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Abstract. In the recent years, another approach named as the bootstrap method is
getting popular in statistical process control speci�cally when the underlying distribution
of the process is unknown. The bootstrap estimators are getting popularity in statistical
process control due to their remarkable properties for non-normal distribution. In this paper
the bootstrap control chart is developed for monitoring process variability and robustness
is discussed through simulation studies. It appears that the proposed control chart for
monitoring process variability based on the bootstrap method is performing better to
detect out-of-control signal in a case when data follow skewed distributions. Therefore,
the proposed chart is more recommendable for industrial practitioners.

© 2024 Sharif University of Technology. All rights reserved.

1. Introduction

In Statistical Process Control (SPC), the control chart
is mostly used to detect the assignable causes of
variation. The control chart for variation (S-chart),
introduced by Shewhart, is widely accepted as a stan-
dard tool for monitoring univariate, independent and
\nearly" normal processes (cf., [1]) but this is not well
developed beyond these types of data (cf., [2]). The
chart based on estimator is generally used to control the
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variability of the process. The traditional Shewhart-
S chart is constructed on the assumption that the
process generator follows normal distribution but under
non-normal processes, this chart may poorly perform
(cf., [3]). In SPC, the scale estimators play a vital
role to monitor the process variability. Although true
process standard deviation � can be estimated through
sample standard deviation S but unfortunately S is
considered non-robust due to its slight departure from
normality (cf., [4]). Hence for non-normal processes,
the robust scale estimators are may perform well.

According to Mosteller and Tukey [5], a robust
estimator has two properties; �rst is the resistance
which means that the estimator does not cause a large
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change by change in the size of sample data, and
second is the e�ciency which means that it should
be e�cient in a variety of situations and free from
distributional assumptions. Many scale estimators are
available in the literature, one of them is Median
Absolute Deviation (MAD) which was �rst introduced
by Hampel [6]. The MAD estimator is popular due
to its 50% breakdown point which shows its resistance
against outliers. Hence many researchers recommended
MAD as a robust scale estimator for normal and non-
normal processes (cf. [7,8]). Moreover, a class of robust
scale estimators is also proposed by Rousseeuw and
Croux [9]. Most of them are based on the median.

In the recent years, another approach named as
the bootstrap method is getting popular in SPC specif-
ically when the underlying distribution of the process
is unknown. The method was �rst developed by Efron
[10]. The importance of bootstrap mean estimator for
the construction of control chart is already discussed
by Liu and Tang [2]. Based on the idea given by Liu
and Tang [2], a control chart using a Moving Block
Bootstrap (MBB) method on dependent multivariate
data was constructed by Liu et al. [11]. The bootstrap
method was also applied to construct the control chart
for Weibull percentiles by Nichols and Padgett [12].
After that Chatterjee and Qiu [13] developed CUSUM
control charts using the bootstrap method. Wararit
and Somchit [14] used a bootstrap approach for the
construction of con�dence intervals of di�erence be-
tween two process capability indices under half logis-
tic distribution. Saeed and Kamal [15] proposed a
bootstrap variability chart under the normal process.
After that Wang and Hryniewicz [16] proposed a non-
parametric Shewhart control chart based on fuzzy data
using bootstrap method. Recently Hila et al. [17]
extended the work by applying bootstrap methods
in Exponentially Weighted Moving Average (EWMA)
chart. The bootstrap methods are not only popular in
variable control charts but these methods are also used
for the construction of attribute control limits such
as Zhao and Driscoll [18] used the bootstrap method
for constructing control limits of c-chart. On the
basis of average run lengths and false alarm rates, the
bootstrap adjusted control limits showed better perfor-
mance. Kashif et al. [19] proposed bootstrap con�dence
intervals of modi�ed process capability index under
lifetime distributions. The distribution free charts also
getting popularity in the recent years. Marchant et
al. [20] proposed robust multivariate control charts
under generalized Birnbaum-Saunders distributions. In
the next year, a comparative study was made by
Ikpotokin and Siloko [21] for multivariate Exponen-
tially Weighted Moving Average (EWMA) charts on
the basis of bootstrap methods for the early detection
of shifts. In the same year, Mutlu and Alakent [22]
used reweighted robust standard deviation estimators

to modify Shewhart S-chart. The MAD, as robust
scale estimator was also suggested by Koukouvinos
and Lappa [23]. Based on the simulations, the per-
formance of MAD estimator was considered better as
compared to standard deviation. The performance of
con�dence intervals under di�erent sampling schemes
was addressed by Mahdizadeh and Zamanzade [24,25].
Ajadi et al. [26] presented a review of dispersion control
charts. Ugaz et al. [27] studied the adoptive EWMA
chart for variance.

In recent years, the bootstrap control charts are
considered best using Bayes estimator in high quality
processes for monitoring the fraction nonconforming
(cf., [28]). The performance of di�erent types of
robust estimators is also addressed by Moheghi et
al. [29], Dizicheh et al. [30], Ahmed et al. [31], Raza et
al. [32], Ugaz et al. [27] and Abu-Shawiesh et al. [33].
Under remarkable properties of bootstrap methods, the
bootstrap-S chart is proposed for non-normal processes
and its robustness is also being discussed in this
research.

2. S and MAD charts for variability

2.1. The Shewhart-S control limits
It is customary to know that the sample standard
deviation (S) is a biased estimator of the population
standard deviation and under the normal process, the
S estimator is considered as an unbiased estimator of
c4�, where c4 �= 4(n�1)

4n�3 is a bias adjusting constant and
its value depends upon subgroup size n. Furthermore
the standard deviation of s estimator is �

p
1� c24.

The three-sigma control limits for Shewhart-S
chart with � known are:

UCL = c4� + 3�
q

1� c24;
CL = c4�;

LCL = c4� � 3�
q

1� c24;
where Upper Control Limit (UCL) and Lower Control
Limit (LCL) are the parameters of the control chart
while Control Line (CL) is the central line of the control
chart. It is customary to de�ne the two constants:

B5 = c4 � 3
q

1� c24;

B6 = c4 + 3
q

1� c24:
Consequently, the control limits become:

UCL = B6�; (1)

CL = c4�; (2)
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LCL = B5�: (3)

In situation when � is not known, it must be estimated.
Suppose that m preliminary samples are available, each
of size n and let Si be the standard deviation of the ith
sample. The average of m standard deviations is �S.
Since �S

c4 is an unbiased estimator of process standard
deviation �, therefore the control limits for Shewhart-S
chart would be:

UCL = �S + 3
�S
c4

q
1� c24;

CL = �S;

LCL = �S � 3
�S
c4

q
1� c24:

We usually de�ne the constants:

B3 = 1� 3
c4

q
1� c24;

B4 = 1 +
3
c4

q
1� c24:

Finally the control parameters may be written as:

UCL = B4 �S; (4)

CL = �S; (5)

LCL = B3 �S: (6)

For Shewhart charts, further details are available in
Montgomery [34].

2.2. The control limits using MAD estimator
The estimator based on MAD taken from medians was
considered one of the robust scale estimator due to its
simple formula, bounded inuence function and 50%
break down point (cf., [9]). The MAD estimator is
de�ned as:

MAD=1:4826MD fjXi �MDjg ; i=1; 2; :::; n;

where MD is the sample median.
The transformed control limits for S chart based

on MAD estimator developed by Abu-Shawiesh [7] are:

UCL = c4bnMAD + 3bnMAD
q

1� c24; (7)

LCL = c4bnMAD � 3bnMAD
q

1� c24; (8)

where bn is the correction factor. The values of bn
under di�erent subgroup sizes are calculated by Abu-
Shawiesh [7].

3. Proposed bootstrap-S chart

The performance of traditional control charts depends
on the distribution of process data. In the construction
of all traditional charts, the normal distribution is
assumed. Therefore their robustness to this assump-
tion has long been an issue in SPC (cf., [34]). Since
non-normality of the process can adversely a�ect the
performance of the control chart, some authors have
suggested bootstrap methods in the construction of
control limits which are completely non-parametric and
free from distributional assumptions.

3.1. Control limits using bootstrap-S estimator
Using Jacknife approach by Liu and Tang [2], the
control limits based on Independent and Identically
Distributed (IID) observations for B bootstrap sam-
ples can be constructed using histogram of variatep
n
�
Sn � �Sm

�
where n represents subgroup size, Sn

is subgroup standard deviation and �Sm is the average
standard deviation over m samples.

Hence the control limits for bootstrap-S chart are:

LCL = �Sm +
q�=2p
n
; (9)

UCL = �Sm +
q1��=2p

n
; (10)

where q�=2 and q1��=2 are used as estimated (�2 )th and
(1 � �

2 )th quantiles of variate
p
n
�
Sn � �Sm

�
respec-

tively.

4. Simulation study

The simulation study is carried out for the construction
of Shewhart-S, MAD and bootstrap-S control limits.
The random numbers for thirty samples each of size
5 and 10 are simulated from three non-normal dis-
tributions such as Exponential, Cauchy and Logistic
distributions. The exponential and logistic are lifetime
distributions which are commonly used in quality and
life testing problems while Cauchy is heavy-tailed
skewed distribution. The control limits of Shewhart-S,
MAD and bootstrap-S charts are calculated for each
distribution. For the construction of bootstrap limits,
one thousand bootstrap samples are considered and the
histogram of the variate

p
n
�
Sn � �Sm

�
is constructed.

The out-of-control points for above mentioned three
distributions are also calculated so that the comparison
could be made. The speci�c algorithm is as follows:

Step 1. The random numbers from Exponential (2)
distribution are generated for thirty samples (m =
30) each with the subgroup size n = 5;
Step 2. The control limits of Shewhart-S (using
Eqs. (4){(6)) and MAD (using Eqs. (7) and (8)) are
constructed;
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Step 3. For each of one thousand bootstrap samples
(B = 1000), the di�erences of each sample wise
standard deviation and the overall standard deviation
is calculated. After multiplying each di�erence withp
n, the histogram is constructed;

Step 4. The bootstrap-S control limits (using
Eqs. (9) and (10)) are calculated;
Step 5. The number of out-of-control points is also
calculated for each of the three charts;
Step 6. The overall process is repeated for subgroup
size n = 10;
Step 7. Steps 1{6 are repeated for other non-normal
distributions such as Cauchy(0,1) and Logistic(0,1)
distributions.

5. Results discussion

The �ndings of Table 1 show the control limits and
Interval Widths (IW) for Shewhart-S, MAD and
bootstrap-S control charts using subgroup size 5 and
under Exponential(2), Cauchy(0,1) and Logistic(0,1)
distributions. The results show that the bootstrap con-
trol chart has a shorter IW as compared to Shewhart-
S and robust MAD charts for exponential and logistic
processes. Hence it can be concluded that bootstrap
control limits are more robust for detecting an out-
of-control signal for both non-normal processes. For
heavy-tailed distribution such as Cauchy distribution,
the performance of MAD chart is better than the tra-
ditional Shewhart-S and proposed bootstrap-S charts
in terms of having a tighter IW.

The supporting evidence is shown in Figure 1
through which the comparison of control charts can
be observed. The di�erent panels of Figure 1 represent
Shewhart-S, MAD and bootstrap-S control charts with
the subgroup size 5 and 10 using Exponential, Cauchy
and Logistic distributions. By comparing these �gures,
it can clearly be observed that the control limits for
bootstrap-S chart are more resistant and hence they
can detect out-of-control signals more quickly.

Moreover a large number of out-of-control points
show that irrespective of the wider IW than MAD chart

for heavy tailed distribution, the bootstrap-S chart has
always precise control limits.

Although the out-of-control points may be used
as one of the indicators of non-normality of population
distribution but the clear evidence can be observed by
constructing the histogram based on

p
n times the dif-

ferences of bootstrapped subgroup standard deviations
Sn by overall sample standard deviation �Sm.

In case of unknown population distribution, the
bootstrap histogram can be helpful to estimate it.
Hence the bootstrap histogram constructed in Figure 2
strongly resembles the non-normal distribution of the
process. Although the simulated samples are extracted
from non-normal processes but if it is supposed that the
distribution is unknown as justi�ed in most practical
data sets, the bootstrap histogram can be evident for
its abnormality.

6. Comparative study

This section comprises the performance comparison
of proposed chart with traditional Shewhart-S and
robust MAD charts developed by Abu-Shawiesh [7].
The performance of these charts is evaluated on the
basis of simulated out-of-control points under non-
normal processes. It is observed that for heavy tailed
distributions such as Cauchy distribution, although
the MAD chart showed tighter IW (Table 1) but the
proposed bootstrap-S chart has relatively precise limits
which can also be veri�ed by calculating out-of-control
points (Table 2).

On the basis of a large number of out-of-control
points (Table 2), it is concluded that if underlying
process is not normal, the bootstrap-S control limits
are more resistant to show the out-of-control position as
compared to traditional Shewhart-S and robust MAD
charts. Our �ndings also agree with the study of Liu
and Tang [2] in which bootstrap control limits showed
better performance as compared to the standard charts
under non-normal processes. In recent literature, the
variability control limits based on bootstrap estimator
are found to be robust under normal process by Saeed
and Kamal [15].

Table 1. Control limits and interval widths (in brackets) under non-normal distributions.

Exponential(2) Cauchy(0,1) Logistic(0,1)

Control charts n = 5 n = 10 n = 5 n = 10 n = 5 n = 10

S 0{0.992
(0.992)

0.121{0.733
(0.612)

0{15.426
(15.426)

1.546{9.343
(7.796)

0{3.399
(3.399)

0.478{2.886
(2.408)

MAD 0{0.695
(0.695)

0.085{0.516
(0.431)

0{4.618
(4.618)

0.457{2.763
(2.306)

0{2.654
(2.654)

0.451{2.724
(2.274)

Bootstrap-S 0.338{0.596
(0.258)

0.340{0.546
(0.206)

3.410{12.881
(9.471)

3.320{8.648
(5.327)

1.252{2.024
(0.772)

1.458{1.990
(0.531)
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Figure 1. Shewhart-S, MAD and bootstrap-S control charts.

7. An industrial application

The data related to melting index of an extrusion grade
polyethylene compound, used by Elamir [35] and Saeed
and Kamal [36], are provided in Table 3. The seven

days data set is measured on twenty consecutive shifts
with the subgroup size n = 4.

The control limits of Shewhart-S and MAD charts
are calculated for twenty samples each with the sub-
group size n = 4. Over one thousand bootstrap
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Figure 1. Shewhart-S, MAD and bootstrap-S control charts (continued).

samples (B = 1000), the bootstrap-S control limits
are constructed.

Table 4 signi�es the control limits, IW and out-of-
control points using Shewhart-S, MAD and bootstrap-
S charts respectively for monitoring process variability.

The shortest IW of bootstrap-S chart indicating its
robustness to detect out-of-control points more quickly
which also resulting from a large number of out-of-
control points. The similar results are shown through
the control charts in Figure 3 (panel i-ii).
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Figure 2. The histogram of
p
n(Sn � �Sm) di�erences of bootstrap samples.

Moreover the histogram of
p
n
�
Sn � �Sm

�
dif-

ferences indicates the non-normality of population
distribution (panel-iii). Hence it is observed that
the traditional Shewhart chart for variability based
on the assumption of normality does not provide a

clear indication if the process shows a departure from
normality. Similarly, the chart based on MAD estima-
tor shows no out-of-control points while bootstrap-S
control chart indicates more out-of-control points when
process distribution is non-normal (Table 4).
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Table 2. Number of out-of- control points.

Exponential(2) Cauchy(0,1) Logistic(0,1)

Control charts n = 5 n = 10 n = 5 n = 10 n = 5 n = 10

S (Shewhart 1931) 2 3 4 8 1 0

MAD (Shawiesh 2008) 2 2 3 2 0 0

Proposed (Bootstrap-S) 16 21 20 21 15 17

Table 3. The data set of melt index measurements used by Elamir [35].

Day Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Shift I II III I II III I II III I II III I II III I II III I II

218 228 280 210 243 225 240 244 238 228 218 226 224 230 224 232 243 247 224 236

224 236 228 249 240 250 238 248 233 238 232 231 221 220 228 240 250 238 228 230

220 247 228 241 230 258 240 265 252 220 230 236 230 227 226 241 248 244 228 230

231 234 221 246 230 244 243 234 243 230 226 242 222 226 240 232 250 230 246 232

Table 4. Control limits and out-of-control points of melt index data set.

Control charts UCL CL LCL IW Out-of-control points

Shewhart-S 18.939 8.358 0 18.939 1

MAD 14.874 6.564 0 14.874 0

Bootstrap-S 13.588 10.160 7.167 6.421 13

Figure 3. The control charts and bootstrap histogram of melt index data set.
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8. Conclusion

The bootstrap methods are popular due to their good
theoretical properties. In statistical process control,
traditional Shewhart-S chart is useful only if data
follow the normal distribution. In real life, mostly data
sets do not follow the normal distribution. Due to the
reason, the bootstrap-S control chart based percentile
bootstrap method is proposed. Under the good prop-
erties of bootstrap methods, the proposed bootstrap-S
chart has performed well under non-normal distribu-
tion i.e. exponential, Cauchy and logistic distributions.
Based on the similar approach as proposed by Liu
and Tang [2], the proposed bootstrap-S chart showed
better performance than the traditional Shewhart-S
and MAD charts due to the detection of a large number
of out-of-control points under non-normal processes.
Moreover, the bootstrap methods are also helpful to
�nd the population distribution using the sampling
distribution of bootstrap statistic. Since in real life,
the distribution of the process data does not necessarily
follow the normal distribution, our proposed control
chart may be recommended as it does not require any
distributional assumption. Furthermore, the study can
be extended on fair grounds for other types of bootstrap
methods, i.e., parametric or moving block bootstrap
methods.
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