that
can boost the convergence capabilities of the routing
algorithm [13,20,21]. In this regard, in the case of
the proposed approach, the nearby locations were �rst
clustered into di�erent sectors.

Here, an initial GV-UAV cooperative routing was
scheduled based on K-means clustering and nearest-
neighbor policy, as suggested by Abbatecola et al. [20],
Nalepa and Blocho [21], and Arparslan and Sci-
ence [22]. Generally, the very �rst step in humanitarian
logistics is to divide the overall disaster-a�ected area
into di�erent clusters (called sectors) so that di�erent
teams can be hired to service di�erent sectors [13]. In
the proposed approach, the a�ected region is divided
into jV j sectors (Algorithm 1) and one GV should be
scheduled for each sector. Next, GV Tours for each
sector are scheduled (Algorithm 2) to cover the loca-
tions that are directly accessible by ground vehicles.
Such locations are referred to as Direct Points in this
study. Finally, UAV Routes are scheduled for the rest

Algorithm 2. GV Touring.

of the locations (termed as Remote Points). Of note,
this phase is further subdivided into three sub-modules:
(a) Cluster Sectors;
(b) GV Touring;
(c) UAV Routing.

Cluster Sectors: The present study employed
K-means clustering (Algorithm 1) to divide the region
into jV j sectors, as depicted in Figure 1a. Initially,
jV j centroids are randomly assigned in the disaster-
a�ected region. Each location is assigned to its nearest
centroid depending on the Euclidian distance from
the centroid. Each sector/cluster centroid is updated
depending on the locations assigned to that cluster.
The process of assigning locations and updating
centroids is repeated until centroids remain the same
or no location-cluster change.

GV Touring: After assigning all locations to dif-
ferent sectors, GV Tours are generated for all the
Direct Points (DP) in each sector, as shown in Fig-
ure 1c. All GV Tours start from and end at the
central depot. In addition, nearest-neighbor heuristics
(Algorithm 2) was used to construct such tours where a
GV repeatedly visited its nearest location until visiting
all the DPs assigned to it.

UAV Routing: Here, the Remote Locations (RL)
are �rstly assigned to DPs using the abovementioned
K-means clustering, considering Direct Locations as
cluster centroids. Then, the UAV Routes (in di�erent
clusters) are initialized using the mentioned nearest-
neighbor heuristics keeping centroid (i.e., DP) as the
starting and ending node, as depicted in Figure 1d.

Algorithm 1. Cluster Sectors.
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Figure 1c. GV touring.

Figure 1d. UAV routing.

4.2. Optimization using RW ACS
The initialized UAV routes were improved using the
ACS-based optimization process. In addition, to visit
Aps, GV (or Truck) touring was done using the same
algorithm. ACS is a nature-inspired metaheuristic
algorithm inspired by ants in search of food [23]. It
uses exploration and exploitation strategies to solve
combinatorial optimization problems. Initially, the
ants start their search randomly. They lay a natural
chemical (called pheromone) on the paths they follow.
The pheromone also gets evaporated over time. To
be speci�c, the more ants following the path, the
greater the pheromone concentration on the path. The
pheromone deposited by the ants on di�erent paths
guides other ants to identify the path for the food
source. Hence, the leading ants will exploit the ants
to search for food source. However, the ants can also
use their own strategy for choosing the paths using the
solution quality of the chosen path that assist them in
exploring the new search space. The ants determine
the next path selection probabilistically based on both
exploration and exploitation strategies. In this respect,

the ACS-based algorithms were successfully applied to
di�erent optimization problems including the routing
problems [9,10,23{28]. Despite its capability to solve
a wide variety of combinatorial optimization problems,
ACS may be trapped into local optima. As a result,
it converges prematurely due to stagnation in local
optima. In this regard, the current study employed
ACS with Random Walk along with ACS metaheuristic
to avoid the local optima stagnation problem.

Random Walk: Random walk is a random process
where the next consecutive steps are randomly selected.
Mathematically, we have:

Wn =
nX
i=1

si; (23)

where Wn is the nth random walk, and si the random
step chosen among a random distribution. Dependence
of the nth random walk on its previous (n � 1)th
random walk is illustrated by:

Wn =
nX
i=1

si =
n�1X
i=1

si + sn = W(n�1) + sn; (24)

indicating that the next state (i.e. Wn) depends only
on the (i) current state W(n�1) and (ii) current step
size sn. Here, a series of random walks to reach for a
�nal position xn after starting from an initial position
x0 is de�ned as follows:

xn = x0 + �1s1 + �2s2 + �3s3 + �nsn = x0; (25)

where �i > 0 is a parameter that controls si. In the
present scenario, Cauchy distribution was taken into
account to choose the step size since this distribution
had in�nite variance which could help take higher
jumps to come out from the local minima.

Now, the Random walk-based ACS approach can
be given by the RW ACS algorithm (Algorithm 3).

4.3. Post processing
This phase is used for further optimization of the
obtained solution by either (i) serving a Direct Point
using UAV or (ii) updating the UAV collection (i.e.,
Rendezvous) node explained as Tour Optimization and
Route Optimization strategies, respectively.

4.3.1. Tour Optimization
Given that V elUAV > V elV , in case some of the Direct
Points are served by UAVs instead of GVs, there could
be a substantial improvement in the delivery timings.
However, to avoid complexity, only those DPs in each
sector were selected such that the number of RLs
allocated to that DP was less than half of the average
number of RLs allocated to that DP. In the case of
�nding such a DP, all RLs of that DP along with such
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Algorithm 3. RW ACS.

Algorithm 4. Tour Optimization.

a DP are distributed among neighboring DPs ensuring
that UAV constraints given by Eqs. (15), (16), and (17)
remain satis�ed. This process was accomplished using
Algorithm 4.

4.3.2. Route Optimization
Once scheduling the UAV routes, the routes might
be improved by reassigning the rendezvous node (i.e.,
Anchor point). In Figure 2, the rendezvous node of
UAV is the same as that of the launching node, i.e.,
the ith Direct Point (shown in green color). However,
if such a UAV is capable (in terms of 
ight endurance

Figure 2. Route optimization.

limit and time) of reaching the next Direct Point, the
GV does not have to wait for this UAV at the ith node
since this GV can retrieve it at the (i+1)th node (shown
in red color). In this case, since the GV can leave the
current Direct Point in advance, the overall travel time
might decrease provided that this GV had recollected
all other UAVs scheduled to be rendezvoused at this
Direct Point.

5. Computations and results

This section examines the proposed MVHUL model
and develops the ACS RW metaheuristic using
numerical examples. To the best of the authors'
knowledge, no other study considered last-mile
deliveries in disaster-a�ected areas using drone-truck
collaborative routing; hence, no publically available
datasets are available for the proposed problem.
Therefore, the present study took eight well-known
Solomon VRPTW randomly clustered (known as RC
101-108) instances for experimentation. The proposed
algorithm was coded in Matlab 8.0 on a personal
laptop with an i5 processor and 8Gb RAM.



640 S. Bansal et al./Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 632{644

Table 1. Parameter values selected for ACS RW
algorithm.

Parameter Description Value

m No. of ants 10
q0 Exploration vs. Exploitation decision 0.9
� Relative importance of Pheromone 1
� Relative importance of Heuristic 5
� Pheromone Evaporation constant 0.1
Q Pheromone Deposit constant 100

The success rate of any approximate algorithm
depends on di�erent parameter values. Since there are
no �xed parameters for ACO, which can be universally
applied to all optimization problems, it is required
to �nd the best parameter values for the proposed
algorithm with large experimentations and di�erent
combinations presented in [29{31]. Finally, the best-
suited values are given in Table 1.

5.1. Comparison of the proposed ACS RW
with other approaches

This subsection presents a comparison between the pro-
posed ACS RW algorithm and some of the commonly
used meta-heuristics (such as Genetic Algorithm, GA,
Particle Swarm Optimization PSO, Grey Wolf Op-
timization, GWO, and basic Ant Colony System,
ACS). In this regard, four di�erent scenarios based
on di�erent percentages (10%, 20%, 30%, and 40%)
of locations, which are not approachable by ground
vehicles, were taken into consideration. Further, it is
assumed that maximum �ve UAVs are available on each
GV. Each algorithm is run in 5000 seconds to minimize
the total travel time. Table 2 presents an average of
10 runs of each approach. In this table, #GV and
#UAV represent the number of used GVs and UAVs,
respectively. Here, TT is the total travel time taken
to complete the overall delivery process. Bold-faced
values represent the best obtained solutions among all
approaches. As observed in Table 2, the TT obtained
from the proposed ACS RW signi�cantly outperforms
all other approaches for all four scenarios. It was
also found that for 10%, 20%, and 30% UAV-bound
locations, ACS RW used less numbers of GV and
the same number of UAVs than all other approaches.
However, for 40% UAV-bound customers case, the
proposed ACS RW performed best in terms of #GV
and #UAV as well.

5.2. Comparison with other truck-drone
collaborative models

The performance of the proposed model was compared
with that of [1,2,17], thus considering the problems that
are quite similar to the present problem. However, Luo
et al. [1] and Ferrandez et al. [2] used single GV (Truck)
and single UAV(drone) tandem for delivery; conse-

Figure 3. Box-plot comparison of the total travel time of
the proposed approach with other existing approaches.

quently, multiple parallel instances of these algorithms
were used for each zone separately to �t them to the
current model. Given that Kitjacharoenchai et al. [17]
considered a single UAV for each of GV, we limited one
UAV per GV for a fair comparison while implementing
the proposed as well as all these algorithms. A total
of 150 node problems were considered with 70% of
chances that a node would be served by truck (GV),
as suggested by Chowdhuly et al. [13]. The maximum
CPU time allocated to the run of each algorithm was
set to 1500 seconds. Each of the algorithms was tested
for 20 runs, and the best values of each run were
chosen for comparison. Figure 3 presents the box
plots of the calculated total travel time (in minutes)
for completion of the overall tour. According to this
�gure, the proposed MVHUL and [17], compared to
the other two approaches, are capable of �nding the
best values for the objective function (i.e., 320 min).
While the �rst quartile of [17] varies between 320
and 340, that of our proposed approach gives a �xed
value of 320 (overlapped with the second quartile),
indicating the better stability of our proposed approach
than that of the others. The median values of our
MVHUL are also better than those of the other three
approaches. Furthermore, the short-range (320{380) of
the proposed algorithm is indicative of its consistency
compared to other approaches (value 400 shown by the
red arrow can be ignored as it is an outer point). As a
result, it was proved that the proposed approach was
superior to other similar approaches in terms of the
best objective function as well as the consistency in
�nding the best solutions.

5.3. Sensitivity analysis
Sensitivity analysis was carried out to analyze the
e�ect of the number of UAVs on the total travel
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Table 2. Comparison of ACS RW with commonly used metaheuristics.

Dataset 10% 20% 30% 40%
#

GV
#

UAV
TT #

GV
#

UAV
TT #

GV
#

UAV
TT #

GV
#

UAV
TT

R
C

10
1

GA 13 2 1803.22 12 2 1742.06 11 3 1695.6 11 5 1589.06
PSO 13 2 1785.32 11 2 1710.43 11 3 1656.18 11 5 1534.81
GWO 13 2 1702.47 11 3 1699.65 11 3 1623.42 11 4 1540.52
ACS 13 2 1723.19 12 2 1740.92 11 3 1680.56 11 5 1560.95

ACS RW 12 2 1650.02 11 2 1564.65 9 3 1520.04 9 4 1438.92

R
C

10
2

GA 12 2 1744.83 11 2 1587.14 9 3 1429.65 9 5 1499.08
PSO 12 2 1701.12 11 2 1550.56 9 3 1416.16 9 5 1480.75
GWO 12 2 1680.12 11 2 1510.2 9 3 1380.4 9 5 1420.16
ACS 12 2 1710.96 11 2 1525.11 9 4 1408.19 9 5 1433.6

ACS RW 11 2 1587.12 10 2 1471.43 8 3 1352.11 8 4 1314.06

R
C

10
3

GA 11 2 1276.12 11 3 1380.94 9 4 1155.68 9 4 1140.6
PSO 11 2 1250.06 11 3 1342.16 8 4 1140.04 9 4 1114.92
GWO 11 2 1233.95 11 3 1313.08 8 4 1110.82 9 4 1093.81
ACS 11 2 1260.09 11 3 1346.26 9 4 1142.17 9 4 1100,02

ACS RW 10 2 1156.17 10 2 1211.52 8 3 1041.46 8 3 1006.8

R
C

10
4

GA 10 2 1208.46 10 3 1199.07 8 3 1080.41 8 4 1010.16
PSO 10 2 1180.36 10 3 1150.83 8 3 1034.16 8 4 987.24
GWO 10 1 1156.72 10 3 1102.06 8 3 1020.86 8 4 983.06
ACS 10 2 1160.31 10 3 1123.35 8 3 1018.04 8 4 990.42

ACS RW 9 1 1120.95 9 2 1021.44 8 2 978.5 8 3 921.83

R
C

10
5

GA 14 3 1685.62 13 4 1594.57 12 4 1484.55 11 5 1388.9
PSO 13 3 1637.98 13 4 1582.16 12 4 1482.19 11 5 1376.16
GWO 13 3 1600.06 13 4 1555.18 11 4 1442.94 11 5 1355.84
ACS 13 3 1596.44 13 4 1544.73 11 4 1409.02 11 5 1341.93

ACS RW 12 2 1533.84 11 3 1476.16 10 3 1320.95 10 4 1287.26

R
C

10
6

GA 12 3 1506.31 11 3 1395.17 10 5 1276.18 10 5 1289.82
PSO 11 3 1500.04 11 3 1388.23 10 5 1242.06 10 5 1254.41
GWO 11 2 1492.44 11 2 1368.04 10 4 1229.13 10 4 1225.17
ACS 11 2 1450.79 11 3 1327.17 10 4 1222.64 10 5 1246.05

ACS RW 10 2 1379.58 10 2 1250.1 9 3 1184.48 9 3 1152.09

R
C

10
7

GA 12 2 1295.09 11 3 1266.81 9 4 1144.42 9 4 1141.55
PSO 11 2 1252.41 11 3 1225.58 9 4 1130.06 9 3 1126.18
GWO 10 1 1230.89 11 2 1237.14 9 4 1126.11 9 3 1110.56
ACS 11 2 1228.11 11 3 1209.15 9 4 1116.08 9 3 1104.12

ACS RW 10 1 1198.5 10 2 1110.44 8 3 1057.02 8 3 1029.56

R
C

10
8

GA 10 2 1056.8 9 3 1040.95 8 3 1008.17 8 5 989.02
PSO 10 2 1009.43 9 3 1025.18 8 3 999.44 8 4 952.36
GWO 10 1 997.84 9 3 1008.02 8 3 987.12 8 4 906.71
ACS 10 2 1002.06 9 3 1004.66 8 3 990.04 8 4 922.41

ACS RW 9 1 980.46 8 2 950.4 7 3 910.22 7 4 898.74
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Figure 4. Sensitivity analysis of the e�ect of number of
UAVs deployed on the total travel time.

time to cover all the customers. Figure 4 depicts
the percentage improvement in the total travel time
over the VRP solution obtained from using the same
ACO RW heuristic without any UAV. As expected, at
�rst, the total travel time was signi�cantly reduced
upon increasing the number of UAVs allotted to each
GV. However, adding more UAVs beyond the threshold
limit (in our case, 4) did not signi�cantly reduce the
objective value. One of the possible explanations for
such a behavior is that once determining the optimal
number of UAVs to serve customers, adding extra
UAVs may contribute to an additional distance of
moving from AP to a customer and then returning
to AP; however, this customer could be easily added
to the tour of other (already deployed) UAVs without
returning to AP.

5.4. Friedman's analysis
To statistically validate the obtained results, a non-
parametric Friedman test was conducted for multiple
comparisons at 0.05 level of signi�cance. A null
hypothesis Ho: \there is no performance di�erence
between the algorithms" and an alternate hypothesis
Ha: \there is a performance di�erence" has been
postulated. The hypothesis was tested on an average
of 250 runs on all the compared algorithms on the
used data sets, the results of which are presented
in Table 3. Since Friedman test statistics is highly
signi�cant (�2

cal(3) = 87:065, p � 0:05), the null
hypothesis can be rejected. After rejecting the null hy-

Table 4. p-values of di�erent approaches using Nemenyi
post-hoc analysis on Friedman test.

ACS RW GA PSO GWO

ACS RW 1 < 0:0001 < 0:0001 < 0:0001
GA < 0:0001 1 0.773 0.902
PSO < 0:0001 0.773 1 0.996
GWO < 0:0001 0.902 0.996 1

pothesis, it should be determined which method works
better. Therefore, multiple pair-wise comparisons were
made using Nemeny procedure (which uses Friedman
ranking), the results of which are reported in Table 4.
According to Nemenyi post-hoc analysis for multiple
comparisons, the proposed HAFA signi�cantly di�ers
(p < 0:0001) from GA, PSO, and GWO, while the other
contrasts are not signi�cant (p > 0:05).

6. Conclusion and future work

A well-planned humanitarian logistic plays a signi�cant
role in the right delivery of the right material at
the right time to the needy people su�ering from
shortage of food, clean water, chlorine tablets, and
other lifesaving medicines in disaster-a�ected areas.
However, damaged bridges and blocked roads due to
debris can hinder last-mile deliveries by ground vehicles
only. The collaborative GV-UAV routing was taken
into account for last-mile deliveries in disaster-a�ected
areas in this study. A Multi-Vehicle UAV collaborative
Humanitarian Logistic (MVUHL) algorithm was pro-
posed for scheduling and routing. This algorithm was
broadly classi�ed into three stages:

(a) Initial solution construction;

(b) Optimization using RW ACS;

(c) Post processing.

A comparison of the proposed algorithm with other
similar ones available in the literature con�rmed the
superiority of our proposed algorithm in terms of total
travel time. This study also considered the optimal
number of used UAVs. Our analysis revealed that
increasing the number of UAVs would reduce the travel
time only up to a threshold. However, the application
of additional UAVs beyond a certain threshold value
would not signi�cantly contribute to improving the
travel time.

Our proposed future work in this direction in-
volves an analysis of using heterogeneous UAVs with

Table 3. Friedman statistics.

Qcalculated Qcritical Degree of freedom p-value (one-tailed) Level of signi�cance
87.065 7.815 3 < 0:0001 95%
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di�erent capacity and 
ight endurances in last-mile
deliveries as well as analysis of the e�ect of prioritizing
the customers and/or dynamic demand-based intelli-
gent routing.
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