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Abstract. The study of 
ow and convective heat transfer from a rotary sphere in 
uid
mechanics, astrophysics, and astronaut subjects is important. Today, use of porous media
has become widespread because of heat transfer characteristics as well as their lightweight
and low volume. Many numerical studies on heat transfer and 
uid mechanics in the
rotary sphere have been done. The present project studies the phenomena of 
ow and
heat transfer due to the rotation of the sphere at a constant temperature around itself in a
porous medium, assuming a laminar, steady and incompressible 
ow. Analytical solution
of the equations used is based on power series and the porosity coe�cient is assumed to be
between 0 and 1 in this problem. In the spherical coordinate system used here, changes in
the azimuthal angle direction are ignored and the body force and pressure gradient for the
problem are considered zero. The presence of the porous medium is expected to increase
the value of thermal parameters.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Porous media are used in a variety of industries such
as nuclear fuel 
asks, optimal insulation of buildings,
crude oil, and heat recovery exchangers. Use of porous
media is one way among many to improve their heat
transfer performance [1]. It is also one of the examples
of the application of a cylinder or a rotary sphere in
mixers using this rotation in some cases to increase the
rate of heat transfer.

Many studies have attempted to measure the nat-
ural and forced heat transfer rates around the sphere
and other shapes [2{5]. Kishore and Ramteke [6] nu-
merically investigated the phenomenon of heat transfer
to spherical particles in Newtonian 
uids with velocity
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slip and uniform thermal boundary conditions at the

uid-solid interface using a Computational Fluid Dy-
namics (CFD) based in-house solver. New results were
obtained in accordance to the following conditions:
Re = 0:1� 200 (Reynolds number); Pr = 1� 100 (the
Prandtl number); and � = 0:01 � 100 (dimensionless
slip parameter). The problem of 
ow and heat transfer
between rotating spheres remains of interest to many
researchers [7{10]. In a major study, Moghadam and
Rahimi [7] numerically studied the heat transfer and

ow between two concentric rotating spheres with time-
dependent angular velocities. They reported that long
delays in the heat transfer of a large portion of the 
uid
in the annulus were produced by rotation of spheres.
Also, they [8] investigated the same problem with
constant angular velocities using similarity method and
determined the temperature distribution, 
ow pattern,
and heat transfer characteristics. The unsteady free
convection 
ow at large Grashof numbers from a
di�erentially heated rotating sphere was investigated
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by D'Alessio [11]. The analytical study of the author
in the form of asymptotic expansion facilitated deter-
mining the heat transfer coe�cient.

Flow and heat transfer in porous media have been
numerically investigated by many researchers [12{14].
Kurdyumov and Linan [15] investigated a sphere in the
porous medium in which the surface of the sphere was
exposed to a constant heat 
ux. Merkin [16] studied
natural heat transfer for two-dimensional and axial
symmetry of objects with any desired shape in a porous
medium of saturated 
uid. Cheng [17] conducted the
natural and forced heat transfer studies on a horizontal
cylinder and a sphere saturated with a 
uid in a porous
medium using similarity solution. Available research
works concerning such problems were considered by
Sano and Okihara [18], Juncu [19], Ga�ar et al. [20],
Taherzadeh and Saidi [21], Pepona and Favier [22],
Rao et al. [23], and Sano [24]. Chen et al. [25]
numerically studied the mixed convection heat transfer
from a rotating sphere within an enclosure. According
to their results, the heat transfer coe�cient increases
by rotation. The laminar forced convection of a heated
rotating sphere in air was studied by Feng [26] using
a three-dimensional immersed boundary-based direct
numerical simulation method. The 
ow structures
and the mean Nusselt numbers for 
ow Reynolds
number ranging from 0 to 1000 were obtained. They
developed a new equation correlated with the mean
Nusselt number of a heated rotating sphere for 
ows
of 0 < Re < 500. Nigam [27] demonstrated that upon
applying the analytical method of power series to the
laminar 
ow problem due to the uniform rotation of
a sphere, a solution that corresponds almost to the
physical condition of the problem in reality could be
found. After integrating and solving several systems
of equations, the aforementioned author managed to
calculate the velocities in spherical coordinates and the
thickness of the hydrodynamic boundary layer. Singh
[28] continued the work of Nigam by studying the
heat transfer given the laminar 
ow generated by the
uniform rotation of the sphere and then, introduced
di�erent forms of power expansions for temperature
distribution and thickness of the thermal boundary
layer. Next, Kreith et al. [29] demonstrated that
experimental and analytical studies of the 
ow gen-
erated by uniform rotation of a sphere in the certain
range of Reynolds, Grashof, and Prandtl numbers were
consistent with each other.

Based on a review of the previous works, the
analytical study of forced convection and 
ow phenom-
ena caused by a rotating sphere in a porous medium
has not been investigated so far. In this paper, 
ow
and heat transfer from a rotating sphere in porous
media is analytically investigated. First, the governing
equations in the porous medium are simpli�ed for the
given problem with respect to the hypotheses of the

problem and then, solved by the analytical method of
power series in a spherical geometry. It is proved that
use of a porous medium increases the values of thermal
parameters, such as Nusselt number, relative to the
rotating sphere in quiescent water.

2. Mathematical formulation

The geometry discussed for the present problem is a
rotating sphere with a constant radius that rotates at
the angular velocity of 
 and uniformly around the
axis, as shown in Figure 1. The porous medium around
this sphere is considered to be a sphere with a radius
much larger than the sphere with radius a0(r >> a0).

Due to the geometry of the problem, spherical
coordinates are used. Due to the insigni�cance of
velocity in the direction r due to the slow speed, in
two directions, the momentum equations are solved
only in � and � directions. Also, due to the sym-
metry of the considered geometry in � direction, we
consider the derivatives of this variable in all zero-
governing equations. In this project, the 
ow is
assumed laminar, steady and incompressible and the
motion of the sphere is considered to be uniform in
its round. The surface temperature of the sphere and
the ambient temperature are also assumed constant.
The body force is assumed to be zero and the pressure
gradient is considered zero due to minor changes
to the boundary layer as well as symmetry for the
considered problem. The Forchheimer equation is used
for mathematical modeling of 
ow in porous media.
A mathematical model can be developed based on the
following assumptions: (a) Porous media are isotropic
and homogeneous with no contraction or distension; (b)
The local thermal equilibrium is considered between
solid and liquid phases; (c) The generation of heat due
to viscous e�ects is negligible. The order of terms used
in the governing equations can be written as: ur �
O(@) (due to the insigni�cance of the velocity in this
direction), u� � O(1), u� � O(1), and @

@r � O(��1)
(because of the sharp changes in this direction). Hence,
the governing equations, regarding all the mentioned

Figure 1. The physical model of the problem.
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assumptions, can be written as follows:
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The boundary conditions are as follows:

r = 0; T = Ts; ur = 0;

u� = 0; u� = a0
 sin �; (5)

r !1; T = T1; ur = 0;

u� = 0; u� = 0; (6)

where ur, u�, and u� are velocity components in
directions r, �, and �, respectively, a0 is radius of
the sphere, porosity coe�cient ", kinematic viscosity
�, permeability coe�cient K, 
uid density �, speci�c
heat capacity CP at constant pressure, temperature T ,
thermal conductivity coe�cient k, dynamic viscosity �,
and the subscript eff related to e�ective properties.

The non-dimensional parameters for the present
problem are de�ned as follows:

� =
T � T1
Ts � T1 ; r� =

r
a0
; u�r =

ur
4a0
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: (7)

The non-dimensional boundary conditions are as fol-
lows:
r� = 0; � = 1; u�r = 0;

u�� = 0; u�� =
sin �

4
; (8)

r� !1; � = 0; u�r = 0;

u�� = 0; u�� = 0: (9)

The governing equations are given below:
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3. Problem solving using power series method

The power series expansions for velocities in spherical
coordinates according to the Nigam method [27] are as
follows:

ur =
1
2

(�
)0:5(2� 3 sin2 �)(H1 +H3 sin2 �

+H5 sin4 � + :::); (14)

u� = a0
 cos �(F1 sin � + F3 sin3 � + F5 sin5 � + :::);
(15)

u� = a0
 sin �(G1 +G3 sin2 � +G5 sin4 � + :::): (16)

All constants in Relations (14) to (16) are expressed in
terms of a dimensionless variable called z. This means
we have:

H = H(z); F = F (z);

G = G(z); z =
�



�

�0:5

(r � a0): (17)

By substituting the velocities above into governing
equations and collecting powers of sine terms and after
simpli�cation, we have:

F 2
1 �G2
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�
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For the energy equation, in addition to the velocity
expansions, we consider the following expansion for
temperature in accordance with Singh's method [28]:

CPeffT = CPeffT1 + a2
0 
2(M1 +M3sin2�

+M5sin4� + :::); M = M(z): (24)

By inserting the velocities given in Eqs. (14) to (16)
and temperature expansion in Eq. (24) in Eq. (4)
and taking into account Relations (17) and (24) as
well as simplifying and performing algebraic operations
and �nally equating the sentences with equal power
of sin �, on the other side of the equation, we get
the following relations to the energy equation (for the
aggravation of relations, the constants are not written
by the variable z):
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M 001
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Eqs. (25) to (27) of the three di�erential equations are
obtained by applying the power series expansion to the
energy equation.

The boundary conditions governing the problem
are expressed in terms of the constants in the expan-
sions of the velocity as follows:

at z = 0 : F1 = F3 = F5 = 0; G1 = 1;

G3 = G5 = 0; H1;H3;H5 = 0; (28)

at z !1 : F!0; F3 ! 0; F5 ! 0;

G1 ! 0; G3 ! 0; G5 ! 0: (29)

In order to keep the hydrodynamic boundary layer 
ow
constant on the surface of the sphere, the following
boundary conditions must exist:

at z !1 : F 01 ! 0; F 03 ! 0; F 05 ! 0;

G01 ! 0; G03 ! 0; G05 ! 0: (30)

Also, the boundary conditions governing the problem
are expressed in terms of the constants in the expan-
sions of temperature as follows:

at z = 0 : M1 =
CPeff (Ts � T1)

a02
2 ;

M3 = M5 = 0; (31)

at z !1 : M1 ! 0;M3 ! 0;M5 ! 0: (32)

In order to keep the transfer phenomenon in the
thermal boundary layer on the surface of the sphere,
the following boundary conditions must exist:

M 01 ! 0;M 03 ! 0;M 05 ! 0: (33)

The di�erential equations obtained in Eqs. (18) to (23)
and (25) to (27), along with the boundary conditions
introduced in Eqs. (28) and (31), are the equations and
boundary conditions that we use for the constants in
di�erential equations to solve these equations from the
following relations proposed by Nigam [27]:

F1 = as(1� s)2 (1 + 2s)� 1
2
@2s2(1� s)2;

F3 =bs(1�s)2 (1+2s) ; F5 =ds(1�s)2 (1+2s) ; (34)

G1 =0:5 (2+s) (1�s)2; G3 =cs (1+2s) (1�s)2;
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Table 1. Physical properties of the base model.


 � K " Pr

0.097 ( rad
s ) 0.000001 ( m2

s ) 0.025 (m2) 0.75 6.98
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In these relations, we have the dimensionless parame-
ters s and s1:

z = s@ = s1� 1; (37)

where @ and �1 represent the dimensionless thickness
of the hydrodynamic and thermal boundary layers,
respectively.

In order to solve the twelve di�erential equations,
we �rst need to insert (
; �; k; "; Pr) values per solving
time into these equations in accordance with the
problem conditions. These values are shown in Table 1.

All of these values, except Pr, calculated for the
porous medium, were at Re = 1000 for pure liquid
water, and the porosity and permeability values were
also selected for admission of spherical balls of wood.
To facilitate the continuation of operations in Eqs. (34)
to (36), we put:

s =
z
@
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z
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: (38)

Given that the constants in the di�erential equations
derived from the continuity can be obtained in terms
of other constants, we reduce the number of equations
to 9. The resulting relations for H1;H3; and H5 are as
follows:
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Now, by substituting Eqs. (34) to (36) into the remain-
ing 9 equations, we transform the di�erential equations

Table 2. Geometric, physical, and boundary parameters
of the base model.

a0 CPeff Ts T1
0.0508 (m) 4398( J.kg

k ) 35(�C) 30(�C)

Figure 2. Validation of Singh's results and the present
project for distribution of temperature in � in s1 = 0:2.

into algebraic equations. Of course, at this stage, we
must put the (a0; CPeff ; Ts; T1) values into Eq. (36),
values of which are based on the boundary conditions
and the geometry of the problem, as well as the 
uid
used, namely, water. These values are shown in Table 2.
Upon integration, the calculation results are shown in
Table 3.

4. Results and discussions

4.1. Validation of the results
According to a review of the previous works, the
analytical study of the forced convection and 
ow
phenomena caused by a rotating sphere in a porous
medium has not been conducted so far. Therefore, in
order to validate the results, a comparison between
the analytical power series solution carried out by
Singh [28] and the results of the present project was
made. From Figures 2 and 3, we can compare the valid-
ity of the temperature distribution around a quadrant
of a sphere at di�erent intervals from the surface of
the sphere. These graphs indicate the accuracy and
precision of the power series method in the case of this
problem.

4.2. Velocity distribution
In Figure 4, the velocity changes in r directions are
plotted for di�erent values of s, which represents
the radial distance from the surface of the sphere.
According to Figure 4 and expansion of the power
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Table 3. The obtained values for unknown constants in terms of calculation results.

a @ b c d e �1 A1 B1

1.354 2.346 0.383 0.43 0.263 0.197 1.5 333030.54 156206.397

Figure 3. Validation of Singh's results and the present
project for distribution of temperature in � in s1 = 0:5.

Figure 4. Radial velocity changes in � direction.

series considered in Section 3, ur is negative when
(2 � 3sin2�) > 0, positive when (2 � 3sin2�) < 0,
and is zero when (2 � 3sin2�) = 0, meaning that
� = 54:45� in the upper hemisphere and � = 125:15�
in the lower hemisphere. In Figure 5, both of variables
are non-dimensional. Changes in the thickness of the
dimensionless hydrodynamic boundary layer in terms
of Reynolds number are shown in Figure 5. As can be
seen, with increase in the Reynolds number due to the
vortex penetration or, in other words, the penetration
of the velocity, the thickness of the boundary layer
increases.

Figure 5. Changes in the dimensionless hydrodynamic
boundary layer thickness in Re.

Figure 6. Temperature changes in � direction.

4.3. Temperature distribution
In Figure 6, temperature variations are plotted in � at
di�erent s1's, which represent a radial distance from
the surface of the sphere. In this �gure, temperature
changes are shown in relation to � and radius, and
s1 represents the radius changes within the thermal
boundary layer. As can be seen, the temperature
approaches the ambient temperature at the boundary
of the thermal boundary layer and outside of it. In
Figure 7, the temperature distribution in the bound-
ary layer for the quadrant is given, which in fact
is equivalent to placing a series of power expansions
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Figure 7. Distribution of temperature within the
boundary layer for a quadrant of sphere.

Figure 8. Comparison of Nu average changes in Re in
porous media and quiescent water.

for temperature with a constant number and showing
homogeneous regions.

4.4. Mean Nusselt number
According to Kreith et al. [29], the �nal relation for
calculating the average Nusselt number on the surface
of the sphere is as follows:

Nu = � 2a0

(Ts � T1)
a2

0
2:5

�0:5CPeff

�
M 01(0) +

2
3
M 03(0)

+
8
15
M 05(0) + � � �

�
: (40)

In Figure 8, variation in the mean Nusselt number
is compared to that in the Reynolds number for the
rotating sphere in the porous media and quiescent

water. As it turns out, the presence of a porous medium
causes the mean Nusselt number to be higher than ones
in the quiescent water at a constant Reynolds number.
Also, with increase in the Reynolds number, the mean
Nusselt number increases that results from the increase
in the gradient of the average temperature inside the
boundary layer due to the reduction of the thickness of
the thermal boundary layer. This phenomenon results
from the approach of the velocity pro�le behavior to
the plug 
ow velocity pro�le. In addition, the porous
medium itself is a thermal bridge. Also, in a porous
medium, the Nusselt number increases due to the
increase in the e�ective heat transfer surface areas.

5. Conclusions

In this study, heat transfer and 
ow phenomena caused
by a rotary sphere in porous media were investigated.
Equations governing the problem including consistency
equations, momentum, and energy were obtained by
using available models for a laminar 
ow. Finally,
after considering the expansions of the power series for
velocities and temperature, the equations were solved
by using this analytical method. Some of the results
are as follows:

� As the Reynolds number increases, the velocity and
vortex di�usion increase in the boundary layer and
as a result, the thickness of the boundary layer
increases;

� With increase in the Reynolds number as the
velocity gradient increases in the boundary layer,
the temperature gradients increase; given that the
overall shape of the temperature distribution is
constant, the thickness of the thermal boundary
layer decreases, which results in the mean Nusselt
number to increase on the surface of the sphere;

� The presence of a porous medium causes the mean
Nusselt number to be higher than the ones in the
quiescent water at the constant Reynolds number;

� The e�ect of the rotation of the sphere on the
velocity and temperature distribution is only up to
the boundary of the boundary layer and is governed
by the ambience outside the boundary layer.

Nomenclature

A1; B1; a; b; Constant
c; d; e; F;G; Constant
H;M; s; s1 Constant
a0 Radius of the sphere (m)
CP Speci�c heat capacity coe�cient at

constant pressure (kJ/kg.K)
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CPeff E�ective speci�c heat capacity
coe�cient at constant pressure
(kJ/kg.K)

�h Average convection heat transfer
coe�cient (W/m2.K)

K Permeability coe�cient (m2)
k Conductivity coe�cient (W/m.K)
keff E�ective conductivity coe�cient

(W/m.K)
Nu Nusselt number
�Nu Average Nusselt number 2�hr=k
Pr Prandtl number �Cp�=k

q000 Heat generation per unit volume
W=m3

r Radial coordinate (m)
Re Reynolds number, 2ur=�
T Temperature (�C)
t Time (s)
T1 Temperature at in�nity (�C)
Ts Temperature on the sphere surface

(�C)
u Velocity (m/s)
z Dimensionless variable

Greek symbols


 Angular velocity of sphere (rad/s)
@ Dimensionless hydrodynamic boundary

layer thickness
�1 Dimensionless thermal boundary layer

thickness
" Porosity coe�cient
� Dynamic viscosity (N.s/m2)

� Kinematic viscosity (m2/s)
� Acute angle subtended at the center

of the sphere by any point and the
nearest polar Latitude coordinate (�)

� Meridian angle coordinate (�)
� Density (kg/m3)

�eff E�ective density of the 
uid (kg/m3)
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