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Abstract. In this study, we suggest a family of ratio estimators for the population mean
parameter using various robust regression techniques. These robust regressions techniques
are Huber MM, Last Trimmed Square (LTS), and Least Median Square (LMS) estimates.
We evaluate the performance of estimators in terms of the Mean Square Error (MSE),
and we compare the e�ciency of our proposed robust-regression-ratio-type estimators with
existing estimators under the optimal conditions. These comparisons show that our robust
ratio-type estimators give more e�cient results than the existing estimators under double
sampling. In addition, the simulation and the empirical studies based on a data set that
includes unusual observations show that our proposed estimators have a lower MSE than
the existing estimators.
© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

In the random sampling setting, the auxiliary infor-
mation is commonly used to improve estimates. The
classical ratio estimator is the most common estimator
of the population mean when the correlation between
study and auxiliary variables is highly positive. The
ratio and the regression estimators of the mean of the
study variable are good examples. However, when
there are extreme values in the data, the e�ciency
of classical estimators declines. Therefore, Kadilar
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et al. [1] suggested Huber-M estimator for ratio esti-
mators and reduced the e�ect of the extreme values.
Motivated by Kadilar et al. [1], Oral and Kadilar
[2,3] introduced maximum likelihood estimators and
incorporated modi�ed maximum likelihood estimators
into Kadilar and Cingi [4] estimators. Abid et al. [5]
introduced di�erent ratio estimators with the help of
some robust measures. Then, Abid et al. [6] developed
some new ratio estimators of variance based on robust
measures. Zaman and Bulut [7] proposed robust ratio
estimators based on the estimators given in Kadilar et
al. [1]. Zaman [8] suggested combining estimators for
the population mean using the estimators presented
in Zaman and Bulut [7]. Subzar et al. [9] presented
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the robust regression ratio type estimators to esti-
mate the mean of the study variable in outlier data.
Zaman and Bulut [10] suggested robust regression-
type estimators in strati�ed random sampling. Bulut
and Zaman [11] extended Zaman and Bulut [7] for
Minimum Covariance Determinant (MCD) estimates.
Using Zaman and Bulut [7], Shahzad et al. [12]
provided various estimators using robust regression
and variance-covariance techniques. Naz et al. [13]
presented ratio-type estimators for population variance
using the information on the auxiliary variable's robust
nonconventional location parameters. Subzar et al. [14]
provided new ratio estimators of population mean
utilizing some robust measures. Grover and Kaur [15]
proposed robust ratio estimators to predict the mean in
simple and strati�ed random sampling. Ali et al. [16]
developed a class of robust-regression type estimators
in the case of sensitive research. The ratio and the
regression estimators are used if the population mean
of the auxiliary variable is known, but this is not
always the case. In double sampling, a good estima-
tor of the population mean of the auxiliary variable
requires the �rst-phase sample, and a second-phase
sample is necessary to measure the study variable [17].
Neyman [18] was the �rst to introduce the concept
of double sampling. Sukhatme [19] taught a class of
estimators in double sampling. Following Kadilar et
al. [1], Noor-ul-Amin et al. [20] applied the concept
of Sukhatme [19] and provided the estimator of the
mean using the Huber-M measure for double sampling.
Singh et al. [21] presented various imputation methods
to compensate for the missing data in estimating the
population mean parameter for two-phase sampling.
Guha and Chandra [22] proposed an improved chain-
ratio estimator for the population total based on
double sampling. Guha and Chandra [23] provided
improved estimators for the population mean using two
auxiliary variables comprise non-response in on two-
phase sampling.

Let that the �nite population consists of N
distinct and identi�able units under study. A random
sample of size n is drawn using Simple Random
Sampling Without Replacement (SRSWOR). Let be
the population mean of the study variable and the

auxiliary variable �Y = 1
N

NP
i=1

Yi and �X = 1
N

NP
i=1

Xi,

respectively. The sample means for variables Y and X
are indicated by y and x, respectively.

If the population mean of the auxiliary variable
is not known, double sampling is used to estimator
the population mean of the study variable. Under the
double sampling, the �rst phase sample of a �xed size
n1 (n1 < N) is drawn to measure only x to formulate
a good estimator of a population mean �X, the second
phase sample of a �xed size n2 (n2 < n1) is drawn to
measure y.

To obtain the Mean Square Error (MSE) of the
estimators, let y = �Y (1 + ey2), x1 = �X (1 + ex1) and
x2 = �X (1 + ex2) such that:

E (ey2) = E (ex1) = E (ex2) = 0;

E
�
e2
y2

�
= �2C2

y ; E
�
e2
x1

�
= �1C2

x; E
�
e2
x2

�
= �2C2

x;

E (ey2ex1)=�1�yxCyCx; E (ey2ex2)=�2�yxCyCx; (1)

where Cy =Sy= �Y , Cx = Sx= �X, and �yx=Syx/(SySx).
Here,

S2
y =

1
N � 1

NX
i=1

(yi � �Y )2;

S2
x =

1
N � 1

NX
i=1

(xi � �X)2;

and:

Syx =
1

N � 1

NX
i=1

�
yi � �Y

� �
xi � �X

�
;

�1 = (N � n1) =Nn1; �2 = (N � n2) =Nn2:

Noor-ul-Amin et al. [20] obtained the slope coe�cient
of Kadilar and Cingi [4] estimators using the Huber-M
estimator. Noor-ul-Amin et al. [20] adapted the
Kadilar and Cingi [4] estimators to the double
sampling design as follows:

y1j =
y2 + bj (x1 � x2)

x2
x1; (2)

y2j =
y2 + bj (x1 � x2)

x2 + Cx
(x1 + Cx) ; (3)

y3j =
y2 + bj (x1 � x2)
x2 + �2 (x)

(x1 + �2 (x)) ; (4)

where j = 1 represents Huber-M estimate. When
there is an outlier in the dataset, they provided that
bj computed by Huber-M must be used instead of
b computed by Ordinary Least Squares (OLS). The
MSE expression of Noor-ul-Amin et al. [20] estimators
obtain as below [20]:

MSE (yi1) = �Y 2��2C2
y + k2

i + C2
xn

�1(1� ki)2�2�1
�
1�k2

i
�
+�2(1+ki)

2
o

� 2C2
xHyx f�2 � �1 (1� ki)g �

+ C2
xB1 �X �Y (�2 � �1)�

B1 �X � 2Hyx + 2 (1 + ki)
�
;

i = 1; 2; 3; (5)
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where k1 = 0, k2 = Cx
�X , k3 = �2(x)

�X , and Hyx = �yx
Cy
Cx �

B1, is coe�cients of slope obtained from Huber-M.
We improve the Noor-ul-Amin et al. [20] esti-

mators by using Huber MM, Least Trimmed Squares
(LTS), or Least Median Squares (LMS). We express
MSE up to the �rst-order approximation. We compare
the e�ciencies of the estimators with that of the Noor
ul Amin et al. [20] estimator and �nd a signi�cantly
lower MSE for double sampling. These robust regres-
sion methods are described below very brie
y.

2. Robust regression methods

In linear regression, the OLS estimators are optimal
when all of the regression assumptions are valid. How-
ever, it is well known that the OLS estimators are quite
sensitive to outliers like other classic statistical meth-
ods. In the literature, many robust regression methods
have been suggested to overcome this problem.

The objective function of OLS is to minimize the
sum of squared residuals. Similarly, the LMS method
aims to minimize the median of squared residuals [24].
In the LTS, the squared residuals are sorted, and the
OLS method is performed on observations regarding
the �rst (smallest) r residuals [25]. Generally, the M
regression methods aim to minimize the � functions
that are satis�ed with some assumptions [26]. Ac-
cordingly, in literature, the M estimate is suggested by
changing the � function by Huber [27]. This estimator is
called Huber-M estimator. Finally, Yohai [28] proposed
the MM regression method, which has high e�ciency
and breakdown point. Researchers can view more
detailed information about robust regression estimates
in Zaman and Bulut [7].

In this study, we use the R programming
language for all calculations. According to this, we
calculate Huber-M estimations by using the \rlm"
function at the \MASS" package in R [29]. For Huber
MM estimations, we use the \lmRob" function at the
\robust" package in R [30]. Finally, we use the \lqs"
function at the \MASS" package in R [29] for LTS and
LMS estimations. We use the method=\lts" argument
to obtain the LTS estimations, while LMS estimations
are obtained using the method=\lms" argument in
the function.

3. Suggested estimators

In this section, we propose a variety of ratio estimators
considering some robust estimators instead of coe�-
cients of slope in ratio estimators presented between
Eqs. (2)-(4). We develop the following estimators:

y1j =
y2 + bj (x1 � x2)

x2
x1; (6)

y2j =
y2 + bj (x1 � x2)

x2 + Cx
(x1 + Cx) ; (7)

y3j =
y2 + bj (x1 � x2)
x2 + �2 (x)

(x1 + �2 (x)) ; (8)

where yij ; i = 1; 2; 3 and j = 2; 3; 4, where j = 2
represents Huber MM, j = 3 represents LTS and
j = 4 represents LMS. bj are the coe�cients of slope
computed by Huber MM, LTS, and LMS estimates,
respectively.

The expressions of MSE for modi�ed ratio esti-
mators considering robust measures can be stated as
Eq. (5). The main di�erence between the expressions
of MSE is the usage of Bj (j = 2; 3; 4) instead of B1.
The expressions of MSE for our suggested estimators
belonging to robust regression estimates of interest are
computed as follows.

To compute the MSE of the suggested estima-
tors in Eqs. (6)-(8), we apply the notations (1) in
Eqs. (6)-(8) as following the Noor-ul-Amin et al. [20]
estimators, expressing the estimators, yij , in terms of
ey2 exi (i = 1; 2), we can write Eqs. (6)-(8) as:

yij =
� �Y + �Y ey2 + bj

� �Xex1 + �Xex2

��
�

1 + ex1 + ki
1 + ex2 + ki

�
:

To the �rst degree of approximation for the Taylor
series, we ignore the terms with power two or greater,
and this expression is re-written as follows:

y1j � �Y �= �Y [(ey2 � ki) + (1� ki) ex1 � (1 + ki) ex2]

+ bj �X (ex1 + ex2) :

Taking square on both sides of this equation and
applying expectations, the MSE equations of the
estimators in Eqs. (6)-(8) is given by:

MSE
�
yij
�

= �Y 2��2C2
y + k2

i + C2
xn

�1(1�ki)2�2�1
�
1�k2

i
�
+�2(1+ki)

2
o

� 2C2
xHyx f�2 � �1 (1� ki)g �

+C2
xBj �X �Y (�2��1)

�
Bj �X�2Hyx

+ 2 (1 + ki)
�
;

i = 1; 2; 3 and j = 2; 3; 4; (9)

where, Bj are the coe�cients of slope computed from
Huber MM, LTS, and LMS estimators, respectively.
The expressions of MSE of 4 di�erent robust measures
for each value i will be obtained.
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4. E�ciency comparisons

In this section, we compare the MSE of the Noor-ul-
Amin et al. [20] estimators, given in Eqs. (2)-(4), with
the MSE of the suggested robust estimators, shown in
Eqs. (6)-(8).

MSE
�
yij
�
< MSE (yi1) ;

i = 1; 2; 3 and j = 2; 3; 4;

Bj
�
Bj �X � 2Hyx + 2 (1 + ki)

�
< B1

�
B1 �X � 2Hyx + 2 (1 + ki)

�
;

�X (Bj �B1) (Bj +B1)� (Bj �B1)

(2Hyx + 2 (1 + ki)) < 0;

(Bj �B1)
� �X (Bj +B1)� 2Hyx + 2 (1 + ki)

�
< 0;

For (Bj �B1) > 0; that is Bj > B1 and

(Bj +B1) <
2Hyx + 2 (1 + ki)

�X
: (10)

Similarly, for (Bj �B1) < 0, that is Bj < B1 and:

(Bj +B1) >
2Hyx � 2 (1 + ki)

�X
: (11)

When the condition (10) or (11) is satis�ed, the MSE
of the suggested robust ratio estimators is smaller than
the Noor-ul-Amin et al. [20] estimators.

If B1 is replaced with B above,

(Bj �B)
� �X (Bj +B)� 2Hyx + 2 (1 + ki)

�
< 0:

For Bj �B > 0; that is Bj > B and

Bj +B <
2Hyx � 2 (1 + ki)

�X
: (12)

Similarly, for Bj �B < 0; that is Bj < B and:

Bj +B >
2Hyx � 2 (1 + ki)

�X
: (13)

The MSE of the suggested robust estimators
is smaller than the usual ratio estimators for
conditions (12) or (13).

5. Numerical example

In this section, we compare the performance of the sug-
gested robust estimators with the estimators proposed
by Noor-ul-Amin et al. [20] in the double sampling
design using a real dataset. The population data is
taken from Zaman and Bulut [7] and Zaman et al. [31].

Table 1. The statistics of data.

N = 111 �2(x) = 45:10873 BHubMM = 0:0606

Cx = 1:538435 k1 = 0 BLTS = 0:0573

�yx = 0:9487736 k2 = 0:003427 BLMS = 0:0562

�Y = 36:34234 k3 = 0:100495 BHubM = 0:06634

Cy = 2:131294 Hyx = 1:61437

This data consists of the number of teachers and
students in each high school in 18 districts of Trabzon,
a city in Turkey, for the 2011-2012 academic year. The
statistics of the population are given in Table 1.

Following the Noor-ul-Amin et al. [20] estimators,
to examine the sensitivity of sample sizes on suggested
robust estimators in double sampling, we assume three
di�erent sample sizes at the �rst phase, n1 = 30; 40,
and 50. Then, from the �rst phase sample for each
choice of n1, we consider three di�erent sample sizes,
n2 = 10; 15, and 20. To compare the proposed estima-
tors with the Noor-ul-Amin et al. [20] estimators, we
use the same sample sizes with Noor-ul-Amin et al. [20]
study.

We obtained the MSE values of the suggested
robust estimators and the Noor-ul-Amin et al. [20]
estimators using the information in Table 1. The
performance for each proposed estimator concerning
the Noor-ul-Amin et al. [20] estimators are obtained
as follows based on Eq. (14). The obtained MSE and
RE values are presented in Tables 2 and 3, respectively.

RE
�
yij
�

=
MSE

�
yij
�

MSE (yi1)
;

i = 1; 2; 3 and j = 2; 3; 4; (14)

where MSE
�
yij
�

is the mean square error for each
estimator in Section 3 and MSE (yi1) is the mean
square error for each estimator presented in Noor-ul-
Amin et al. [20].

The MSE of the Noor-ul-Amin et al. [20] and
suggested ratio estimators are given in Table 2. The
proposed robust estimators perform better than the
Noor-ul-Amin et al. [20] estimators in terms of MSE.
So the suggested estimators are more e�cient.

The Relative E�cient (RE) values given in Ta-
ble 3 are obtained using Eq. (14). If the relative
e�ciency is smaller than 1, the suggested robust
estimators have a smaller MSE than the Noor-ul-Amin
et al. [20] estimators. From Table 3, it is seen that the
proposed robust estimators perform better than the in
Noor-ul-Amin et al. [20] estimators. This situation is
expected because the conditions presented in Eq. (11)
are satis�ed with the suggested robust-regression-ratio-
type estimators. These results are apparent in Table 4.
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Table 2. MSE values for real data application.

Noor-ul-Amin
et al. [20]

Proposed estimators based on

n1 n2 Estimators Huber M Huber MM LTS LMS

30

10

y1j 5189.48 4347.98 3912.21 3782.31

y2j 5191.42 4349.81 3913.99 3784.07

y3j 5264.13 4419.63 3982.19 3851.77

20

y1j 1406.82 1196.44 1087.50 1052.71

y2j 1406.80 1196.40 1087.45 1052.65

y3j 1422.73 1211.60 1102.24 1067.31

40

10

y1j 5769.93 4823.24 4328.66 4186.86

y2j 5772.42 4825.61 4330.97 4189.16

y3j 5860.20 4910.13 4413.66 4271.29

20

y1j 1987.27 1671.70 1506.85 1457.61

y2j 1987.81 1672.21 1507.33 1458.09

y3j 2018.79 1702.10 1536.61 1487.18

30

y1j 726.38 621.19 566.72 549.51

y2j 726.27 621.07 566.60 549.38

y3j 738.32 632.76 578.08 560.80

50

10

y1j 6118.20 5108.39 4591.38 4420.19

y2j 6121.03 5111.10 4594.02 4422.81

y3j 6217.84 5204.44 4685.44 4513.57

20

y1j 2335.54 1956.86 1759.03 1699.95

y2j 2336.42 1957.69 1759.84 1700.75

y3j 2376.44 1996.41 1797.82 1738.50

30

y1j 1074.65 906.35 816.09 791.65

y2j 1074.88 906.56 816.29 791.84

y3j 1095.97 927.06 836.46 811.92

40

y1j 444.21 381.09 347.94 338.08

y2j 444.11 380.99 347.83 337.97

y3j 455.73 392.39 359.11 349.21
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Table 3. Theoretical results for relative e�ciencies of each proposed estimator according to Noor-ul-Amin et al. [20]
estimators.

Noor-ul-Amin
et al. [20]

Proposed estimators based on

n1 n2 Estimators Huber M Huber MM LTS LMS

30

10

y1j 1 0.838 0.754 0.729

y2j 1 0.838 0.754 0.729

y3j 1 0.840 0.756 0.732

20

y1j 1 0.850 0.773 0.748

y2j 1 0.850 0.773 0.748

y3j 1 0.852 0.775 0.750

40

10

y1j 1 0.836 0.750 0.726

y2j 1 0.836 0.750 0.726

y3j 1 0.838 0.753 0.729

20

y1j 1 0.841 0.758 0.733

y2j 1 0.841 0.758 0.734

y3j 1 0.843 0.761 0.737

30

y1j 1 0.855 0.780 0.756

y2j 1 0.855 0.780 0.756

y3j 1 0.857 0.783 0.760

50

10

y1j 1 0.835 0.750 0.722

y2j 1 0.835 0.751 0.723

y3j 1 0.837 0.754 0.726

20

y1j 1 0.838 0.753 0.728

y2j 1 0.838 0.753 0.728

y3j 1 0.840 0.757 0.732

30

y1j 1 0.843 0.759 0.737

y2j 1 0.843 0.759 0.737

y3j 1 0.846 0.763 0.741

40

y1j 1 0.858 0.783 0.761

y2j 1 0.858 0.783 0.761

y3j 1 0.861 0.788 0.766
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Table 4. The results of condition in Eq. (10).

Method �j �j + �1 Results for y1j Results for y2j Results for y3j

Huber-MM 0.0606 0.1269 True True True

LTS 0.0573 0.1236 True True True

LMS 0.0562 0.1225 True True True

Huber-M (�1) : 0.06634 Condition limits: 0.0031 0.0031 0.0026

In Table 4, the methods with the highest beta
value are Huber MM, LTS, and LMS, respectively.
When the proposed estimators are examined according
to these values, it is seen that the estimator with the
smallest beta value is the most e�ective. Therefore,
the results in Table 4 support Tables 2 and 3. In
short, the real dataset results show that the robust-
regression-ratio-type estimators are expected to be
better than the existing estimators because there are
unusual observations in the data. We see that these
results are expected if we look at them more carefully
because conditions (11) and (13) are satis�ed with
the suggested robust estimators. Also, the suggested
robust regression-ratio-type estimator based on the
LMS estimate has the best result among proposed
robust ratio estimators.

6. Simulation study

A simulation study is carried out to calculate the
MSE values by using proposed estimators and Noor-
ul-Amin et al. [20] estimators. The datasets have been
generated as follows:

Yi = 2 + 3X1 + "i; (15)

where X1�N(0; 1) and "i�N(0; 1) for usual obser-
vations, X1�N(25; 1) and "i�N(25; 1) for unusual
observations. We have guaranteed that there is an
outlier in the dataset. For the simulation design;

We choose 10000 samples of the size sizes at the
�rst phase n1 = 30; 40, and 50 and from the �rst
phase sample, for each choice sample size n1, we chose
di�erent sample sizes in the second phase, n2 = 10; 20,
and 30.

Using the Eqs. (2)-(4) and (6)-(8), the value of eYi
in Eq. (16) is calculated 10000 times.

For each sample, we derived the expression of
MSE of the existing and the suggested estimators are
obtained by Eq. (16):

MSE
� eYi� =

1
10000

10000X
i=1

� eYi � �Y
�2
; (16)

where �Y shows the population mean parameter.
We give our R codes a better understanding of

the simulation study in the supplementary �le.
We assumed that the ratios of extreme values are

10%; 20%, and 30% and under the condition n2 < n1,
sample sizes in the �rst phase, n1 = 30; 40, and 50,
then, for each choice of n1, it is considered as sample
sizes in the second phase, n2 = 10; 20, and 30 in
this study. In Tables 5, 6, and 7, our suggested
robust estimators' MSE values and relative e�ciency
for each �rst phase and second phase sample sizes are
given for outliers 10%; 20%, and 30%, respectively.
The MSE values belonging to these estimators are
calculated by Eq. (16). Tables 5{7 show that per-
formances of all of the suggested robust-regression-
ratio estimators perform better than the Noor-ul-
Amin et al. [20] estimators. It is also noted that
the values of e�ciencies of the suggested estimators
given in Tables 5{7 increased signi�cantly, showing that
the suggested estimators' performances would increase
dramatically if there were more outliers in the data.
In addition, there is an inverse relationship between
the selected sample sizes to evaluate the performance
of the suggested estimators. When the sample size
of �rst phase sample (n1) increases, the e�ciencies
of the suggested estimators also decrease; whereas,
when the sample size of second phase sample (n2)
increases, the performances of the suggested estimators
increase. These simulation �ndings support the results
in Tables 2 and 3.

7. Conclusion

We extended Noor-ul-Amin et al. [20] estimators to
robust regression-ratio-type estimators by utilizing Hu-
ber MM, Least Trimmed Square (LTS), and Least
Median Square (LMS) estimators. Tables 2-7 show
that the suggested robust regression-ratio-type estima-
tors for estimating the population mean under double
sampling is more e�cient. The estimators in Eqs. (6)-
(8) provide lower Mean Square Error (MSE) than the
MSE of the Noor-ul-Amin et al. [20] estimators in Eqs.
(2)-(4) under the double sampling. This means that
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Table 5. The MSE and RE values of estimators in simulated data sets with 10% outliers.

Huber M Huber MM LTS LMS

n1 n2 Estimator MSE RE MSE RE MSE RE MSE RE

30

10

y1j 2.400 1 1.781 0.742 1.803 0.751 1.765 0.735

y2j 2.403 1 1.784 0.742 1.807 0.752 1.768 0.736

y3j 2.403 1 1.784 0.742 1.806 0.752 1.768 0.736

20

y1j 0.594 1 0.440 0.741 0.442 0.744 0.436 0.734

y2j 0.594 1 0.440 0.741 0.442 0.744 0.436 0.734

y3j 0.594 1 0.440 0.741 0.442 0.744 0.436 0.734

40

10

y1j 3.047 1 2.235 0.733 2.251 0.739 2.228 0.731

y2j 3.048 1 2.235 0.734 2.252 0.739 2.229 0.732

y3j 3.047 1 2.235 0.733 2.252 0.739 2.229 0.731

20

y1j 0.888 1 0.646 0.727 0.648 0.730 0.640 0.721

y2j 0.888 1 0.646 0.727 0.648 0.730 0.640 0.721

y3j 0.888 1 0.646 0.727 0.648 0.730 0.640 0.721

30

y1j 0.292 1 0.214 0.731 0.215 0.736 0.213 0.728

y2j 0.292 1 0.214 0.731 0.215 0.736 0.213 0.728

y3j 0.292 1 0.214 0.731 0.215 0.736 0.213 0.728

50

10

y1j 3.112 1 2.259 0.726 2.279 0.732 2.249 0.723

y2j 3.113 1 2.259 0.726 2.280 0.732 2.250 0.723

y3j 3.113 1 2.259 0.726 2.279 0.732 2.250 0.723

20

y1j 1.057 1 0.761 0.720 0.762 0.721 0.757 0.716

y2j 1.057 1 0.761 0.720 0.762 0.721 0.757 0.716

y3j 1.057 1 0.761 0.720 0.762 0.721 0.757 0.716

30

y1j 0.445 1 0.318 0.715 0.322 0.723 0.316 0.709

y2j 0.445 1 0.318 0.715 0.322 0.723 0.316 0.709

y3j 0.445 1 0.318 0.715 0.322 0.723 0.316 0.709

40

y1j 0.184 1 0.133 0.720 0.132 0.719 0.132 0.716

y2j 0.184 1 0.133 0.720 0.132 0.719 0.132 0.716

y3j 0.184 1 0.133 0.720 0.132 0.719 0.132 0.716
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Table 6. The MSE and RE values of estimators in simulated data sets with 20% outliers.

Huber M Huber MM LTS LMS

n1 n2 Estimator MSE RE MSE RE MSE RE MSE RE

30

10

y1j 2.006 1 1.639 0.817 1.571 0.783 1.553 0.774

y2j 2.006 1 1.639 0.817 1.571 0.783 1.553 0.774

y3j 2.006 1 1.639 0.817 1.571 0.783 1.553 0.774

20

y1j 0.505 1 0.417 0.824 0.406 0.802 0.397 0.785

y2j 0.506 1 0.417 0.824 0.406 0.802 0.397 0.785

y3j 0.506 1 0.417 0.824 0.406 0.803 0.397 0.785

40

10

y1j 2.270 1 1.811 0.798 1.772 0.780 1.748 0.770

y2j 2.272 1 1.812 0.798 1.773 0.780 1.749 0.770

y3j 2.273 1 1.813 0.798 1.774 0.780 1.750 0.770

20

y1j 0.783 1 0.641 0.819 0.628 0.802 0.616 0.787

y2j 0.783 1 0.641 0.819 0.628 0.802 0.616 0.787

y3j 0.783 1 0.641 0.819 0.628 0.802 0.616 0.787

30

y1j 0.250 1 0.202 0.806 0.198 0.789 0.196 0.781

y2j 0.250 1 0.202 0.806 0.198 0.789 0.196 0.781

y3j 0.250 1 0.202 0.806 0.198 0.789 0.196 0.781

50

10

y1j 2.677 1 2.187 0.817 2.151 0.804 2.123 0.793

y2j 2.677 1 2.187 0.817 2.152 0.804 2.123 0.793

y3j 2.677 1 2.187 0.817 2.151 0.804 2.123 0.793

20

y1j 0.930 1 0.763 0.820 0.744 0.799 0.728 0.782

y2j 0.931 1 0.763 0.820 0.744 0.799 0.728 0.782

y3j 0.931 1 0.763 0.820 0.744 0.799 0.728 0.782

30

y1j 0.408 1 0.327 0.803 0.322 0.789 0.318 0.780

y2j 0.408 1 0.328 0.803 0.322 0.788 0.318 0.780

y3j 0.408 1 0.328 0.803 0.322 0.788 0.319 0.780

40

y1j 0.149 1 0.122 0.820 0.120 0.803 0.119 0.796

y2j 0.149 1 0.122 0.820 0.120 0.803 0.119 0.796

y3j 0.149 1 0.122 0.820 0.120 0.803 0.119 0.796
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Table 7. The MSE and RE values of estimators in simulated data sets with 30% outliers.

Huber M Huber MM LTS LMS

n1 n2 Estimator MSE RE MSE RE MSE RE MSE RE

30

10

y1j 2.041 1 1.919 0.940 1.822 0.892 1.791 0.877

y2j 2.047 1 1.924 0.940 1.827 0.893 1.796 0.878

y3j 2.052 1 1.930 0.940 1.832 0.893 1.802 0.878

20

y1j 0.441 1 0.424 0.961 0.404 0.917 0.403 0.916

y2j 0.441 1 0.424 0.961 0.404 0.917 0.404 0.916

y3j 0.441 1 0.424 0.961 0.404 0.917 0.404 0.916

40

10

y1j 2.159 1 2.061 0.955 1.977 0.916 1.976 0.915

y2j 2.162 1 2.065 0.955 1.981 0.916 1.979 0.915

y3j 2.165 1 2.067 0.955 1.983 0.916 1.982 0.915

20

y1j 0.669 1 0.636 0.952 0.607 0.908 0.605 0.904

y2j 0.669 1 0.636 0.952 0.607 0.908 0.605 0.904

y3j 0.669 1 0.637 0.952 0.607 0.908 0.605 0.904

30

y1j 0.239 1 0.230 0.962 0.219 0.917 0.219 0.917

y2j 0.239 1 0.230 0.962 0.220 0.917 0.220 0.917

y3j 0.240 1 0.230 0.962 0.220 0.918 0.220 0.917

50

10

y1j 1.967 1 1.848 0.939 1.783 0.906 1.711 0.870

y2j 1.985 1 1.865 0.940 1.800 0.907 1.728 0.871

y3j 1.999 1 1.880 0.940 1.815 0.908 1.743 0.872

20

y1j 0.981 1 0.899 0.916 0.878 0.895 0.876 0.893

y2j 0.985 1 0.901 0.915 0.880 0.894 0.878 0.892

y3j 0.987 1 0.903 0.915 0.882 0.894 0.880 0.892

30

y1j 0.333 1 0.327 0.984 0.293 0.883 0.290 0.873

y2j 0.338 1 0.332 0.984 0.299 0.884 0.293 0.868

y3j 0.341 1 0.336 0.984 0.302 0.886 0.296 0.867

40

y1j 0.163 1 0.160 0.976 0.154 0.944 0.153 0.933

y2j 0.164 1 0.160 0.976 0.155 0.944 0.153 0.933

y3j 0.164 1 0.161 0.976 0.155 0.945 0.154 0.933
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the suggested estimators outperform the existing ratio
estimators in terms of mean squared error. According
to both real data and simulation studies, the best
result is obtained using the estimators proposed based
on the LMS estimate. It is recommended to use the
suggested estimators in practice when there are outliers
in the data set. In the forthcoming studies, we hope
to improve new estimators based on robust regression
techniques in other sampling designs.

Supplementry data is available at:
�le:///C:/Users/Asus/AppData/Local/Temp/
Supplementary%20File.pdf
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