
Scientia Iranica D (2023) 30(3), 1148{1157

Sharif University of Technology
Scientia Iranica

Transactions D: Computer Science & Engineering and Electrical Engineering
http://scientiairanica.sharif.edu

Research Note

Robust state-feedback controller for linear
parameter-varying systems with time-invariant
uncertainties

H. Asrari, I. Mohammadzaman�, and F. Allahverdizadeh

Faculty of Electrical and Computer Engineering, Malek Ashtar University of Technology, Tehran, P.O. Box 15875-1774, Iran.

Received 10 October 2020; received in revised form 7 June 2021; accepted 6 September 2021

KEYWORDS
Linear parameter-
varying;
Robust state-
feedback;
Uncertain time-
varying parameters;
Time-invariant
parametric
uncertainties;
Gain-scheduling.

Abstract. In this paper, the robust gain-scheduled state-feedback controller problem is
studied for uncertain linear parameter-varying systems whose state-space representations
are a linear combination of the uncertain time-varying parameters including time-invariant
parametric uncertainties. It is supposed that these uncertainties are bounded by the given
intervals and cannot be pulled out as an uncertain block. This is a serious challenge
because the exact information about the plant dynamics cannot be extracted from the
uncertain time-varying parameters, while the gain-scheduled controllers need to have the
exact information about the plant dynamics in order to satisfy the desired control purposes.
To handle this challenge, we introduce a state-feedback gain, which is formed by a set of
new scheduling parameters and a secondary time-varying term. The stabilization conditions
are obtained in terms of the linear matrix inequalities. The e�ectiveness of the proposed
method is shown using an example.

© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

Linear Parameter-Varying (LPV) systems have
emerged from the theory of nonlinear systems and
have become one of the most popular approaches in
the �eld of control engineering. Indeed, the LPV
scheme has great potential to overcome the di�culties
of the real-world processes [1{5]. The LPV approach
has been introduced to model gain-scheduling in a
wide variety of applications. The main rationale for
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the LPV approaches lies in the possibility of designing
the gain-scheduled controllers in a very systematic
manner [6,7]. Thenceforth, numerous studies have
focused on the use of the LPV controllers. In this
context, many researchers have similarly supposed
that the exact scheduling parameters are available
for calculating a gain-scheduled controller [8{10].
This is while the presence of uncertainties is a
major problem in reality [11]. This means that the
scheduling parameters are expected to include the
uncertainties in practical applications. For example,
measurement of the time-varying parameters is not
exact in practical applications. This results in a set
of inexact scheduling parameters as mentioned in the
literature [12{16]. However, one of the most important
challenges in designing the gain-scheduled controllers
for the LPV systems is the uncertain time-varying
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parameters including Time-Invariant Parametric
Uncertainties (TIPU). In the cases where we cannot
extract the TIPU explicitly, the exact information
about the plant dynamics is not available for the
gain-scheduled controllers.

The control design problem for the uncertain
LPV systems has been studied in recent years and
some remarkable results have been achieved [17{22].
However, these works are not useful to cope with
the mentioned challenges in the current paper. Some
previous studies have introduced schemes considering
the concepts of TIPU and gain scheduling, simulta-
neously. In a study, a robust gain-scheduled control
method was developed in the presence of external
disturbance as well as the TIPU [23]. The major
drawback of the mentioned study was that the input
matrix was constant. Although the input matrix was
in
uenced by the TIPU, it was supposed that the input
matrix did not vary signi�cantly with the scheduling
vector. Therefore, the elements of the input matrix
were substituted with their mean values. This was
while the TIPU might lead the stable system towards
instability. Rotondo et al. [24] analysed the same
problem. However, the resulting idea su�ered from a
major limitation on the matrix structure. They rewrote
the uncertain matrices using a linear combination of
the exact scheduling parameters. In other words, the
weighting matrices used in this combination were only
involved in the TIPU, which might be impossible in
some of the uncertain matrices. In another study, a
state-feedback control strategy was presented to cope
with the uncertain time-varying parameters by the use
of secondary convex parameters [25]. These parameters
were obtained online by maximizing and minimizing
the uncertain time-varying parameters over the bounds
of the TIPU at the moment \t." Obviously, �nding
the upper and lower bounds of the uncertain time-
varying parameters in every second of the simulation
time makes it a time-consuming process, imposing
complex computations on the control system. There-
fore, employing the secondary convex parameters is
unreasonable and impractical.

Motivated by the above-stated challenge, we ad-
dress the design problem of the robust gain-scheduled
state-feedback controllers for uncertain LPV systems in
which the state-space matrices are a�ne with respect to
the uncertain time-varying parameters. It is assumed
that the uncertainties in the model originate from the
TIPU, which cannot be extracted explicitly from the
uncertain time-varying parameters. In this case, the
exact information about the plant dynamics is not
available to the controller. Therefore, the uncertain
time-varying parameters cannot be considered as the
exact scheduling parameters. To handle this challenge,
we seek to �nd a simple strategy in the state-feedback
framework, which stabilizes the uncertain LPV systems

for all the allowable values of the interval uncertainties.
For this purpose, a straightforward approach is intro-
duced in this paper in the following steps:

a) As mentioned previously, a proper control strategy
has to be employed to stabilize the uncertain LPV
systems for all the allowable values of the TIPU.
Accordingly, we are free to choose arbitrary values
for the TIPU from the given intervals. Thus, a
set of the time-varying parameters will be obtained
by substituting the arbitrary values of the TIPU
into the uncertain time-varying parameters. It is
evident that the arbitrary values of the TIPU are
not necessarily equal to the true ones in the real
LPV system. Hence, the obtained parameters do
not exactly describe the plant dynamics and hence,
cannot be used to construct the exact scheduling
parameters. Therefore, we must �nd a way to
compensate for the di�erence between the arbitrary
and the true values of the TIPU. The solution is
provided in the next step;

b) New scheduling parameters are hired to handle
the mentioned challenge in the previous step. To
this purpose, it is necessary to �nd o�ine the
values of the TIPU that maximize and minimize
the uncertain time-varying parameters over the
variation ranges of the time-dependent expressions
present in the uncertain time-varying parameters.
After that, substituting the obtained values in the
uncertain time-varying parameters results in a set
of known parameters. Finally, the new scheduling
parameters will be created by combining the known
parameters. Then, we can employ the new schedul-
ing parameters to construct the state-feedback gain.
In this process, the known parameters will be scaled
by a constant value. However, this can lead to the
lack of information on the plant dynamics. To cope
with the mentioned challenge, a new state-feedback
gain is introduced in the following step;

c) To deal with the lack of information on the
plant dynamics, two mathematical statements are
employed to form the new state-feedback gain.
The �rst one is obtained by the use of the new
scheduling parameters. The second statement is
a secondary time-varying term, which is updated
by a proper adaptation law to compensate for
the lack of information on the �rst mathematical
statement. Given the steps above, the secondary
time-varying term can help compensate for the
di�erence between the arbitrary and the true values
of the TIPU.

The rest of the paper is organised as follows: Section 2
presents the preliminaries for the present study; Sec-
tion 3 provides the main results; Section 4 demon-
strates the validity and applicability of the proposed
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technique for an inverted pendulum; �nally, conclu-
sions are given in Section 5.

The following notation is used in this paper:

[Ci]p :=
�
C1 C2 � � � Cp

�
; (1)

�
C(i;j)

�
p�p :=

26664
C(1;1) C(1;2) � � � C(1;p)
C(2;1) C(2;2) � � � C(2;p)

...
...

. . .
...

C(p;1) C(p;2) � � � C(p;p)

37775 : (2)

Also, the symbol (�) denotes the elements below the
main diagonal of a symmetric block matrix.

2. Preliminaries and statement of the problem

Suppose that an uncertain LPV system with
p uncertain time-varying parameters �(t; �) =�
�1(t; �) � � � �p(t; �)

�T is given in the following form:

_X(t) = A(�(t; �))X(t) +B(�(t; �))u(t): (3)

The plant model can be expressed as the convex
combination of the vertex systems:

A(�(t; �)) =
pX
i=1

Ai�i(t; �);

B(�(t; �)) =
pX
i=1

Bi�i(t; �); (4)

where the combinations are given with the uncertain
time-varying parameters �1(t; �); �2(t; �); � � � ; �p(t; �)
satisfying:

pX
i=1

�i(t; �)=1; 0��i(t; �)�1; i=1; 2; � � � ; p;
(5)

where � 2 Rq�1 is the vector of the TIPU, �(t; �) 2
Rp�1 is the vector of the uncertain time-varying pa-
rameters, Ai, Bi denote the constant matrices with ap-
propriate dimensions, and X(t) 2 Rn�1 introduces the
state vector assumed to be available for measurements.
Also, u(t) 2 Rm�1 is the control input.

Now, we de�ne the state-feedback control law as
follows:
u(t) = K (�New(t); Jag(t))X(t); (6)

with:

K(�New(t); Jag(t)) =
pX
i=1

(Ki�iNew(t)) + Jag(t); (7)

where Jag(t) is the secondary time-varying term and
Ki; i = 1; � � � ; p, are the parameter-independent matri-
ces to be calculated. Also, �New(t) =

�
�1New(t) � � �

�pNew(t)
�T is the vector of the new scheduling param-

eters. According to the steps presented in the section

on Introduction, we are free to select the arbitrary
values of the TIPU from the given intervals. Also,
we stated that

Pp
i=1(Ki�iNew(t)) could not stabilize

the uncertain LPV system for all the allowable values
of the TIPU. Therefore, the secondary time-varying
term, denoted by Jag(t), is added to

Pp
i=1(Ki�iNew(t))

to compensate for the di�erence between the arbitrary
values of the TIPU and the true ones. In other words,
the task of Jag(t) is to compensate for the lack of
information on

Pp
i=1(Ki�iNew(t)).

Substituting Eq. (6) into Eq. (3) yields a closed-
loop system in the following form:

_X(t) = Ac(�(t; �);�New(t); Jag(t))X(t); (8)

where:
Ac(�(t; �);�New(t); Jag(t)) = A(�(t; �))

+B(�(t; �))K(�New(t); Jag(t)): (9)

Remark 1. The vector � is unknown. However,
the elements of � are supposed to be bounded and
their bounds are given a priori. On the other hand,
it is supposed that we cannot explicitly extract the
TIPU. Therefore, the arbitrary vector �c is selected
for the elements of � to simulate the uncertain LPV
system. As mentioned earlier, the arbitrary values for
the elements of �c are not necessarily equal to the
true ones in the real LPV system. Therefore, the
state-feedback control law in Eq. (6) is proposed to
compensate for the di�erence between the arbitrary
and true values of the TIPU.

Accordingly, Eq. (8) will hold and can be rewrit-
ten in the following form:

_X(t) = Ac(�(t; �c);�New(t); Jag(t))X(t): (10)

The new scheduling parameters are de�ned in the
following form:

�iNew(t) =
Mi(t)

2p
; i = 1; 2; � � � ; p; (11)

with:

Mi(t) =
pX
j=1
j 6=i

�
�i(t; �)j�=�jmax + �i(t; �)j�=�jmin

�
+ �i(t; �)j�=�imax + �i(t; �)j�=�imin ; (12)

where �imax, �imin, i = 1; 2; � � � ; p, consist of unique
values, which can maximize and minimize the uncertain
time-varying parameters over the bounds of the TIPU
and the variation ranges of the time-varying expres-
sions present in �i(t; �), i = 1; 2; � � � ; p, respectively. In
addition, �imax and �imin, i = 1; 2; � � � ; p, are deter-
mined o�ine by a proper software. p is the number of
the new scheduling parameters. Also, �i(t; �)j�=�jmax ,
�i(t; �)j�=�jmin , �i(t; �)j�=�imax , and �i(t; �)j�=�imin
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are obtained by substituting �jmax, �jmin, �imax, and
�imin into �, respectively.

Substituting the obtained values in the uncertain
time-varying parameters and combining them innova-
tively results in the development of the new scheduling
parameters.

Now, let us prove that the time-varying param-
eters in the form of Eq. (11) satisfy the conditions
mentioned in Eq. (5). Obviously, the upper and lower
bounds of �i(t; �), i = 1; 2; � � � ; p, are equal to one
and zero, respectively. Therefore, we can obtain the
following inequalities:

0 �Mi(t) � 2p: (13)

Now, we divide Eq. (13) into 2p. Then, we have the
following inequality:

0 � Mi(t)
2p

� 1;) 0 � �iNew(t) � 1: (14)

Therefore, we showed that the new scheduling param-
eters lied in the range of

�
0 1

�
. Based on the equalityPp

i=1 �i(t; �) = 1, we can obtain that
Pp
i=1 �iNew(t) is

equal to one. Then, the proof is completed.

Remark 2. To clarify the procedure presented in
this paper, it is necessary to provide the following
description. Suppose that �i(t0; �) denotes the ith
uncertain time-varying parameter at the moment \t =
t0." Evidently, we must know the variation range of
�i(t0; �) for all the allowable values of the TIPU in
order to design an e�ective controller. This leads to
a set of secondary scheduling parameters, which are
obtained by maximizing and minimizing the uncertain
time-varying parameters over the bounds of the TIPU
at the moment \t". Such a procedure is used in [25].
However, it is very di�cult, time-consuming, unrea-
sonable, and impractical. Therefore, we need to look
for a way to handle this challenge. In this regard, we
propose the state-feedback gain in the form of Eq. (7).
The �rst term of the state-feedback gain is scaled by 2p.
This means that the �rst term of Eq. (7) cannot cover
the exact information about �i(t; �) for all the allowable
values of the elements of �. This is while we mentioned
that the designers were free to select the arbitrary
values for the elements of the vector �. Accordingly,
the task of Jag(t) in Eq. (7) is to compensate for the
di�erence between the arbitrary values for the elements
of the vector � and the true ones. This means that
Jag(t) compensates for the lack of information on the
�rst term of Eq. (7). It should be noted that Jag(t)
will be updated by a proper adaptation law.

3. Main results

The following theorem proposes a robust gain-
scheduled state-feedback controller, which can stabilize

the uncertain LPV systems in the presence of the
TIPU.

Theorem 1. If there exist matrices L0, W0, !i, Yi,
Ri, Li, Hi, Si, Ei, �ij , Gij , Qij , Jag(t), P , and
�(t) satisfying the following Linear Matrix Inequalities
(LMIs) for i; j = 1; 2; � � � ; p :

(!i + !Ti ) > 0; (Yi + Y Ti ) > 0;

(Qij +QTij) > 0; (Gij +GTij) > 0; (15)

(�ij + �Tij) > 0; P > 0; 
 < 0; (16)

_�(t) = ��(t)A(�(t; �c)); (17)

Jag(t) =� �BT (�(t; �c))B(�(t; �c))
��1

�BT (�(t; �c))
�
P�1 + �T (t)�(t)

��1

� ��T (t)�(t)B(�(t; �c)) ~K(�New(t))
�
; (18)

where:


=

2666664
U0
�
U(0;i)+�(0;i)

�
p

�
U(0;iNew)

�
p

(�) �
U(i;j)

�
p�p

�
U(i;jNew)+�(i;jNew)

�
p�p

(�) (�) �
U(iNew;jNew)

�
p�p

3777775;
U0 = 2(L0 + LT0 )�

pX
i=1

(!i + !Ti )�
pX
i=1

(Yi + Y Ti );

U(0;i) = W0 + 2Ri + !i � L0;

U(0;iNew) = �W0 + 2Li + Yi � L0;

U(i;j) =

8>>><>>>:
�(!i + !Ti )� (Hi +HT

i )� (Ri +RTi );
(i = j)

Gij + (Hi +Hj)� (Ri +Rj);
(i < j)

U(iNew;jNew) =

8>>><>>>:
�(Si+STi )�(Li+LTi )�(Yi+Y Ti );

(i = j)
�ij � (Si + Sj)� (Li + Lj);

(i < j)

U(i;jNew) = Qij + Sj �Hi �Ri � Lj ;
�(0;i) = AiP;

�(i;jNew) = BiEjNew;

~K(�New(t)) =
pX
i=1

(Ki�iNew(t)):
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Then, the closed-loop system, which is presented in
Eq. (8), is asymptotically stable. In this case, the
feedback gains in the vertices can be obtained in the
following form:

Ki = EiP�1; i = 1; 2; � � � ; p: (19)

Also, �(t) is a matrix updated by an adaptation law in
Eq. (17).

Proof. Let us consider a candidate Lyapunov function
in the following form:

V (t)=XT (t)P�1X(t)+(�(t)X(t))T (�(t)X(t)): (20)

Di�erentiating V (t) with respect to \t" yields:

_V (t) = _XT (t)P�1X(t) +XT (t)P�1 _X(t)

+ 2(�(t)X(t))T
�

_�(t)X(t) + �(t) _X(t)
�
: (21)

Now, we substitute Eqs. (3), (6), and (7) into Eq. (21)
to get:

_V (t) = _V1(t) + _V2(t) + _V3(t); (22)

where:

_V1(t) =XT (t)
�
AT (�(t; �c))P�1 + P�1A(�(t; �c))

+ ~KT (�New(t))�BT (�(t; �c))P�1

+P�1B(�(t; �c))� ~K(�New(t))
�
X(t); (23)

_V2(t)=2XT (t)
�
�T (t) _�(t)+�T (t)�(t)A(�(t; �c))

�
X(t);

(24)

_V3(t) =2XT (t)
�
P�1B(�(t; �c))Jag(t) + �T (t)�(t)

�B(�(t; �c)) ~K(�New(t)) + �T (t)�(t)

�B(�(t; �c))Jag(t))X(t): (25)

We can achieve _V (t) < 0 by obtaining _�(t) and Jag(t)
in the following form:

_V2(t) = 0) _�(t) = ��(t)A(�(t; �c)); (26)

_V3(t) = 0)
Jag(t) =� �BT (�(t; �c))B(�(t; �c))

��1

�BT (�(t; �c))
�
P�1 + �T (t)�(t)

��1

� ��T (t)�(t)B(�(t; �c)) ~K(�New(t))
�
: (27)

Finally, the stability criterion is in the following form:

_V (t) = _V1(t) < 0: (28)

For this purpose, the following inequality is valid:

G(t) =
�
PAT (�(t; �c)) +A(�(t; �c))P

+ P ~KT (�New(t))BT (�(t; �c))

+B(�(t; �c)) ~K(�New(t))P
�
< 0; (29)

Eq. (29) can be rewritten in the following form:

G(t) =
pX
i=1

�i(t; �c)(�(0;i) + �T(0;i))

+
pX
i=1

pX
j=1

�i(t; �c)�jNew(t)
�
�(i;jNew)+�T(i;jNew)

�
<0;
(30)

where �(i;jNew) = BiEjNew and �(0;i) = AiP .
Now, we use a relaxation technique introduced

in [25] to derive LMI conditions. Applying the S-
procedure, the condition _V (t) < 0 for all the trajec-
tories is equivalent to the existence of N(t) � 0 such
that:

G(t) +N(t) < 0; (31)

N(t) is proposed in this paper in the following form:

N(t) = U0 +
pX
i=1

�i(t; �c)(U(0;i) + UT(0;i))

+
pX
i=1

�iNew(t)
�
U(0;iNew) + UT(0;iNew)

�
+

pX
i=1

�2
i (t; �c)U(i;i)+

pX
i=1

�2
iNew(t)U(iNew;iNew)

+
pX
i=1

pX
j=1

�i(t; �c)�jNew(t)

�
U(i;jNew) + UT(i;jNew)

�
+
p�1X
i=1

pX
j=i+1

�iNew(t)�jNew(t)

�
U(iNew;jNew) + UT(iNew;jNew)

�
+
p�1X
i=1

pX
j=i+1

�i(t; �c)�j(t; �c)(U(i;j)+UT(i;j));
(32)

where U0, U(0;i), U(0;iNew), U(i;j), U(i;jNew), and
U(iNew;jNew) have been introduced in Theorem 1.
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According to Eqs. (30) and (32), Inequality (31)
can be rewritten as follows:

	 = �T
� < 0; (33)

where:

� =

266666666664

I
�1(t; �c)I

...
�p(t; �c)I
�1New(t)I

...
�pNew(t)I

377777777775
: (34)

Therefore, the proof is completed.

Remark 3. As proven above, the proposed con-
trol law in Eq. (6) is useful to stabilize the uncer-
tain LPV system, which is introduced in Eq. (3).
However, any selection of the TIPU admits a
new set of time-varying parameters �i(t; �c), i =
1; 2; � � � ; p. This means that the poles of A(�(t; �c)) +
B(�(t; �c))K(�New(t); Jag(t)) are dependent on the
selection of �c. Therefore, any �c has a signi�cant
impact on the location of the closed-loop poles.

4. Simulation results

We aim to stabilize an inverted pendulum on a moving
cart in
uenced by the TIPU to demonstrate the e�-
ciency of the proposed technique. The model has been
given by Park et al. [25] in the following form:

�x(t) =
g sin(x(t))

4L=3� bmL cos2(x(t))

�
bmL _x2(t) sin(2x(t))

2 + b cos(x(t))u(t)
4L=3� bmL cos2(x(t))

; (35)

where x(t) (rad), m (kg), and L = 0:5 (m) are
the angular displacement, mass, and length of the
pendulum, respectively. M (kg) is the mass of the cart,
g = 9:8 m/s2 is the gravitational acceleration, and b is
a function of m and M . Also, u(t) is the control e�ort
applied to the cart. b, m, and M are considered as the
TIPU in the following form:

b =
1

M +m
; 2 � m � 3; 8 �M � 16: (36)

The state space model of Eq. (35) is represented by the
following LPV model:�

_x1(t)
_x2(t)

�
=
�

0 1
f(X(t)) 0

� �
x1(t)
x2(t)

�
+
�

0
g(X(t))

�
u(t);

(37)

where X(t) =
�
x1(t) x2(t)

�T and:

f(X(t)) =
g � bmLx2

2(t) cos(x1(t))
4L=3� bmL cos2(x1(t))

sin(x1(t))
x1(t)

; (38)

g(X(t)) =
�b cos(x1(t))

4L=3� bmL cos2(x1(t))
: (39)

Also, it is supposed that x1(t) and x2(t) vary in the
following ranges:

�5�=12 � x1(t) � 5�=12; �5 � x2(t) � 5: (40)

Now, we can convert Eq. (37) into Eq. (3) using the
following trend:

A1 = A2 =
�

0 1
fmin 0

�
; A3 = A4 =

�
0 1

fmax 0

�
;

B1 = B3 =
�

0
gmin

�
B2 = B4 =

�
0

gmax

�
;

�1(t) = �1(t)'1(t); �2(t) = �1(t)'2(t);

�3(t) = �2(t)'1(t); �4(t) = �2(t)'2(t); (41)

where:

�1(t) =
fmax � f
fmax � fmin

; �2(t) =
f � fmin

fmax � fmin
;

'1(t) =
gmax � g

gmax � gmin
; '2(t) =

g � gmin

gmax � gmin
:

fmin, fmax, gmin, gmax can be calculated as follows:

fmin = 9:9225; fmax = 18:9677;

gmin = �0:1935; gmax = �0:0205;

Solving the matrix Inequalities (15) and (16) yields:

E1 =
�
154:0078 28:4551

�
;

E2 =
�
154:8349 30:5422

�
;

E3 =
�
154:8349 30:5422

�
;

E4 =
�
154:4318 30:5186

�
;

P =
�

0:9347 �2:9676
�2:9676 12:3033

�
:

We consider � =
�
b m

�
as the vector of the TIPU.

The new scheduling parameters are proposed according
to Eqs. (11) and (12). In this regard, �imax, �imin,
i = 1; 2; 3; 4, and p are as follows:

�1 max =
�
0:1 3

�
; �1 min =

�
0:052 2

�
;

�2 max =
�
0:052 3

�
; �2 min =

�
0:1 3

�
;

�3 max =
�
0:1 3

�
; �3 min =

�
0:052 2

�
;

�4 max =
�
0:052 3

�
; �4 min =

�
0:1 3

�
;

p = 4:
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�
1:2 0

�T and
�
1 �0:1
1 0:3

�
are the initial conditions for

the states and matrix �(t). Now, we simulate the
closed-loop system by taking M = 16 (kg), m =
3 (kg) and b = 1=19 (kg�1) as the arbitrary values
of the TIPU. Figures 1, 2, 3, and 4 illustrate the

behaviour of the states, the new scheduling parameters,
the scheduling parameters used to simulate the LPV
system, and the matrix �(t), respectively. Note that
the dimensions of the matrix �(t) employed by Jag(t)
are 2� 2.

As can be seen, the time-varying parameters in

Figure 1. x1(t) and x2(t) under the proposed method.

Figure 2. The new scheduling parameters.

Figure 3. The scheduling parameters used to simulate the LPV system.



H. Asrari et al./Scientia Iranica, Transactions D: Computer Science & ... 30 (2023) 1148{1157 1155

Figure 4. Time variations of the elements of the matrix �(t) under the proposed method.

Figures 2 and 3 are bounded by 0 and 1. The
states exhibit a good performance and go to zero
asymptotically. Acceptable behaviour of the states
con�rms that �(t) works well. The simulation results
indicate the e�ectiveness of the proposed method in the
presence of the TIPU.

Remark 4. Let us explain the presented idea from
another viewpoint. Without loss of generality, it is
assumed that �1(t; �), �2(t; �) are the uncertain time-
varying parameters. � is the vector of the TIPU.
Obviously, we have no exact knowledge about �. On
the other hand, the scheduling parameters must be
known to schedule the gain controller. Thus, we assign
an arbitrary vector �c to � in order to handle this
challenge. Therefore, the polytope in Figure 5 will
be built due to the variations of �1(t; �)j�=�c and
�2(t; �)j�=�c . However, this polytope is not exact,
because �c is not the true vector. Di�erent polytopes
can be built for all the allowable �c. Therefore, there
is a need to propose an approach in order to stabilize
the closed-loop system for all the polytopes.

To this purpose, according to a previous
study [25], the scheduling parameters, �i(t), �i(t) are
introduced in the following form:

Figure 5. The polytope built due to the variations of
�1(t; �)j�=�c and �2(t; �)j�=�c .

�i(t) =
�iL(t)Pp

i=1 �iL(t) + �iU (t)
;

�i(t) =
�iU (t)Pp

i=1 �iL(t) + �iU (t)
;

i = 1; 2; � � � ; p; (42)

where �iL(t) and �iU (t) are the lower and upper
boundaries of the uncertain time-varying parameters,
respectively. Now, we describe how to obtain these
parameters. �iL(t0) and �iU (t0) will be determined by
minimizing and maximizing �i(t0; �) over the uncertain
vector � at the moment \t = t0". As mentioned
previously, the uncertain vector consists of the TIPU
with the bounded intervals. Accordingly, one needs to
search over the intervals of the TIPU by an iterative
algorithm for obtaining the maximum and minimum
�i(t0; �) at the moment \t = t0". Therefore, it is
necessary to repeat cumbersome calculations at each
moment of the simulation process. It is evident that
such a procedure consumes an enormous amount of
time and e�ort. Implementing such a procedure in
practice can be di�cult and may lead to a numerical
challenge. Therefore, we must use a strong processor
with a high clock speed. Given the price of the
industrial products, this is not justi�able in some cases.
Therefore, �nding the lower and upper boundaries
of the uncertain time-varying parameters leads to an
online process imposing complex computations on the
control system. This is while �imax and �imin are
obtained o�ine in our method. Accordingly, many
iterations and computations will be removed from the
practical process. Furthermore, the number of schedul-
ing parameters employed in our scheme to schedule the
controller is half those used in [25]. This results in
the simplicity and low cost in the �eld of industry.
Therefore, our approach is more practical than the
proposed method in [25] from the computational point
of view.
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5. Conclusion

In this paper, the design problem of robust gain-
scheduled state-feedback controllers was addressed for
uncertain Linear Parameter-Varying (LPV) systems,
in which some of the state-space matrices were a�ne
with respect to the uncertain time-varying parameters.
It was supposed that the uncertainties in the plant
model originated from the Time-Invariant Parametric
Uncertainties (TIPU), which could be pulled out as
an uncertain block. Therefore, the exact scheduling
parameters were not available. The proposed controller
used a state-feedback gain, which was constructed by a
set of new scheduling parameters and a secondary time-
varying term in order to stabilize the uncertain LPV
systems in the presence of the TIPU. The proposed
scheme guarantees closed-loop stability in terms of the
Lyapunov method using the linear matrix inequalities
and other mathematical techniques.
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