
T -spherical Fuzzy Soft Matrices with Applications in Decision-Making and

Selection Process

R. K. Bajaj* and A. Guleria+

*Department of Mathematics, Jaypee University of Information Technology, Solan,

HP, INDIA
+Department of Mathematics, CSK Himachal Pradesh Krishi Vishwavidyalaya,

Palampur, HP, INDIA

*Mobile No.: +91 - 9816337725

Email Addresses: *rakesh.bajaj@juit.ac.in & +abhishekguleriahappy@gmail.com

ORCID ID*: 0000-0002-9312-0866

Abstract

In the present communication, we have introduced the notion of T -spherical

fuzzy soft matrix (TSFSM) and studied various types of associated binary op-

erations and properties. In literature, it has been observed that the concept of

soft matrix plays a vital role in many engineering applications as well as to cater

different socio-economic and financial sector problems. As per the definition of

T -spherical fuzzy set, the proposed notion would have an additional capability to

address the impreciseness of the information close enough to human opinion math-

ematically. Further, on the basis of the structure of proposed TSFSM and using

the concept of choice matrix along with its weighted form, a new algorithm for

the decision-making process has been outlined. Next, utilizing the score/utility

matrix, we present another algorithm for the selection process. For the sake of

understanding of the proposed methodologies, illustrative examples have also been

presented. Some comparative remarks for the proposed techniques in contrast with

existing techniques have been listed for a better readability and understanding.
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1 Introduction

In the real world, it is difficult for the decision makers to achieve the finest alterna-

tive/attribute/object from the set of feasible ones due to the increasing complications in

the system. However, it is hard to summarize but not incredible to achieve the best sin-

gle objective. In the decision-making process, there are large number of multi-criteria

decision-making problems where the criteria are found to be uncertain, ambiguous,

imprecise and vague. Therefore, to handle this uncertainty and impreciseness in the

information, the crisp set seems to be ineffective while it can easily be handled by
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using the fuzzy information. In order to handle such ambiguous and uncertain situ-

ations, Zadeh [1] presented the mathematical idea of fuzzy set (FS) which has been

characterized by using the membership function of the element/object. In the past,

various researchers have found the applicability of the fuzzy set in different fields viz.,

decision-making, medical diagnosis, engineering, socio-economic, finance problems etc.

Incorporating the idea of hesitancy/indeterminacy, Atanassov [2] extended the existing

concept and introduced intuitionistic fuzzy set (IFS) on the basis of two character-

ized function, i.e., membership & non-membership function such that there sum is less

than equal to 1. Next, Yager [3] introduced a new extension of fuzzy set called as

Pythagorean fuzzy set (PyFS) based on the membership & non-membership function

such that there squared sum is ≤ 1. It may be observed that the PyFS effectively

enlarged the span of information than IFS. For having a detailed discussion and for the

sake of future directions in the field of PyFS, the article by Peng & Selvachandran [4]

may be referred. Further, Cuong [5] revealed that the structure of FSs, IFSs and PyFS

are not capable enough to represent the human opinion in complete sense and intro-

duced the concept of picture fuzzy set (PFS). The definition of PFS has been illustrated

and supported by the example of voting system where the concept of refusal has been

additionally taken into consideration for an advantageous coverage of information. The

Coung’s picture fuzzy set captures the uncertainty/ambiguity sufficiently close to hu-

man nature/opinion in terms of membership, indeterminacy (neutral), nonmembership

and refusal.

The structure of picture fuzzy set seems to have diverse dimensions, however, it

also has the restriction that addition of the three parameters (membership, neutral-

membership with the non-membership grade) must be ≤ 1 which is similar to the

intuitionistic fuzzy set. To overcome such restrictions/limitations, Mahmood et al. [6]

presented the concept of T -spherical fuzzy set (TSFS) which further strengthened the

structure of picture fuzzy set by broadening the span for the membership of all the

essential parameters. Next, the geometrical comparative analysis of fuzzy set, IFS,

Pythagorean and PFS with the T -spherical fuzzy set has been done by Kifayat et

al. [7]. In addition, the limitations of the existing similarity measures for IFSs and

PFSs have been provided in view of extended features of TSFS. Further, different

similarity measures for TSFS have also been provided by them along with suitable

applications. Garg et al. [8] presented a new improved interactive aggregation operators

for TSFSs with application in decision-making. Next, Liu et al. [9] discussed the power

Muirhead mean operator along with their properties over T -spherical fuzzy environment

and provided a novel approach for decision-making problems. Recently, Jin et al.

[10] introduced the notion of linguistic spherical fuzzy set (LSFS) and investigated its

various aggregation operators to develop a new approach to solve the decision-making

problems. Also, Guleria and Bajaj [11] presented eigen spherical fuzzy sets with an

algorithm to find the greatest and the least eigen spherical fuzzy sets to solve some of

the decision-making problems.
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Engineering problems, socio-economic problems, decision-making issues encounters

different types of incompleteness, vagueness and impreciseness. However, in ordinary

circumstances, there are significant theories and literatures available to deal with, but

they are not sufficiently capable due to the involvement of the parameterization tool.

The ability to beat such impediments was shown by a new set called ‘soft set’ intro-

duced by Molodtsov [12] who set forward some significant deliberations. Further, the

new extensions (fuzzy soft set (FSS), intuitionistic fuzzy soft set (IFSS)) were given

by Maji et al. [13] [14][15] with different binary operations and applications. The lit-

erature on Pythagorean fuzzy soft set (PyFSS) was laid down by Peng et al. [16] for

solving soft computing problems. In the field of aggregation operators, Wang & Li [17]

extended power Bonferroni mean operator and proposed Pythagorean fuzzy interac-

tion power Bonferroni mean operator with its weighted form without loosing the main

characteristic of power operator. Further, an illustrative example of multi-attribute

decision-making problem has been successfully solved based on the proposed aggrega-

tion operators. Recently, Guleria et al. [18] introduced the concept of T -spherical fuzzy

soft set with aggregation operators in the decision-making problem.

Naim and Serdar [19] proposed the notion of soft matrices for connecting and com-

puting the information of the soft set with decision applications. Such representing

form of the information in terms of matrix was extended by Yong et al. [20] first.

Chetia et al. [21] utilized the fuzzy and intuitionistic fuzzy information to handle the

decision-making problems. Yang et al. [22] presented an algorithm on the basis of

adjustable soft discernibility matrix utilizing the level soft set of PFSS for decision-

making problems. Kamaci [23] studied the symmetric difference operation the soft sets

and matrices along with the similarity measure for the soft matrices. Further, with

the help of soft matrices, the Scilab code for various computational processes has been

developed. Recently, Guleria at al. [24] proposed the Pythagorean fuzzy soft matrices

for dealing with the problems of medical diagnosis and decision-making. Next, Bajaj

and Guleria [25] utilized the notion of Pythagorean fuzzy soft matrix to develop a new

dimensionality reduction technique to solve the decision-making problem.

Also, in the field of pattern recognition, Wu et al. [26] applied new distance/divergence

measures of T -spherical fuzzy sets and discussed its added advantage along with the

limitations of the existing measures. The proposed divergence measure has been uti-

lizing the concept of Jensen-Shannon divergence which has the capability to eliminate

the counter-intuitive observations. Chen et al. [27] presented a kind of generalized

parametric T -spherical fuzzy set and devised various geometric aggregation operators.

Further, these have been extended in terms of group-generalized parameter and used

for proposing an algorithm for the multi-attribute decision making (MADM) problem.

Garg et al. [28] introduced the theory of power aggregation operators from the concept

of weighted/order weighted/hybrid averaging/geometric operators and obtained the re-

lationships between the various attributes in the form of introduced power operator.

Finally, the proposed power aggregation operators have been used to solve the MADM
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problem and the comparative study has also been carried out in order to validate the

proposed concept.

In order to have a better understanding of the sequential development of various

extensions of fuzzy set, we present a road map given in Figure 1.

It may be There is no need to say that the concept of matrix plays a very important

and vital role in various computational techniques and in the study of dimensionality

feature of different engineering problems, which certainly motivates the research com-

munity to think over further extensions. In view of the current status of the extensions

stated above and to fulfill the research gap, we present a novel kind of matrix termed

as T -spherical fuzzy soft matrix in connection and association with the T -spherical

fuzzy soft set. The novel extension and its format is capable to handle the uncertainty

and impreciseness of the incomplete information in a more closer sense, i.e., spherical

fuzzy information and its four parameters of fuzziness. With the introduction of the

proposed notion, the decision-making problems and the selection process problems can

be dealt in a better and broader sense of human opinion.

The propositions in the current communication have been structured as follows.

The preliminary concepts in connection with the proposed work have been provided

in Section 2. In Section 3, we introduce a novel kind of matrix termed as T -spherical

fuzzy soft matrix with its different types and categories. Subsequently, different types of

standard binary operations and their operational laws have also been discussed in detail.

In Section 4, a new decision-making algorithm has been provided by incorporating the

proposed revised choice matrix and its weighted form along with a numerical example

for solving a general problem of decision-making. Next, in Section 5, another new

algorithm for selection process problem has been outlined by incorporating the proposed

score matrix and utility matrix along with a numerical example. Finally, the paper is

concluded in Section 6 with possible scope for future work.

2 Preliminary Concepts

Some of the basic preliminaries and notions in connection with the T -spherical fuzzy

soft sets are being outlined in this section.

Let U = {u1, u2, . . . , um} be the domain of discourse and µ : U → [0, 1], η : U → [0, 1]

and ν : U → [0, 1] are the characterizing function for membership, neutral-membership

& non-membership grades respectively.

• A picture fuzzy set [5] A in U is given by

A = {< u, µA(u), ηA(u), νA(u) >| u ∈ U} ;

and for every u ∈ U , the following condition is satisfied:

µA(u) + ηA(u) + νA(u) ≤ 1.
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The following residual equation gives the degree of refusal as

rA(u) = 1− (µA(u) + ηA(u) + νA(u)).

• A spherical fuzzy set [6] S in U is given by

S = {< u, µS(u), ηS(u), νS(u) >| u ∈ U} ;

and for every u ∈ U , the following condition is satisfied:

µ2
S(u) + η2S(u) + ν2S(u) ≤ 1, ∀u ∈ U.

The following residual equation gives the degree of refusal as

rS(u) =
√

1− (µ2
S(u) + η2S(u) + ν2S(u)).

• A T -spherical fuzzy set [6] S in U is given by

S = {< u, µS(u), ηS(u), νS(u) >| u ∈ U} ;

and for every u ∈ U , the following condition is satisfied:

µq
S(u) + ηqS(u) + νqS(u) ≤ 1, ∀ u ∈ U ; q = 1, 2, 3, . . . .

Similarly, the following equation gives the degree of refusal as

rS(u) =
q

√
1− (µq

S(u) + ηqS(u) + νqS(u)); q = 1, 2, 3, . . . .

Also, various generalizations and extensions of soft sets are being listed below for

ready reference:

Let P = {p1, p2, . . . , pn} be the set of parameters under the same universe of discourse

U . The pair (Φ, P ) is called

• “soft set [12] over U iff Φ : P → P(U), where P(U) is the power set of U .”

• “Pythagorean fuzzy soft set [16] over U if Φ : P → PY FS(U) and can be

represented as

(Φ, P ) = {(p,Φ(p)) : p ∈ P, Φ(p) ∈ PY FS(U)},

where PY FS(U) represents the set of all PyFSs of U .”

• “picture fuzzy soft set [5] over U if Φ : P → PFS(U) and can be represented

as

(Φ, P ) = {(p,Φ(p)) : p ∈ P, Φ(p) ∈ PFS(U)},

where PFS(U) represents the set of all PFSs of U .”
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• “T -spherical fuzzy soft set [18] over U if Φ : P → TSFS(U) and can be

represented as

(Φ, P ) = {(p,Φ(p)) : p ∈ P, Φ(p) ∈ TSFS(U)},

where TSFS(U) represents the set of all TSFSs of U .”

• “The subset U × P is uniquely defined with the help of RP = {(u, p), p ∈ E, u ∈
Φ(p)} and the characteristic function of RP as χRP

: U × P → [0, 1] given by

χRP
(u, p) =

{
1

0

if (u, p) ∈ E

if (u, p) /∈ E
.

If aij = χRP
(ui, pj), then a matrix [aij ] = [χRP

(ui, pj)] is called soft matrix of

the soft set (Φ, P ) over U .”

In the literature of soft matrix theory, Naim & Serdar [29] used the concept of soft

set theory to define the product of two soft matrices as well as product of two fuzzy

soft matrices (FSMs) with their different theoretical properties respectively. Finally, an

application based on the soft max-min decision-making method has been presented for

both types of matrices for the sake of better clarity and readability. Broumi et al. [30]

defined the notion of a different kind of FSM based on reference function and also pre-

sented some new operations related to its complement and trace. Further, the concept

of reference function has been utilized for addressing a decision-making problem. Next,

Petchimuthu et al. [31] generalized the products of two FSMs and presented mean op-

erators/normalized fuzzy weighted mean operators for the FSMs based on which two

algorithms for multi-criteria group decision-making problems. Recently, Naim & Ser-

dar [32] proposed the concept of fuzzy parameterized fuzzy soft matrices with their

fundamental properties. With the help of the proposed study, they devised Pervalence

Effect Method for noise removal filters in performance-based value assignment. For the

sake of further deliberations, in the next sections, we propose the notion of T -spherical

fuzzy soft matrices (TSFSM) with various operations and applications.

3 T -spherical Fuzzy Soft Matrices & Operations

Here, we first present a new kind of soft matrix which is a generalized notion of

Pythagorean fuzzy soft matrix and can also be viewed as an extension of T -spherical

fuzzy soft set. Next, we introduce various types of binary operations over these matri-

ces.

Let (Φ, P ) be a T -spherical fuzzy soft set over U (universe). As mentioned earlier,

RP can be defined by its membership & non-membership function µRP
: U×P → [0, 1]

and νRP
: U × P → [0, 1] respectively.
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If (µij , ηij , νij) = (µRP
(ui, pj), ηRP

(ui, pj), νRP
(ui, pj)), where µRP

(ui, pj) represents
membership/belongingness of ui in the T -spherical fuzzy set F (pj), ηRP

(ui, pj) depicts
the neutral/abstain membership of ui in the T -spherical fuzzy set F (pj), and νRP

(ui, pj)
represents the non-membership of ui in the TSFS F (pj) respectively, then we propose
a matrix, termed as T -spherical fuzzy soft matrix (TSFSM) over U , which is given by

[M ] = [mij ]m×n = [(µM
ij , η

M
ij , ν

M
ij )]m×n =


(µ11, η11, ν11) (µ12, η12, ν12) · · · (µ1n, η13, ν1n)

(µ21, η21, ν21) (µ22, η22, ν22) · · · (µ2n, η2n, ν2n)
...

...
...

...

(µm1, ηm1, νm1) (µm2, ηm2, νm2) · · · (µmn, ηmn, νmn)

 .

For a better understanding, let us consider a hypothetical example where U = {u1, u2, u3}
and P = {p1, p2, p3} with

Φ(p1) = {(u1, 0.5, 0.5, 0.2), (u2, 0.8, 0.3, 0.5), (u3, 0.6, 0.7, 0.2)},
Φ(p2) = {(u1, 0.7, 0.5, 0.3), (u2, 0.3, 0.3, 0.9), (u3, 0.6, 0.3, 0.4)},
Φ(p3) = {(u1, 0.5, 0.2, 0.6), (u2, 0.7, 0.6, 0.2), (u3, 0.8, 0.4, 0.5)},

then (Φ, P ) is the parameterized family of Φ(p1),Φ(p2),Φ(p3) over U .

Hence, the T -spherical fuzzy soft matrix M can be written as

[M ] = [(µM
ij , η

M
ij , ν

M
ij )]m×n =

 (0.5, 0.5, 0.2) (0.7, 0.5, 0.3) (0.5, 0.2, 0.6)

(0.8, 0.3, 0.5) (0.3, 0.3, 0.9) (0.7, 0.6, 0.2)

(0.6, 0.7, 0.2) (0.6, 0.3, 0.4) (0.8, 0.4, 0.5)

 .

Let TSFSMm×n be the set of all the T -spherical fuzzy soft matrices over U . Further,

different types of T -spherical fuzzy soft matrices are being accordingly provided. A matrix

M = [(µM
ij , η

M
ij , ν

M
ij )] ∈ TSFSMm×n is called T -spherical fuzzy soft:

• “zero matrix if µM
ij = 0, ηMij = 0 & νMij = 0; ∀i, j the matrix 0 = [0, 0, 0].”

• “square matrix if m = n.”

• “row matrix if n = 1.”

• “column matrix if m = 1.”

• “diagonal matrix if all its non-diagonal entries are zero ∀ i, j.”

• “µ-universal matrix if µM
ij = 1, ηMij = 0 & νMij = 0; ∀ i & j, denoted by Pµ.”

• “η-universal matrix if µM
ij = 0, ηMij = 1 & νMij = 0; ∀ i & j, denoted by Pη.”

• “ν-universal matrix if µM
ij = 0, ηMij = 0 & νMij = 1; ∀ i & j, denoted by Pν .”

• “Scalar multiplication: for any scalar k, we define kM = [(kµM
ij , kη

M
ij , kν

M
ij )], ∀ i &

j.”

Next, we present some set-theoretic relations for given T -spherical fuzzy soft matrices

M = [(µM
ij , η

M
ij , ν

M
ij )] and N = [(µN

ij , η
N
ij , ν

N
ij )] ∈ TSFSMm×n.

• “Subsethood: M ⊆ N if µM
ij ≤ µN

ij , η
M
ij ≥ ηNij & νMij ≥ νNij ; ∀ i & j.”
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• “Containment: M ⊇ N if µM
ij ≥ µN

ij , η
M
ij ≤ ηNij & νMij ≤ νNij ; ∀ i & j.”

• “Equality: M = N if µM
ij = µN

ij , η
M
ij = ηNij & νMij = νNij ; ∀ i & j.”

• “Max Min Product:

Let M = [aij ] = [(µM
ij , η

M
ij , ν

M
ij )] ∈ TSFSMm×n & N = [bjk] = [(µN

jk, η
N
jk, ν

N
jk)] ∈

TSFSMn×p then

M ∗N = [cik]m×p =

[(
max(min

j
(µM

ij , µ
N
jk)),min(min

j
(ηMij , η

N
jk)),min(max

j
(νMij , ν

N
jk))

)]
; ∀

i, j & k.”

• “Average Max Min Product:

Let M = [aij ] = [(µM
ij , η

M
ij , ν

M
ij )] ∈ TSFSMm×n & N = [bjk] = [(µN

jk, η
N
jk, ν

N
jk)] ∈

TSFSMn×p be two T -spherical fuzzy soft matrices then

M ∗A N = [cik]m×p =

[(
max

j
(
µM
ij +µN

jk

2 ),min
j

(
ηM
ij +ηN

jk

2 ),min
j

(
νM
ij ,νN

jk

2 )

)]
; ∀ i, j & k.”

Remark: It may be noted that Klement et al. [33], [34] have provided different types of

triangular norm (t-norm) and triangular conorm (t-conorm) in an elaborated way. Accordingly,

different combinations of these norms can also be considered for the proposed T -spherical fuzzy

soft matrices. Here, we have only taken the composition of maximum and minimum operator.

Standard Binary Operations for T -spherical Fuzzy Soft Matrices:

Suppose that there are two T -spherical fuzzy soft matrices S1 = [(µS1
ij , η

S1
ij , ν

S1
ij )] and S2 =

[(µS2
ij , η

S2
ij , ν

S2
ij )] ∈ TSFSMm×n. Then some of the binary operations may be given as follows:

• Sc
1 =

[(
νS1
ij , η

S1
ij , µ

S1
ij

)]
; ∀ i and j.

• S1 ∪ S2 =
[(

max(µS1
ij , µ

S2
ij ),min(ηS1

ij , η
S2
ij ),min(νS1

ij , νS2
ij )
)]

; ∀ i and j.

• S1 ∩ S2 =
[(

min(µS1
ij , µ

S2
ij ),min(ηS1

ij , η
S2
ij ),max(νS1

ij , νS2
ij )
)]

∀; i and j.

• S1 ⊗ S2 =
[(

µS1
ij · µS2

ij , η
S1
ij · ηS2

ij ,
n

√
(νS1

ij )
2 + (νS2

ij )
2 − (νS1

ij )
2 · (νS2

ij )2
)]

; ∀ i and j.

• S1 ⊕ S2 =
[(

n

√
(µS1

ij )
2 + (µS2

ij )
2 − (µS1

ij )
2 · (µS2

ij )
2, ηS1

ij · ηS2
ij , ν

S1
ij · νS2

ij

)]
; ∀ i and j.

• S1@S2 =

[(
µ
S1
ij +µ

S2
ij

2 ,
η
S1
ij +η

S2
ij

2 ,
ν
S1
ij +ν

S2
ij

2

)]
; ∀ i and j.

• S1@wS2 =

[(
w1µ

S1
ij +w2µ

S2
ij

w1+w2
,
w1η

S1
ij +w2η

S2
ij

w1+w2
,
w1ν

S1
ij +w2ν

S2
ij

w1+w2

)]
; ∀ i and j ; where w1, w2 > 0

are the weights.

• S1$S2 =
[(

n

√
µS1
ij · µS2

ij ,
n

√
ηS1
ij · ηS2

ij ,
n

√
νS1
ij · νS2

ij

)]
; ∀ i and j.

• S1$wS2 =
[(

((µS1
ij )

w1 · (µS2
ij )

w2)
1

w1+w2 , ((ηS1
ij )

w1 · (ηS2
ij )

w2)
1

w1+w2 , ((νS1
ij )

w1 · (νS2
ij )

w2)
1

w1+w2

)]
;

∀ i and j, where w1, w2 > 0 are the weights.

• S1 ◃▹ S2 =

[(
2 · µ

S1
ij ·µS2

ij

µ
S1
ij +µ

S2
ij

, 2 · η
S1
ij ·ηS2

ij

η
S1
ij +η

S2
ij

, 2 · ν
S1
ij ·νS2

ij

ν
S1
ij +ν

S2
ij

)]
; ∀ i and j.

• S1 ◃▹w S2 =

[(
w1+w2
w1

µ
S1
ij

+
w2

µ
S2
ij

, w1+w2
w1

η
S1
ij

+
w2

η
S2
ij

, w1+w2
w1

ν
S1
ij

+
w2

ν
S2
ij

)]
; ∀ i and j ; where w1, w2 > 0 are the

weights.
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Proposition 1 Let S1 and S2 ∈ TSFSMm×n then the following laws hold:

(i) S1 ∪ S2 = S2 ∪ S1

(ii) S1 ∩ S2 = S2 ∩ S1

(iii) (S1 ∪ S2)
c = Sc

1 ∩ Sc
2

(iv) (S1 ∩ S2)
c = Sc

1 ∪ Sc
2

(v) (Sc
1 ∩ Sc

2)
c
= S1 ∪ S2

(vi) (Sc
1 ∪ Sc

2)
c
= S1 ∩ S2.

Proof : Let S1 = [(µS1
ij , η

S1
ij , ν

S1
ij )], S2 = [(µS2

ij , η
S2
ij , ν

S2
ij )] ∈ TSFSMm×n. Then ∀ i & j we

get,

(i)

S1 ∪ S2 =
[(

max(µS1
ij , µ

S2
ij ),min(ηS1

ij , η
S2
ij ),min(νS1

ij , νS2
ij )
)]

=
[(

max(µS2
ij , µ

S1
ij ),min(ηS2

ij , η
S1
ij ),min(νS2

ij , νS1
ij )
)]

= S2 ∪ S1.

(ii)

S1 ∪ S2 =
[(

min(µS1
ij , µ

S2
ij ),min(ηS1

ij , η
S2
ij ),max(νS1

ij , νS2
ij )
)]

=
[(

min(µS2
ij , µ

S1
ij ),min(ηS2

ij , η
S1
ij ),max(νS2

ij , νS1
ij )
)]

= S2 ∪ S1.

(iii)

(S1 ∪ S2)
c =

((
[(µS1

ij , η
S1
ij , ν

S1
ij )] ∪ [(µS2

ij , η
S2
ij , ν

S2
ij )]

))c
= [max(µS1

ij , µ
S2
ij ),min(ηS1

ij , η
S2
ij ),min(νS1

ij , ν
S2
ij )]

c

=
[(

min(νS1
ij , ν

S2
ij ),min(ηS1

ij , η
S2
ij ),max(µS1

ij , µ
S2
ij )
)]

=
[(
[(νS1

ij , η
S1
ij , µ

S1
ij )] ∩ [(νS2

ij , ηS2
ij , µ

S2
ij )]

)]
= Sc

1 ∩ Sc
2.

Similarly, (iv), (v) and (vi) can be proved easily.

Proposition 2 Let S1 = [(µS1
ij , η

S1
ij , ν

S1
ij )] ∈ TSFSMm×n. Then the following laws hold as per

the proposed definitions:

(i) (Sc
1)

c
= S1

(ii) (Pµ)
c
= Pν

(iii) (Pη)
c
= Pη

(iv) (Pν)
c
= Pµ

(v) S1 ∪ S1 = S1

(vi) S1 ∪ Pµ = Pµ

(vii) S1 ∩ Pν = S1

(viii) S1 ∩ S1 = S1

(ix) S1 ∩ Pµ = S1

(x) S1 ∩ Pν = Pν .

Proposition 3 Let S1 and S2 ∈ TSFSMm×n. Then the following laws w.r.t. the weighted

form hold:

9



(i) (Sc
1@wS

c
2)

c = S1@wS2

(ii) (Sc
1$wS

c
2)

c = S1$wS2

(iii) (Sc
1 ◃▹w Sc

2)
c = S1 ◃▹w S2

(iv) S1@wS2 = S2@wS1

(v) S1$wS2 = S2$wS1

(vi) S1 ◃▹w S2 = S2 ◃▹w S1.

Proof : Let S1 = [(µS1
ij , η

S1
ij , ν

S1
ij )], S2 = [(µS2

ij , η
S2
ij , ν

S2
ij )] ∈ TSFSMm×n. Then ∀ i, j &

w1, w2 > 0, we get,

(i)

(Sc
1@wS

c
2)

c =

([(
(νS1

ij , η
S1
ij , µ

S1
ij )@w(ν

S2
ij , η

S2
ij , µ

S2
ij )

)])c

=

([(
w1ν

S1
ij + w2ν

S2
ij

w1 + w2
,
w1η

S1
ij + w2η

S2
ij

w1 + w2
,
w1µ

S1
ij + w2µ

S2
ij

w1 + w2

)])c

=

[(
w1µ

S1
ij + w2µ

S2
ij

w1 + w2
,
w1η

S1
ij + w2η

S2
ij

w1 + w2
,
w1ν

S1
ij + w2ν

S2
ij

w1 + w2

)]
= S1@wS2.

(ii)

(Sc
1$wS

c
2)

c =

([(
(νS1

ij , ηS1
ij , µ

S1
ij )$w(ν

S2
ij , η

S2
ij , µ

S2
ij )

)])c

=

([(
((νS1

ij )
w1 · (νS2

ij )
w2)

1
w1+w2 , ((ηS1

ij )
w1 · (ηS2

ij )
w2)

1
w1+w2 , ((µS1

ij )
w1 · (µS2

ij )
w2)

1
w1+w2

)])c

=

[(
((µS1

ij )
w1 · (µS2

ij )
w2)

1
w1+w2 , ((ηS1

ij )
w1 · (ηS2

ij )
w2)

1
w1+w2 , ((νS1

ij )
w1 · (νS2

ij )w2)
1

w1+w2

)]
= S1$wS2.

Similar proof for (iii).

(iv)

S1@wS2 =

[(
w1µ

S1
ij + w2µ

S2
ij

w1 + w2
,
w1η

S1
ij + w2η

S2
ij

w1 + w2
,
w1ν

S1
ij + w2ν

S2
ij

w1 + w2

)]

=

[(
w2µ

S2
ij + w1µ

S1
ij

w2 + w1
,
w2η

S2
ij + w1η

S1
ij

w2 + w1
,
w2ν

S2
ij + w1ν

S1
ij

w2 + w1

)]
= S2@wS1.

(v)

S1$wS2 =

[(
((µS1

ij )
w1 · (µS2

ij )
w2)

1
w1+w2 , ((ηS1

ij )
w1 · (ηS2

ij )
w2)

1
w1+w2 , ((νS1

ij )
w1 · (νS2

ij )
w2)

1
w1+w2

)]
=

[(
((µS2

ij )
w2 · (µS1

ij )
w1)

1
w2+w1 , ((ηS2

ij )
w2 · (ηS1

ij )
w1)

1
w2+w1 , ((νS2

ij )
w2 · (νS1

ij )
w1)

1
w2+w1

)]
= S2$wS1.

Similarly, (vi) can easily be verified.
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Proposition 4 Let S1, S2 and S3 ∈ TSFSMm×n be three matrices then the following laws in

connection with the associativity hold:

11



(i) (S1 ∪ S2) ∪ S3 = S1 ∪ (S2 ∪ S3)

(ii) (S1 ∩ S2) ∩ S3 = S1 ∩ (S2 ∩ S3)

(iii) (S1@S2)@S3 = S1@(S2@S3)

(iv) (S1$S2)$S3 = S1$(S2$S3)

(v) (S1 ◃▹ S2) ◃▹ S3 = S1 ◃▹ (S2 ◃▹ S3).

Proof: For all i & j we write,

(i)

(S1 ∪ S2) ∪ S3 =

[(
[(max{µS1

ij , µ
S2
ij },min{ηS1

ij , η
S2
ij }),min{νS1

ij , νS2
ij }] ∪ [(µS3

ij , ν
S3
ij )]

)]
=

[(
max{(µS1

ij , µ
S2
ij ), µ

S3
ij },min{(ηS1

ij , η
S2
ij ), η

S3
ij },min{(νS1

ij , ν
S2
ij ), ν

S3
ij }
)]

=

[(
max{(µS1

ij , (µ
S2
ij , µ

S3
ij ))},min{ηS1

ij , (η
S2
ij , η

S3
ij )},min{νS1

ij , (νS2
ij , ν

S3
ij )}

)]
= S1 ∪ (S2 ∪ S3).

(ii)

(S1 ∩ S2) ∩ S3 =

[(
(min{µS1

ij , µ
S2
ij }, (min{ηS1

ij , η
S2
ij },max{νS1

ij , νS2
ij }) ∪ (µS3

ij , ν
S3
ij )

)]
=

[(
min{(µS1

ij , µ
S2
ij ), µ

S3
ij }, (min{(ηS1

ij , η
S2
ij ), η

S3
ij }, ,max{(νS1

ij , ν
S2
ij ), ν

S3
ij })

)]
=

[(
min{(µS1

ij , (µ
S2
ij , µ

S3
ij ))},

(
min{(ηS1

ij , (η
S2
ij , µ

S3
ij ))},max{νS1

ij , (ν
S2
ij , ν

S3
ij )}

))]
= S1 ∩ (S2 ∩ S3).

Similar proof for (iii), (iv) and (v).

Proposition 5 Let S1, S2 and S3 ∈ TSFSMm×n are soft matrices. The following laws in

connection with the distributivity hold:

(i) S1 ∩ (S2 ∪ S3) = (S1 ∩ S2) ∪ (S1 ∩ S3)

(ii) (S1 ∩ S2) ∪ S3 = (S1 ∪ S3) ∩ (S2 ∪ S3)

(iii) S1 ∪ (S2 ∩ S3) = (S1 ∪ S2) ∩ (S1 ∪ S3)

(iv) (S1 ∪ S2) ∩ S3 = (S1 ∩ S3) ∪ (S2 ∩ S3)

(v) (S1 ∩ S2)@S3 = (S1@S3) ∩ (S2@S3)

(vi) (S1 ∩ S2) ◃▹ S3 = (S1 ◃▹ S3) ∩ (S2 ◃▹ S3)

(vii) S1 ∪ (S2@S3) = (S1 ∪ S2)@(S1 ∪ S3)

(viii) (S1 ∪ S2) ◃▹ S3 = (S1 ◃▹ S3) ∪ (S2 ◃▹ S3)

(ix) S1@(S2 ∪ S3) = (S1@S2) ∪ (S1@S3)

(x) S1@(S2 ∩ S3) = (S1@S2) ∩ (S2@S3)

(xi) S1$(S2 ∪ S3) = (S1$S2) ∪ (S1$S3)

(xii) (S1 ∪ S2)$S3 = (S1$S3) ∪ (S2$S3)

(xiii) S1 ∪ (S2 ◃▹ S3) = (S1 ∪ S2) ◃▹ (S1 ∪ S3)

(xiv) S1 ◃▹ (S2 ∪ S3) = (S1 ◃▹ S2) ∪ (S1 ◃▹ S3)

(xv) S1$(S2 ∩ S3) = (S1$S2) ∩ (S2$S3)

(xvi) (S1 ∩ S2)$S3 = (S1$S3) ∩ (S2$S3).

Proof : For all i & j we write,
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(i)

S1 ∩ (S2 ∪ S3) =

[([(
µS1
ij , η

S1
ij , ν

S1
ij

)]
∩
[(

max{µS2
ij , µ

S3
ij },min{ηS2

ij , η
S3
ij },min{νS2

ij , ν
S3
ij }
)])]

=

[(
min{µS1

ij ,max{µS2
ij , µ

S3
ij }},min{ηS1

ij ,min{ηS2
ij , µ

S3
ij }},

max{νS1
ij ,min{νS2

ij , ν
S3
ij }}

)]
.

Now,

(S1 ∩ S2) ∪ (S1 ∩ S3) =
[(

min{µS1
ij , µ

S2
ij },min{ηS1

ij , ηS2
ij },max{νS1

ij , νS2
ij }

)]
∪
[(

min{µS1
ij , µ

S3
ij },

min{ηS1
ij , ηS3

ij },max{νS1
ij , νS3

ij }
)]

=
[(

max(min{µS1
ij , µ

S2
ij },min{µS1

ij , µ
S3
ij }),min(min{ηS1

ij , ηS2
ij },min{ηS1

ij , ηS3
ij }),

min(max{νS1
ij , νS2

ij },max{νS1
ij , νS3

ij })
)]

=
[(

max(µS1
ij ,min{µS2

ij , µ
S3
ij }),min(ηS1

ij ,min{ηS2
ij , ηS3

ij }),

min(νS1
ij ,max{νS2

ij , νS3
ij })

)]
=

[(
min(µS1

ij ,max{µS2
ij , µ

S3
ij }),min(µS1

ij ,min{µS2
ij , µ

S3
ij }),max(νS1

ij ,

min{νS2
ij , νS3

ij })
)]

= S1 ∩ (S2 ∪ S3).

Hence, S1 ∩ (S2 ∪ S3) = (S1 ∩ S2) ∪ (S1 ∩ S3) holds.

(ii)

(S1 ∩ S2) ∪ S3 =
[(

min{µS1
ij , µ

S2
ij },min{ηS1

ij , η
S2
ij },max{νS1

ij , ν
S2
ij }
)]

∪
[(
µS3
ij , ν

S3
ij

)]
=
[(

max(min{µS1
ij , µ

S2
ij }, µ

S3
ij ),min(min{ηS1

ij , η
S2
ij }, µ

S3
ij ),

min(max{νS1
ij , νS2

ij }, ν
S3
ij )
)]
.

Now,

(S1 ∪ S3) ∩ (S2 ∪ S3) =
[(

max{µS1
ij , µ

S3
ij },min{ηS1

ij , ηS3
ij },min{νS1

ij , νS3
ij }

)]
∩
[(

max{µS2
ij , µ

S3
ij },

min{ηS2
ij , ηS3

ij },min{νS2
ij , νS3

ij }
)]

=
[(

min(max{µS1
ij , µ

S3
ij },max{µS2

ij , µ
S3
ij }),min(min{ηS1

ij , ηS3
ij },min{ηS2

ij , ηS3
ij }),

max(min{νS1
ij , νS3

ij },min{νS2
ij , νS3

ij })
)]

=
[(

min(max{µS1
ij , µ

S2
ij }, µ

S3
ij ),min(min{ηS1

ij , ηS2
ij }, ηS3

ij ),

max(min{νS1
ij , νS2

ij }, νS3
ij )

)]
=

[(
max(min{µS1

ij , µ
S2
ij }, µ

S3
ij ),min(min{ηS1

ij , ηS2
ij }, ηS3

ij ),

min(max{νS1
ij , νS2

ij }, νS3
ij )

)]
= (S1 ∩ S2) ∪ S3

Hence, (S1 ∩ S2) ∪ S3 = (S1 ∪ S3) ∩ (S2 ∪ S3).

The rest of the laws may easily be obtained on similar lines.
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4 Application of TSFSM in Decision-Making

In this section, we consider a general decision-making problem where the structure of informa-

tion being considered in the format of T -spherical fuzzy soft matrix & propose some revised

definitions which are utmost essential for solving the problem under consideration.

Definition 1 If S1 = [(µS1
ij , η

S1
ij , ν

S1
ij )] ∈ TSFSMm×n, then the choice matrix of TSFSM

S1 is defined as

C(S1) =




n∑
j=1

(µS1
ij )

q

n
,

n∑
j=1

(ηS1
ij )

q

n
,

n∑
j=1

(νS1
ij )q

n



m×1

; ∀ i if weights are same.

Definition 2 If S1 = [(µS1
ij , η

S1
ij , ν

S1
ij )] ∈ TSFSMm×n, then the weighted choice matrix of

TSFSM S1 is defined by

Cw(S1) =




n∑
j=1

wj(µ
S1
ij )

q∑
wj

,

n∑
j=1

wj(η
S1
ij )

q∑
wj

,

n∑
j=1

wj(ν
S1
ij )

q∑
wj



m×1

∀ i where wj > 0 are weights.

On the basis of the above proposed definitions, we present a new algorithm to deal with the

problem of decision-making which is being outlined in the flow chart given in Figure 2.

14



The proposed methodology for solving the multi-criteria decision-making problem is being

illustrated with a numerical example as follows:

Example 1. Assume that an Indian multi-national company is planning some financial strat-

egy for the upcoming year as per the group strategy objective. Four well defined investment

alternatives have been taken into consideration and labeled as A1: investment in “South In-

dian Markets”; A2: investment in “East Indian Markets”; A3: investment in “North Indian

Markets”; and A4: investment in “West Indian markets”. After a preliminary screening for

evaluation purpose, it has been decided to proceed by taking four criteria, namely as C1:

“growth”; C2: “risk analysis”; C3: “the socio-political impact” and C4: “the environmental and

other factors”. Suppose that based on the financial strategies adopted for the welfare of the

company, the weight vector is ω = (0.2, 0.3, 0.1, 0.4)T .

Here, for the simplicity of the computation for the example under consideration, we take

the value of q as 2 in the definitions. The computational steps for the the above stated problem

using the proposed algorithm are below.

• Step 1. First we write the following spherical fuzzy soft decision matrix R = [(rij)] =

[(µij , ηij , νij)], (i, j = 1, 2, 3, 4) for the four alternatives Ai (i = 1, 2, 3, 4) & the four

criteria Cj (j = 1, 2, 3, 4) based on the information provided by the experts:

R =


C1 C2 C3 C4

A1 (0.2, 0.2, 0.6) (0.5, 0.3, 0.2) (0.5, 0.2, 0.3) (0.4, 0.3, 0.2)

A2 (0.3, 0.4, 0.4) (0.6, 0.3, 0.1) (0.5, 0.3, 0.2) (0.2, 0.1, 0.7)

A3 (0.4, 0.5, 0.2) (0.6, 0.3, 0.2) (0.7, 0.2, 0.2) (0.3, 0.3, 0.5)

A4 (0.3, 0.2, 0.6) (0.2, 0.2, 0.6) (0.2, 0.3, 0.6) (0.4, 0.2, 0.4)

.

• Step 2. Since C2 and C3 are the cost criterions whereas C1 and C4 are the benefit

criterions, therefore, we have to normalize the decision matrix. Hence, we obtain the

normalized decision matrix is as follows:

R =


C1 C2 C3 C4

A1 (0.6, 0.2, 0.2) (0.5, 0.3, 0.2) (0.5, 0.2, 0.3) (0.2, 0.3, 0.4)

A2 (0.4, 0.4, 0.3) (0.6, 0.3, 0.1) (0.5, 0.3, 0.2) (0.7, 0.1, 0.2)

A3 (0.2, 0.5, 0.4) (0.6, 0.3, 0.2) (0.7, 0.2, 0.2) (0.5, 0.3, 0.3)

A4 (0.6, 0.2, 0.3) (0.2, 0.2, 0.6) (0.2, 0.3, 0.6) (0.4, 0.2, 0.4)

.

We observe that the element (0.6, 0.2, 0.2) in the matrix R represents the degree to which

the alternative A1 matches the criterion C1 is 0.6, the degree to which A1 is neutral to

the criteria C1 is 0.2 and the degree to which A1 does not satisfy C1 is 0.2. On similar

pattern, rest elements of the matrix can be interpreted.

• Step 3:

– Case 1: Weights are Equal

We find the choice matrix for R as:

C(R) =


(0.225, 0.065, 0.0825)

(0.315, 0.0875, 0.045)

(0.285, 0.1175, 0.0825)

(0.15, 0.0525, 0.215)

 .
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– Case 2: Weights are Unequal

If the weights ω = (0.2, 0.3, 0.1, 0.4)T are given for the criteria C1: “growth”; C2:

“risk analysis”; C3: “the socio-political impact” and C4: “the environmental and

other factors”, respectively. Then the weighted choice matrix for R is as

Cw(R) =


(0.188, 0.075, 0.093)

(0.361, 0.072, 0.041)

(0.265, 0.117, 0.084)

(0.152, 0.045, 0.215)

 .

• Step 4:

– When Weights are Equal: In view of the Step 3 that if equal preference is

assigned to each and every criteria, then we get 0.315 as the maximum value of the

membership, i.e., investment in “East Indian Markets”. Therefore, in this case the

most suitable market for investment is “East Indian Markets”.

– When Weights are Unequal: Suppose that if a company assumes the importance

of the criteria “the environmental and other factors” over the other criteria, then

0.361 being the maximum value of the membership for market A2. Therefore, in

this case the most suitable market for investment is “East Indian Markets”.

On the other hand, the solution based on the methodology outlined in [18] for the above same

problem is:

The score value for each alternative has been calculated as

“S(Tu1) = 0.051918, S(Tu2) = 0.300067, S(Tu3) = 0.102274, S(Tu4) = −0.07275.′′

On the basis of obtained values the ranking of the alternatives is done as S(Tu2) > S(Tu3) >

S(Tu1) > S(Tu4), where Tui is the aggregated/integrated representative identity in correspon-

dence with each Ai. Thus it has been found that the alternative A2 is the best one. Therefore,

the best alternative strategy for the company is to invest in the East Indian Market.

Comparative Remarks:

On the basis of the computations carried out above and in view of the comparative analysis,

some remarkable observations are being pointed out as below:

• Guleria et al. [18] discussed the decision-making process not using the notion of matrices

and concluded that the ‘East Indian Market’ is highly preferable for the company to

invest.

• Also, as per the proposed methodology where we have put the available information in

the matrix form, we equally concluded that the ‘East Indian Market’ A2 is the most

suitable investment.

• Hence, the proposed methodology is equally consistent. However, the advantage which

we find is that for solving the application problem, it would be easier to work with the

matrices which certainly gives the enhanced dimensionality feature and wider span of

information.
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5 Application of T -spherical Fuzzy Soft Matrix in Selec-

tion Processes

Here, we consider a general selection process problem where the format of information being

considered as T -spherical fuzzy soft matrix and propose some revised definitions which are

utmost essential for solving the problem under consideration.

Definition 3 Suppose S1 = [(µS1
ij , η

S1
ij , ν

S1
ij )] ∈ TSFSMm×n. Then its score matrix is defined

by S(S1) = [sij ] = [((µS1
ij )

q − (ηS1
ij )

q − (νS1
ij )

q)] ∀ i and j. The (i, j)th element of S(S1) depicts

like an index for computing the optimized value of the membership (or non-membership) of the

ith student getting jth opportunity.

Definition 4 Suppose S1 = [(µS1
ij , η

S1
ij , ν

S1
ij )], S2 = [(µS2

ij , η
S2
ij , ν

S2
ij )] ∈ TSFSMm×n. Then the

utility matrix is defined by U(S1, S2) = [uij ]m×n = [S(S1)−S(S2)]; ∀ i & j. Observe that (i, j)th

element in U(S1, S2) gives an index for computing the value of belongingness with respect to its

non-belongingness of ith student getting jth opportunity.

Based on the above proposed definitions, we present a new algorithm to deal with the

problem of selection processes which is being outlined in the flow chart given by Figure 3.

It may be noted that in the above considered selection problem, if there is any situation

where there is a tie in the values of max Ui, then to resolve that issue we have to reassess the

information regarding the student’s skill. Further, we present the methodology involved in the

proposed algorithm using a numerical example for better understanding.

Methodology:

Suppose we have a set of m students A = {a1, a2, . . . , am} which are having some skills out

of n particular skills S = {s1, s2, . . . , sn} in connection with a set of k opportunities Q =

{q1, q2, . . . , qk}. We use T -spherical fuzzy soft matrices to select the suitable profession based

upon individual’s own skill. A T -spherical fuzzy soft set (F, S) over A, with F : S → P(A)

(power set of A) is framed which provides a set of tentative idea/detail of student’s skills.

T -spherical fuzzy soft set so obtained represents a soft matrix M which may be termed as

student-skills matrix. Next, we make out a different T -spherical fuzzy soft set (G,Q) over

S, where G : Q → P(S), (power set of S), which provide a tentative details of the available

opportunities based upon their own skills. T -spherical fuzzy soft set so obtained represents

another matrix N termed as skills-opportunities matrix. Next, the complements, i.e., M c

& N c have been evaluated which may be (F, S)c & (G,Q)c respectively. Subsequently, the

average max min product matrix M ∗AN , given by R1, is obtained providing the highest value

of the membership of having the skill in the student. Similarly, the matrix M c ∗A N c, given by

R2, determines the highest value of the membership of the non-suitability of the student with

respect to the skill desired.

Further, we obtain the score matrices S(R1) and S(R2) in view of the definition (3),

which gives the corresponding optimized value w.r.t. the sense of suitability, abstain and

non-suitability of a student for a specific opportunity. Also, the utility matrix is being obtained

in view of the definition (4) which is based on the obtained score matrices. Entries in the utility

matrix accordingly gives that to what extent the alternative fulfills the opinion of a decision
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maker. As the entries of the utility matrix are real numbers, therefore, the values which will

be maximum would represent as preferred alternatives.

Example 2: Suppose A = {a1, a2, a3, a4} be a universal set, where a1, a2, a3, a4 represents

students. Consider a set of skills S = {s1, s2, s3, s4} which represents communication skill,

presentation skill, analytical skill and technical skill respectively. Also, consider a set of op-

portunities, denoted by Q = {q1, q2, q3} which represents hardware, software and managerial

job respectively. We formulate this scenario by taking T -spherical fuzzy soft set (F, S) over A

representing the description of student’s skill.

• Step 1:

(F, S) =


F (s1) = {(a1, 0.7, 0.5, 0.1), (a2, 0.3, 0.2, 0.6), (a3, 0.4, 0.6, 0.3), (a4, 0.5, 0.7, 0.2)}
F (s2) = {(a1, 0.9, 0.1, 0.6), (a2, 0.2, 0.6, 0.5), (a3, 0.3, 0.4, 0.6), (a4, 0.8, 0.2, 0.2)}
F (s3) = {(a1, 0.4, 0.5, 0.3), (a2, 0.9, 0.1, 0.2), (a3, 0.8, 0.2, 0.3), (a4, 0.4, 0.5, 0.4)}
F (s4) = {(a1, 0.2, 0.3, 0.7), (a2, 0.8, 0.2, 0.1), (a3, 0.7, 0.4, 0.3), (a4, 0.6, 0.2, 0.6)}

 .

By considering the T -spherical fuzzy soft set, the following T -spherical fuzzy soft matrix may

be obtained after conversion as follows:

M =

s1 s2 s3 s4
a1 (0.7, 0.5, 0.1) (0.9, 0.1, 0.6) (0.4, 0.5, 0.3) (0.2, 0.3, 0.7)

a2 (0.3, 0.2, 0.6) (0.2, 0.6, 0.5) (0.9, 0.1, 0.2) (0.8, 0.2, 0.1)

a3 (0.4, 0.6, 0.3) (0.3, 0.4, 0.6) (0.8, 0.2, 0.3) (0.7, 0.4, 0.3)

a4 (0.5, 0.7, 0.2) (0.8, 0.2, 0.2) (0.4, 0.5, 0.4) (0.6, 0.2, 0.6)

Next, consider T -spherical fuzzy soft set (G,Q) over S representing the information about the

opportunities based on skills.

(G,Q) =


G(q1) = {(s1, 0.7, 0.2, 0.2), (s2, 0.8, 0.2, 0.2), (s3, 0.4, 0.3, 0.7), (s4, 0.5, 0.3, 0.3)}
G(q2) = {(s1, 0.5, 0.4, 0.4), (s2, 0.3, 0.4, 0.6), (s3, 0.8, 0.2, 0.2), (s4, 0.6, 0.2, 0.4)}
G(q3) = {(s1, 0.4, 0.5, 0.3), (s2, 0.3, 0.5, 0.5), (s3, 0.5, 0.4, 0.3), (s4, 0.3, 0.7, 0.2)}

 .

Again, the T -spherical fuzzy soft matrix may be formulated as follows:

N =

q1 q2 q3
s1 (0.7, 0.2, 0.2) (0.5, 0.4, 0.4) (0.4, 0.5, 0.3)

s2 (0.8, 0.2, 0.2) (0.3, 0.4, 0.6) (0.3, 0.5, 0.5)

s3 (0.4, 0.3, 0.7) (0.8, 0.2, 0.2) (0.5, 0.4, 0.3)

s4 (0.5, 0.3, 0.3) (0.6, 0.2, 0.4) (0.3, 0.7, 0.2)

• Step 2: Compute the complement matrices of the above TSFSMs which was obtained in Step

1 as follows:

Mc =

s1 s2 s3 s4
a1 (0.1, 0.5, 0.7) (0.6, 0.1, 0.9) (0.3, 0.5, 0.4) (0.7, 0.3, 0.2)

a2 (0.6, 0.2, 0.3) (0.5, 0.6, 0.2) (0.2, 0.1, 0.9) (0.1, 0.2, 0.8)

a3 (0.3, 0.6, 0.4) (0.6, 0.4, 0.3) (0.3, 0.2, 0.8) (0.3, 0.4, 0.7)

a4 (0.2, 0.7, 0.5) (0.2, 0.2, 0.8) (0.4, 0.5, 0.4) (0.6, 0.2, 0.6)

Nc =

q1 q2 q3
s1 (0.2, 0.2, 0.7) (0.4, 0.4, 0.5) (0.3, 0.5, 0.4)

s2 (0.2, 0.2, 0.8) (0.6, 0.4, 0.3) (0.5, 0.5, 0.3)

s3 (0.7, 0.3, 0.4) (0.2, 0.2, 0.8) (0.3, 0.4, 0.5)

s4 (0.3, 0.3, 0.5) (0.4, 0.2, 0.6) (0.2, 0.7, 0.3)
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• Step 3: Evaluate the average max min products corresponding to the TSFSMs computed in

Step 1 and Step 2 as follows:

R1 = M ∗A N =

q1 q2 q3
a1 (0.85, 0.15, 0.15) (0.6, 0.25, 0.25) (0.6, 0.3, 0.2)

a2 (0.65, 0.2, 0.2) (0.85, 0.15, 0.2) (0.7, 0.25, 0.15)

a3 (0.6, 0.25, 0.25) (0.8, 0.2, 0.25) (0.65, 0.3, 0.25)

a4 (0.8, 0.2, 0.2) (0.6, 0.2, 0.3) (0.55, 0.35, 0.25)

R2 = Mc ∗A Nc =

q1 q2 q3
s1 (0.5, 0.15, 0.35) (0.6, 0.25, 0.4) (0.55, 0.3, 0.25)

s2 (0.45, 0.2, 0.5) (0.55, 0.15, 0.25) (0.45, 0.25, 0.25)

s3 (0.5, 0.25, 0.55) (0.6, 0.2, 0.3) (0.55, 0.3, 0.3)

s4 (0.8, 0.2, 0.4) (0.5, 0.2, 0.5) (0.4, 0.35, 0.45)

• Step 4: Next, we compute the score matrices of TSFSMs R1 and R2 evaluated in Step 3 as

follows:

S(R1) =

q1 q2 q3
a1 0.6775 0.235 0.23

a2 0.3425 0.66 0.405

a3 0.235 0.5375 0.27

a4 0.56 0.23 0.1175

S(R2) =

q1 q2 q3
a1 0.105 0.1375 0.15

a2 −0.0875 0.2175 0.0775

a3 −0.115 0.23 0.1225

a4 0.44 −0.04 −0.165

• Step 5: Corresponding to the matrices S(R1) and S(R2) evaluated in Step 4, we compute its

utility matrix as follows:

U =

q1 q2 q3
a1 0.5725 0.0975 0.08

a2 0.43 0.4425 0.3275

a3 0.35 0.3075 0.1475

a4 0.12 0.27 0.2825

• Step 6: Thus, based on the obtained values in the utility matrix so computed in Step

5, it may be observed that students {a1, a3} are best suitable for the hardware jobs (q1),

the student a2 is best suitable for software job (q2) and the student a4 is best suitable

for the managerial job (q3). The computational values obtained above for the optimum

allocation of the student’s job based on their skills are represented by Figure 4.

Advantages & Comparative Remarks:

On the basis of the computations carried above, some comparative remarks are being pointed

out as below:

• The example of job suitability for different students having different skills stated above

demonstrates that there are no restrictions on the allocation due to the four determining

parameters of T -spherical fuzzy information.

• Also, as per the proposed methodology where we have put the available information in

the matrix form, we equally concluded that {a1, a3} are best suitable for the hardware
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jobs (q1), the student a2 is best suitable for software job (q2) and the student a4 is best

suitable for the managerial job (q3).

• However, the advantage which we find is that for solving the application problem, it would

be easier to work with the matrices which certainly gives the enhanced dimensionality

feature and wider span of information. This also indicates that TSFSM is more powerful

in dealing with uncertain & imprecise infirmation than with Pythagorean or Picture fuzzy

information.

6 Conclusions & Scope for Future Work

The concept of T -spherical fuzzy soft matrix has been successfully proposed with various binary

operations, properties and propositions. In order to exhibit the computational applications of

the proposed TSFSM with the idea of choice matrix and its weighted form, we have presented a

new methodology for solving a decision-making problem with the help of an illustrative example.

In addition to this, for solving a general selection process problem, another new methodology

has been provided by well utilizing the concept of score and utility matrices. The inclusion

of numerical examples for each application problem clearly illustrates the implementation part

of the proposed methodologies. The comparative remarks which have been appended in the

application sections gives a better understanding of the proposed technique with respect to

the existing techniques. The application of the T -spherical fuzzy soft matrices may further be

extended in future in various fields. Some of them are listed below.

The dimensionality reduction technique has been widely applied for solving the decision-

making problems having the involvement of a large number of inter-related factors. For better

coverage of the incomplete information, the impreciseness in the factors may be taken in the

form of spherical fuzzy information and can be well addressed by utilizing T -spherical fuzzy

set and T -spherical fuzzy soft matrix which may further help in developing a technique to

handle/reduce the dimensionality of large sized data [25].

In literature, the divergence measure plays an important role in the process of pattern

recognition. Wu et al. [26] presented for T -spherical fuzzy sets which may further be extended

for T -spherical fuzzy soft matrices to enable various computational applications.

In our future work, we will extend the proposed notion of T -spherical fuzzy soft matrix

to complex T -spherical fuzzy soft matrix/aggregation operators on the basis of deliberations

given by Ali et al. [35] [36] which may be applied in identifying reference signal out of several

transmitted signals. Such extension will also be helpful in tracking the cycle of pattern followed

by various problems related to pattern recognition and decision-making.
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