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Abstract 

In the recent years, another approach named as the bootstrap method is getting popular in 

statistical process control specifically when the underlying distribution of the process is 

unknown. The bootstrap estimators are getting popularity in statistical process control due to 

their remarkable properties for non-normal distribution. In this paper the bootstrap control 

chart is developed for monitoring process variability and robustness is discussed through 

simulation studies. It appears that the proposed control chart for monitoring process 

variability based on the bootstrap method is performing better to detect out-of-control signal 

in a case when data follow skewed distributions. Therefore, the proposed chart is more 

recommendable for industrial practitioners.  
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1. Introduction 

In statistical process control (SPC), the control chart is mostly used to detect the assignable 

causes of variation. The control chart for variation ( S -chart), introduced by Shewhart, is 

widely accepted as a standard tool for monitoring univariate, independent and "nearly" 

normal processes (cf., [1]) but this is not well developed beyond these types of data (cf., [2]). 

The chart based on S estimator is generally used to control the variability of the process. The 

traditional Shewhart- S chart is constructed on the assumption that the process generator 

follows normal distribution but under non-normal processes, this chart may poorly perform 

(cf., [3]). In SPC, the scale estimators play a vital role to monitor the process variability. 

Although true process standard deviation   can be estimated through sample standard 

deviation S  but unfortunately S  is considered non-robust due to its slight departure from 

normality (cf., [4]). Hence for non-normal processes, the robust scale estimators are may 

perform well.  

According to Mosteller and Tukey [5], a robust estimator has two properties; first is the 

resistance which means that the estimator does not cause a large change by change in the size 

of sample data, and second is the efficiency which means that it should be efficient in a 

variety of situations and free from distributional assumptions. Many scale estimators are 

available in the literature, one of them is Median Absolute Deviation (MAD) which was first 

introduced by Hampel [6]. The MAD  estimator is popular due to its 50% breakdown point 

which shows its resistance against outliers. Hence many researchers recommended MAD  as 

a robust scale estimator for normal and non-normal processes (cf. [7-8]). Moreover, a class of 

robust scale estimators is also proposed by Rousseeuw and Croux [9]. Most of them are based 

on the median.  
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In the recent years, another approach named as the bootstrap method is getting popular in 

statistical process control specifically when the underlying distribution of the process is 

unknown. The method was first developed by Efron [10]. The importance of bootstrap mean 

estimator for the construction of control chart is already discussed by Liu and Tang [2]. 

Based on the idea given by Liu and Tang [2], a control chart using a moving block bootstrap 

(MBB) method on dependent multivariate data was constructed by Liu et al. [11]. The 

bootstrap method was also applied to construct the control chart for Weibull percentiles by 

Nichols and Padgett [12]. After that Chatterjee and Qiu [13] developed CUSUM control 

charts using the bootstrap method. Wararit and Somchit [14] used a bootstrap approach for 

the construction of confidence intervals of difference between two process capability indices 

under half logistic distribution. Saeed and Kamal [15] proposed a bootstrap variability chart 

under the normal process. After that Wang and Hryniewicz [16] proposed a non-parametric 

Shewhart control chart based on fuzzy data using bootstrap method. Recently Hila et al. [17] 

extended the work by applying bootstrap methods in exponentially weighted moving average 

chart. The bootstrap methods are not only popular in variable control charts but these 

methods are also used for the construction of attribute control limits such as Zhao and  

Driscoll [18] used the bootstrap method for constructing control limits of c-chart. On the 

basis of average run lengths and false alarm rates, the bootstrap adjusted control limits 

showed better performance. Kashif et al. [19] proposed bootstrap confidence intervals of 

modified process capability index under lifetime distributions. The distribution free charts 

also getting popularity in the recent years. Marchant et al. [20] proposed robust multivariate 

control charts under generalized Birnbaum–Saunders distributions. In the next year, a 

comparative study was made by Ikpotokin and Siloko [21] for multivariate EWMA charts on 

the basis of bootstrap methods for the early detection of shifts. In the same year, Mutlu and 

Alakent [22] used reweighted robust standard deviation estimators to modify Shewhart S -
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chart. The MAD , as robust scale estimator was also suggested by Koukouvinos and Lappa 

[23]. Based on the simulations, the performance of MAD  estimator was considered better as 

compared to standard deviation. The performance of confidence intervals under different 

sampling schemes was addressed by Mahdizadeh and Zamanzade [24-25]. Ajadi et al. [26] 

presented a review of dispersion control charts. Ugaz et al. [27] studied the adoptive EWMA 

chart for variance.  

In recent years, the bootstrap control charts are considered best using Bayes estimator in high 

quality processes for monitoring the fraction nonconforming (cf., [28]). The performance of 

different types of robust estimators is also addressed by Moheghi et al. [29], Dizicheh et al. 

[30], Ahmed et al. [31], Raza et al. [32], Ugaz  et al. [27] and Abu-Shawiesh et al. [33].Under 

remarkable properties of bootstrap methods, the bootstrap- S  chart is proposed for non-

normal processes and its robustness is also being discussed in this research.  

2. S and MAD charts for variability 

2.1 The Shewhart- S  control limits  

It is customary to know that the sample standard deviation ( S ) is a biased estimator of the 

population standard deviation and under the normal process, the S  estimator is considered as 

an unbiased estimator of 4c  , where
( )

4

4 1

4 3

n
c

n

−


−
is a bias adjusting constant and its value 

depends upon subgroup size n . Furthermore the standard deviation of S  estimator is 

2

41 c −  

The three-sigma control limits for Shewhart- S  chart with   known are: 

 2

4 43 1UCL c c = + −  
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 4 CL c =  

 2

4 43 1LCL c c = − −  

where Upper Control Limit (UCL) and Lower Control Limit (LCL) are the parameters of the 

control chart while Control Line (CL) is the central line of the control chart. It is customary to 

define the two constants  

 2

5 4 43 1B c c= − −  

 2

6 4 43 1B c c= + −  

Consequently, the control limits become 

          6UCL B =                (1) 

   4CL c =                                 (2) 

         5LCL B =            (3) 

In situation when   is not known, it must be estimated. Suppose that m  preliminary samples 

are available, each of size n  and let iS  be the standard deviation of the ith sample. The 

average of m  standard deviations is S . Since 
4

S

c
 is an unbiased estimator of process 

standard deviation  , therefore the control limits for Shewhart- S  chart would be: 

 
2

4

4

3 1
S

UCL S c
c

= + −  

 CL S=  
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 2

4

4

3 1
S

LCL S c
c

= − −  

We usually define the constants 

 
2

3 4

4

3
1 1B c

c
= − −  

 
2

4 4

4

3
1 1B c

c
= + −  

Finally the control parameters may be written as 

         
4UCL B S=            (4) 

         CL S=                (5) 

         3LCL B S=              (6) 

For Shewhart charts, further details are available in Montgomery [34]. 

2.2 The control limits using MAD estimator 

The estimator based on median absolute deviation (MAD) taken from medians was 

considered one of the robust scale estimator due to its simple formula, bounded influence 

function and 50% break down point (cf., [9]). The MAD  estimator is defined as:  

        1.4826 , iMAD MD X MD= −                             1,2, ,i n=   

where MD  is the sample median. 

The transformed control limits for S  chart based on MAD  estimator developed by Abu-

Shawiesh [7] are:  
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2

4 43 1n nUCL c b MAD b MAD c= + −      (7) 

2

4 43 1n nLCL c b MAD b MAD c= − −     (8) 

where nb  is the correction factor. The values of nb  under different subgroup sizes are 

calculated by Abu-Shawiesh [7]. 

3. Proposed bootstrap-S chart 

The performance of traditional control charts depends on the distribution of process data. In 

the construction of all traditional charts, the normal distribution is assumed. Therefore their 

robustness to this assumption has long been an issue in SPC (cf., [34]). Since non- normality 

of the process can adversely affect the performance of the control chart, some authors have 

suggested bootstrap methods in the construction of control limits which are completely non-

parametric and free from distributional assumptions. 

3.1 Control limits using bootstrap-S estimator 

Using Jacknife approach by Liu and Tang [2], the control limits based on IID observations 

for B  bootstrap samples can be constructed using histogram of variate ( )n mn S S−  where 

n  represents subgroup size, nS  is subgroup standard deviation and mS  is the average 

standard deviation over m  samples.  

Hence the control limits for bootstrap- S  chart are: 

         /2
m

q
LCL S

n

= +           (9) 

         1 /2  m

q
UCL S

n

−= +                    (10) 
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where /2q  and 1 /2q −  are used as estimated (
2


)th and (1

2


− )th quantiles of variate 

( )n mn S S−  respectively.  

4. Simulation study 

The simulation study is carried out for the construction of Shewhart- S , MAD  and bootstrap-

S  control limits. The random numbers for thirty samples each of size 5 and 10 are simulated 

from three non-normal distributions such as Exponential, Cauchy and Logistic distributions. 

The exponential and logistic are lifetime distributions which are commonly used in quality 

and life testing problems while Cauchy is heavy-tailed skewed distribution. The control limits 

of Shewhart- S , MAD  and bootstrap- S  charts are calculated for each distribution. For the 

construction of bootstrap limits, one thousand bootstrap samples are considered and the 

histogram of the variate ( )n mn S S−  is constructed. The out-of-control points for above 

mentioned three distributions are also calculated so that the comparison could be made. The 

specific algorithm is as follows: 

Step 1 The random numbers from Exponential (2) distribution are generated for thirty 

samples ( 30)m =  each with the subgroup size 5n = . 

Step 2 The control limits of Shewhart- S  (using eqs. 4-6) and MAD  (using eqs. 7-8) are 

constructed. 

Step 3 For each of one thousand bootstrap samples ( 1000B = ), the differences of each 

sample wise standard deviation and the overall standard deviation is calculated. 

After multiplying each difference with n , the histogram is constructed.  

Step 4 The bootstrap- S  control limits (using eqs. 9-10) are calculated. 

Step 5 The number of out-of-control points is also calculated for each of the three charts. 
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Step 6 The overall process is repeated for subgroup size 10n = . 

Step 7 Steps 1−6 are repeated for other non-normal distributions such as Cauchy(0,1) 

and Logistic(0,1) distributions. 

 

5. Results discussion  

The findings of Table 1 show the control limits and interval widths (IW) for Shewhart- S , 

MAD  and bootstrap- S  control charts using subgroup size 5 and  under Exponential(2), 

Cauchy(0,1) and Logistic(0,1) distributions. The results show that the bootstrap control chart 

has a shorter interval width as compared to Shewhart- S  and robust MAD  charts for 

exponential and logistic processes. Hence it can be concluded that bootstrap control limits are 

more robust for detecting an out-of-control signal for both non-normal processes. For heavy- 

tailed distribution such as Cauchy distribution, the performance of MAD  chart is better than 

the traditional Shewhart- S  and proposed bootstrap- S  charts in terms of having a tighter 

interval width. 

The supporting evidence is shown in Figure 1 through which the comparison of control charts 

can be observed. The different panels of Figure 1 represent Shewhart- S , MAD  and 

bootstrap- S  control charts with the subgroup size 5 and 10 using Exponential, Cauchy and 

Logistic distributions. By comparing these figures, it can clearly be observed that the control 

limits for bootstrap- S  chart are more resistant and hence they can detect out-of-control 

signals more quickly.  

Moreover a large number of out-of-control points show that irrespective of the wider interval 

width than MAD  chart for heavy tailed distribution, the bootstrap- S  chart has always precise 

control limits.  
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Although the out-of-control points may be used as one of the indicators of non-normality of 

population distribution but the clear evidence can be observed by constructing the histogram 

based on n  times the differences of bootstrapped subgroup standard deviations nS  by 

overall sample standard deviation mS .  

In case of unknown population distribution, the bootstrap histogram can be helpful to 

estimate it. Hence the bootstrap histogram constructed in Figure 2 strongly resembles the 

non-normal distribution of the process. Although the simulated samples are extracted from 

non-normal processes but if it is supposed that the distribution is unknown as justified in 

most practical data sets, the bootstrap histogram can be evident for its abnormality.    

6. Comparative study 

This section comprises the performance comparison of proposed chart with traditional 

Shewhart- S  and robust MAD  charts developed by Abu-Shawiesh [7]. The performance of 

these charts is evaluated on the basis of simulated out-of-control points under non-normal 

processes. It is observed that for heavy tailed distributions such as Cauchy distribution, 

although the MAD  chart showed tighter interval width (Table 1) but the proposed bootstrap-

S  chart has relatively precise limits which can also be verified by calculating out-of-control 

points (Table 2).  

On the basis of a large number of out-of-control points (Table 2), it is concluded that if 

underlying process is not normal, the bootstrap- S  control limits are more resistant to show 

the out-of-control position as compared to traditional Shewhart- S  and robust MAD  charts. 

Our findings also agree with the study of Liu and Tang [2] in which bootstrap control limits 

showed better performance as compared to the standard charts under non-normal processes.  
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In recent literature, the variability control limits based on bootstrap estimator are found to be 

robust under normal process by Saeed and Kamal [15].

7. An industrial application  

The data related to melting index of an extrusion grade polyethylene compound, used by 

Elamir [35] and Saeed and Kamal [36], are provided in Table 3. The seven days data set is 

measured on twenty consecutive shifts with the subgroup size 4n = .

The control limits of Shewhart- S  and MAD  charts are calculated for twenty samples each 

with the subgroup size 4n = . Over one thousand bootstrap samples ( )1000B = , the 

bootstrap- S  control limits are constructed.   

Table 4 signifies the control limits, interval widths and out-of-control points using Shewhart-

S , MAD  and bootstrap- S  charts respectively for monitoring process variability. The 

shortest interval width of bootstrap- S  chart indicating its robustness to detect out-of-control 

points more quickly which also resulting from a large number of out-of-control points. The 

similar results are shown through the control charts in Figure 3 (panel i-ii).  

Moreover the histogram of ( )n mn S S−  differences indicates the non-normality of 

population distribution (panel-iii). Hence it is observed that the traditional Shewhart chart for 

variability based on the assumption of normality does not provide a clear indication if the 

process shows a departure from normality. Similarly, the chart based on MAD  estimator 

shows no out-of-control points while bootstrap- S  control chart indicates more out-of-control 

points when process distribution is non-normal (Table 4).  

8. Conclusion 
 

The bootstrap methods are popular due to their good theoretical properties. In statistical 

process control, traditional Shewhart- S  chart is useful only if data follow the normal 
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distribution. In real life, mostly data sets do not follow the normal distribution. Due to the 

reason, the bootstrap- S  control chart based percentile bootstrap method is proposed. Under 

the good properties of bootstrap methods, the proposed bootstrap- S  chart has performed well 

under non-normal distribution i.e. exponential, Cauchy and logistic distributions. Based on 

the similar approach as proposed by Liu and Tang [2], the proposed bootstrap- S  chart 

showed better performance than the traditional Shewhart- S  and MAD  charts due to the 

detection of a large number of out-of-control points under non-normal processes. Moreover, 

the bootstrap methods are also helpful to find the population distribution using the sampling 

distribution of bootstrap statistic. Since in real life, the distribution of the process data does 

not necessarily follow the normal distribution, our proposed control chart may be 

recommended as it does not require any distributional assumption. Furthermore, the study can 

be extended on fair grounds for other types of bootstrap methods, i.e., parametric or moving 

block bootstrap methods. 
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Table 1. Control limits and interval widths (in brackets) under non-normal distributions 

Control 

Charts 

Exponential(2) Cauchy(0,1) Logistic(0,1) 

5n =  10n =  5n =  10n =  5n =  10n =  

S 0−0.992 

(0.992) 

0.121−0.733 

(0.612) 

0−15.426 

(15.426) 

1.546−9.343 

(7.796) 

0−3.399 

(3.399) 

0.478−2.886 

(2.408) 

MAD 0−0.695 

(0.695) 

0.085−0.516 

(0.431) 

0−4.618 

(4.618) 

0.457−2.763 

(2.306) 

0−2.654 

(2.654) 

0.451−2.724 

(2.274) 

Bootstrap-S 0.338−0.596 

(0.258) 

0.340−0.546 

(0.206) 

3.410−12.881 

(9.471) 

3.320−8.648 

(5.327) 

1.252−2.024 

(0.772) 

1.458−1.990 

(0.531) 

 

Figure 1. Shewhart-S, MAD and bootstrap-S control charts 
 

(i) Exp(2), n=5 (ii) Exp(2), n=5 (iii) Exp(2), n=10 (iv) Exp(2), n=10 

 

   
 

(v) Cauchy (0,1), n=5 (vi) Cauchy (0,1), n=5 (vii) Cauchy (0,1), n=10 (viii) Cauchy (0,1), n=10 
 

  
  

(ix) Logistic(0,1), n=5 (x) Logistic(0,1), n=5 (xi) Logistic(0,1), n=10 (xii) Logistic(0,1), n=10 
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Figure 2. The histogram of ( )n mn S S−  differences of bootstrap samples 

 

(i) Exp(2), n=5 (ii) Cauchy (0,1), n=5 (iii) Logistic(0,1), n=5 

 

  

 

(iv) Exp(2), n=10 

 

(v) Cauchy (0,1), n=10 

 

(vi) Logistic(0,1), n=10 

   

 

Table 2. Number of out-of- control points 

Control Charts Exponential(2) Cauchy(0,1) Logistic(0,1) 

5n =  10n =  5n =  10n =  5n =  10n =  

S (Shewhart 1931) 2 3 4 8 1 0 

MAD (Shawiesh 2008) 2 2 3 2 0 0 

Proposed (Bootstrap-S) 16 21 20 21 15 17 

 

Table 3. The data set of melt index measurements used by Elamir [35] 

Day Day 1 Day 2 Day 3   Day 4 

Shift I II III I II III I II III I 

 218 228 280 210 243 225 240 244 238 228 

224 236 228 249 240 250 238 248 233 238 

220 247 228 241 230 258 240 265 252 220 
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231 234 221 246 230 244 243 234 243 230 

Day  Day 5 Day 6 Day 7 

Shift II III I II III I II III I II 

 218 226 224 230 224 232 243 247 224 236 

232 231 221 220 228 240 250 238 228 230 

230 236 230 227 226 241 248 244 228 230 

226 242 222 226 240 232 250 230 246 232 

 

Table 4. Control limits and out-of-control points of melt index data set 

Control Charts UCL CL LCL IW Out-of-Control Points 

Shewhart-S 18.939 8.358 0 18.939 1 

MAD 14.874 6.564 0 14.874 0 

Bootstrap-S 13.588 10.160 7.167 6.421 13 

 

Figure 3. The control charts and bootstrap histogram of melt index data set 
 

(i) Shewhart-S and Bootstrap-S 

charts 

(ii) MAD chart (iii) Histogram  
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