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Abstract. Suppliers are one of the main sources of vulnerability in supply chains, which
can lead to disruption and risk. Thus, resilient supplier selection can ensure enhanced
resilience of the supply process, especially in automotive supply chains. The goal of
this study is to select a set of resilient suppliers and ensure optimal demand allocation
in an automotive supply chain exposed to risk. For this purpose, a bi-objective two-
stage stochastic programming model is presented. In contrast to previous mathematical
models, our proposed model incorporates a new objective function to consider the supplier's
delivery performance as one of the criteria of resilient supplier selection. In addition,
the K-means clustering method is used to cluster and decrease the number of disruption
scenarios. Due to the uncertainty of demand, a chance-constrained programming approach
is utilized in our proposed model. The augmented "-constraint method is implemented
to solve the presented model. Finally, sensitivity analysis is carried out to determine
the e�ect of parameter changes on the �nal results. The research results indicate that
contingency planning can reduce the e�ect of disruption risks. Further to the above, the
strategy of implementing supply chain regionalization is important in reducing the e�ects
of environmental disruption.
© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

In today's global business market, the Supplier Se-
lection and Order Allocation (SS&OA) is an essential
subject in the area of supply chains that plays a critical
role in the corporate strategic success and in support of
the supply chains' long-term strategy and competitive-
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ness. In addition to cost reduction, choosing the most
right suppliers can improve product quality, reduce lead
times, and shortern product development time [1]. The
SS&OA process is the selection of the best portfolio
of suppliers that can supply high-quality products by
a required time at a reasonable price, with optimal
allocation of the total demand among selected suppliers
to satisfy di�erent tangible and intangible criteria [2,3].

Globalization of the activities and increased inter-
national trade have caused the breadth and complexity
of supply chains to reach new markets and have
increased their competitiveness. As a result of this
complexity, �rms have become highly vulnerable to dis-
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ruptions of the supply chain since a �rm's performance
is more reliant on the actions of its supply chain [4].

In the classic SS&OA problem, traditional criteria
such as cost, quality, and delivery time are taken into
account. However, in today's global supply chains,
disruptions and risks are numerous and continuous, and
they are caused by unforeseen natural events (earth-
quakes, 
ood, hurricanes, and �res) and man-made
events (transport accidents, labor strikes, deliberate
sabotage, and terrorist attack) [2]. In general, the
disruption is \an event that, regardless of its nature,
a�ects negatively the supply chain companies' ability
to deliver on-time" [5]. Global events such as the
Thailand tsunami of 2004, the Katrina hurricane of
2005, Taiwan earthquakes of 1999, 2009 and 2010, the
Icelandic volcano of 2010, Japan's 2011 earthquake,
Thailand's 
ood of 2011, Turkey's earthquake of 2012,
and terrorist attacks (New York 2001, Madrid 2004,
London 2005, Mumbai 2008, Jakarta 2009) all demon-
strate that supply chain management in a dynamic, un-
predictable and complex environment is quite challeng-
ing. Due to these disruptions and their e�ect on supply
chains' normal operations, stability, competitiveness,
reputation, and even existence of supply chains depend
on not only lower costs, higher quality, lower delivery
times, and higher service levels, but also their ability to
prevent and overcome various disruptions, and return
to the initial or a better state after the disruption [5,6].
Thus, supply chains must be resilient. Also, a reliable
level of resilience in determining supply base should be
considered. For example, according to a recent survey
by the World Economic Forum (2013), an important
concern for more than 80% of �rms is the resilience of
their supply chain [7]. Resilience is a multidimensional
and multidisciplinary concept and stems from di�erent
disciplines such as psychology and ecology. The �rst
step in de�ning the resilience in the area of the supply
chain was taken by Rice and Caniato [8]. They have
de�ned the resilience in the supply chain as \the ability
to react to unexpected disruption and restore normal
supply network operations."

According to Christopher and Peck [9], the
sources of the supply chain risks are divided into three
levels:

1. Internal risks (process and control);
2. Risks associated with the supply chain network

(demand and supply);
3. External risks (environmental).

In another categorization, the sources of supply chain
risks can be classi�ed into two kinds of operational and
disruption risks. Operational risks relate to inherent
uncertainties in the supply chain, such as customer
demand, supply capacity, and cost uncertainty due to
machine-related failures, quality problems, power out-

age, and key personnel absence. Disruption risks are
caused by major disruptions such as natural and man-
made incidents (such as 
oods, earthquakes, employee
strikes, or terrorist attacks) [5,10]. Operational risks
have medium to high probability of occurrence and
their impact on performance is lower than disruption
risks while disruption risks have a lower likelihood of
occurrence, but a higher impact on the system [2].

Suppliers in most cases are considered as one of
the unavoidable sources of external risks in supply
chains. Hou et al. [11] di�erentiated between supply
disruptions and recurrent supply uncertainties and de-
�ned supply disruptions as the sudden pause of supply
process when an unforeseen event happens and makes
one or more supply sources unavailable. Christopher
and Lee [12] emphasized the role of suppliers in creating
a resilient supply chain and the need for having a
collaborative relationship with suppliers. According to
them, risk reduction is possible by using suppliers with
high visibility. As suppliers are one of the primary
sources of vulnerability in the supply chain, selecting
resilient suppliers and optimizing demand allocation
can greatly enhance resilience, minimize disruptions,
and reduce associated costs. Rajesh and Ravi [13]
de�ned resilient suppliers as \suppliers who are able
to provide good quality products at economy rates and

exible enough to accommodate demand 
uctuations
with shorter lead times over a lower ambiance of
risk without compromising on safety and environment
practices."

This paper intends to develop a new optimization
model to select the resilient suppliers and optimally
allocate the demand among the selected suppliers based
on suppliers' delivery performance, reliability, and 
ex-
ibility in their capacity in a real-world case study, which
is inseparable from the existence of risks. For this
purpose, a bi-objective integer stochastic programming
model with the aim of minimizing costs and maximiz-
ing supplier delivery performance is presented in which
contingency plans are included to help implement
resilience strategies in order to mitigate the negative
e�ects of disruptions. Contingency planning involves
predicting potential events and identifying measures
to deal with risks and disruptions of the supply chain
before they occur [6].

In accordance with the base model (see, [14]), this
study evaluates the strategy of regionalizing a supply
chain o�ered by Chopra and Sodhi [15]. Selecting sup-
pliers from multiple geographical regions can mitigate
the negative e�ects of environmental disruptions on
the supply chain. When a semi-super event occurs in
a region and makes all its suppliers unavailable, the
available suppliers in another region may attempt to
meet the unsatis�ed demand of the disrupted suppli-
ers [15]. For example, Figure 1 shows three distinct
geographic regions where some suppliers with di�erent
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Figure 1. Supply chain regionalization.

characteristics are classi�ed into the regions.
The remaining parts of the present study are orga-

nized in the following manner. Section 2 demonstrates
a concise review of the literature. In Section 3, the
problem of resilient supplier choice and order allocation
and the proposed mathematical model is described.
The description of chance-constrained programming
and "-constraint method is presented in Sections 4 and
5, respectively. Section 6 introduces a real case and
the parameters and scenarios of the model. Section 7
presents the model's computational results. In Sec-
tion 8, the sensitivity analysis of some parameters is
conducted. Finally, the conclusions and directions for
future work are provided in Section 9.

2. Literature review

Practitioners and academics have been aware of the
need to minimize the potential impacts of disruptions
by creating a resilient supply chain that is complemen-
tary to classic risk management processes. They also
know one of the ways to create resilience in the supply
chain is providing a resilient supply base. Therefore,
various researchers have explored the area of resilient
supplier choice and order allocation under risk and
disruption. Berger et al. [16] �rst incorporated the
supply disruption risk into the problem of supplier
selection. They introduced three types of disruptive
events that might cause supply disruption:

1. Unique events, which are associated with a single
supplier and disrupt only the normal operations of
a particular supplier;

2. Semi-super events, which in
uence a subset of
suppliers (all suppliers at a location);

3. Super events, which can cause all suppliers to fail.

They modeled supply disruption only as unique events
(with equal failure probabilities) and super events,
applied the decision-tree approach to determine the
number of suppliers, and obtained the expected total
cost as the objective function. A few studies have ex-
amined the e�ects of environmental disruptions caused
by a semi-super event in sourcing decisions. Sarkar
and Mohapatra [17] considered semi-super events as
supply disruption for the �rst time in the supplier
selection problem and proposed a tabular method to
determine the best size for supply base to minimize
the total cost. Recently, some researchers (see, for
example, [18{20, 14, and 4]) have considered the
semi-super events as supply disruption in the SS&OA
model. Sawik [18,19] formulated a mixed integer
stochastic programming model to allocate the order
and schedule customer order under disruption risk.
Their model objective was either the expected worst-
case cost minimization or the expected worst-case
customer service level maximization. Kamalahmadi
and Mellat-Parast [4,14] addressed the SS&OA prob-
lem considering supplier and environmental disruptions
with the objective of minimizing expected total cost.
Prasanna Venkatesan and Goh [20] presented a multi-
objective mixed-integer linear programming model to
choose the optimal size of the supply base and allocate
the order with the aim of minimizing the expected
total cost and maximizing the total purchase value.
They employed the Fuzzy Analytic Hierarchy Process
(FAHP) and fuzzy PROMETHEE methods to evaluate
and rank suppliers.

In Table 1, some mathematical model character-
istics derived from relevant articles are presented so
that they can be compared with the our proposed
model. As seen in Table 1, most of the SS&OA models
considered a single objective function such as expected
total cost or expected worst-case cost (e.g., [21]).
Some authors present multi-objective programming
models. For example, Torabi et al. [2] presented a bi-
objective mixed possibilistic, stochastic program to se-
lect resilient suppliers under disruption and operational
risks. In addition to the total cost objective function,
they considered a new resilience objective function to
compute the resilience level of selected suppliers and
then, applied the augmented "-constraint technique to
solve their model. Lee [22] proposed a fuzzy multi-
objective programming model to allocate the quantity
of orders among suppliers and emergency inventory
among backup suppliers. His model objectives were
to minimize the total cost of ordering, rejected items,
and late deliveries.

Many supply chain resilience studies have focused
on adopting strategies that can improve the resilience
of supply chains in case of disruptions. She� [23]
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Table 1. A review of the literature.

Model description

Decision variables Risks Resilience strategy

Author
Objective
function

Number of
suppliers

Order
allocation

Operational

Disruption
supply


exibility
pre-positioning

invention
backup

suppliers
protected
suppliers

Modelling
and solution

approach

Su Se Uq

Equal Unequal

Berger

et al. [16]
ETC

p
{ {

p
{

p
{ { { { { Decision tree

Ruiz-Torres and

Mahmoodi [24]
ETC

p
{ {

p
{

p p
{ { { { Decision tree

Moritz and

Pibernik [25]
ETC

p p
{ { {

p
{

p
{ { {

Analytical and

numerical

analysis

Sarkar and

Mohapatra [17]
ETC

p
{ {

p p p
{ { { { {

Decision tree

/Tabular method

Sawik [21] EWC
p p

{
p

{ {
p

{ { { {
Mixed integer

programming

Sawik [27] ETC EWC
p p

{
p

{ {
p

{ { {
p

Stochastic mixed

integer

programming

Ruiz-Torres

et al. [26]
ETC

p p
{ { { {

p p
{ { {

Decision tree/

Mathematical

modeling

Sawik [18] ETC- EWC/
ESL- EWSL

p p
{ {

p
{

p
{ { { {

Stochastic

mixed

integer

programming

Sawik [19] EWC/EWSL
p p

{
p p

{
p

{ { { {

Stochastic mixed

integer

programming

Torabi

et al. [2]
ETC RE

p p p
{ { {

p
{ {

p p

Mixed

possibilistic,

two-stage

stochastic

programming

Prasanna

Venkatesan

and Goh [20]

ETC TPV
p p

{
p p

{
p p

{ { {

MILP/Fuzzy

AHP/Fuzzy

PROMETHEE

Kamalahmadi and

Mellat-Parast [14]
ETC

p p
{ {

p
{

p p
{ { {

Two-stage mixed

integer

programming

Kamalahmadi and

Mellat

-Parast [4]

ETC
p p

{ {
p

{
p

{
p p p

Two-stage

mixed integer

programming
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Table 1. A review of the literature (continued).
Model description

Decision variables Risks Resilience strategy

Author
Objective
function

Number of
suppliers

Order
allocation

Operational

Disruption
supply


exibility
pre-positioning

invention
backup

suppliers
protected
suppliers

Modelling
and solution

approach

Su Se Uq

Equal Unequal

Lee [22] TCONRI NIDL
p p

{ { { {
p

{ {
p

{

Weighted

additive fuzzy

Modeling

Hosseini

et al. [32]
GSTC

p p
{ { { {

p
{ {

p p Stochastic

mixed integer

programming

Solgi

et al. [28]
ETC RE

p p p
{ { {

p
{ {

p p
Scenario-based

robust

optimization

model

Sahebjamnia [33] ETCSRP
p p p

{ { {
p

{ { { {

Fuzzy

DEMATEL/

fuzzy ANP

/fuzzy mixed

integer

programming

Kaur and

Singh [34]
TC

p p p
{ { {

p
{ { { {

Fuzzy AHP/

TOPSIS/

DEA/MIP

Olanrewaju

et al. [35]
ETC

p p p
{ { {

p
{ { { {

Multi-stage

stochastic

programming

This study ETCSDP
p p p

{
p

{
p p p

{ {

Decision tree

/Bi-objective

integer

two-stage

stochastic

programming

/Chance

constraints

Notes: Su: Super event; Se: Semi-super event; Uq: Unique event; ETC: Expected Total Cost; EWC: Expected Worst-case Cost;

EWSL: Expected Worst-case Service Level; ESL: Expected Service Level; RE: Resilience objective function; TPV: Total Purchase

Value; TCO: Total Cost of Ordering; NRI: Number of Rejected Items; NIDL: Number of Items Delivered Late; SDP: Supplier

Delivery Performance; MINLP: Mixed-Integer Non-Linear Programming; SRP: Supplier Resilience Performance;

GS: Geographical Segregation.

introduced three general ways for companies to develop
resilience:

1. Creating redundancies in the supply chain, for
instance, by means of holding additional inventory,
investing in surplus capacity, and adopting multiple
suppliers;

2. Augmenting supply chain 
exibility;
3. Changing organizational culture.

Following a review of the literature, it is clear that

greater attention has been paid to 
exibility than
redundancy. Authors such as Ruiz-Torres and Mah-
moodi [24], Moritz and Pibernik [25], Ruiz-Torres et
al. [26], and Kamalahmadi and Mellat-Parast [14] have
incorporated only the 
exibility of supplier capacity as
a resilient strategy to their models. In another study,
four strategies have been introduced as the most critical
ones for resilience in the supply chain: increasing

exibility, adding redundancy, creating cooperative
supply chain relationship, and increasing supply chain
agility [6]. Kamalahmadi and Mellat-Parast [4] incor-
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porated redundancy strategies into a SS&OA model
containing pre-positioning inventory, protected suppli-
ers, and backup suppliers. They concluded that adding
redundancy could improve the responsiveness of �rms
to disruptions and reduce expected costs. Sawik [27]
presented a mathematical programming approach to
address SS&OA problem under disruption risk and de-
veloped some resilience strategies including protecting
some suppliers against disruption and pre-positioning
emergency inventory in protected suppliers to minimize
total cost and e�ect of disruption risk. Sawik [27]
supported the assumption that the capacity of each
protected supplier remained �xed after any disruptive
event. To make this assumption more real, Torabi et al.
[2] assumed that the e�ect of disruption events on the
supplier's production capacity decreased through the
protection of a supplier based on the forti�cation level
and the kind of disruptive incident. In addition to the
protection of suppliers, they applied other strategies
such as suppliers' business continuity plans and backup
suppliers in the model of supplier selection. Lee [22]
considered contracting with backup suppliers to raise
the resilience of selected suppliers. In another research,
Solgi et al. [28] implemented resilience strategies such
as fortifying suppliers, contracting with backup suppli-
ers, restoring supply from disruptions, and utilizing the
surplus production capacity for suppliers.

As mentioned earlier, pre-positioning inventory
(also named operational slack or safety stock) is usually
one of the redundancy strategies that involves holding
bu�er stocks of raw materials or �nished goods. It
can be a bu�er against supply disruptions and guar-
antees the continuity of production. On the other
hand, surplus inventory is costly and reduces the
quality and pro�tability [3,29]. In fact, pre-positioning
inventory di�ers from existing management practices
such as lean and JIT. However, from the perspective
of supply chain risk management, it is necessary to
maintain safety stock to overcome environmental risks
[4]. In this respect, Rawls and Turnquist [30] developed
a stochastic programming model that presented an
emergency response to disaster threats using a pre-
positioning strategy. They used the Lagrangian L-
shaped method to �nd an optimal solution to a large-
scale problem. Zheng et al. [31] considered an inte-
grated civilian-military supply pre-positioning problem
with the aim of maximizing the expected military and
civilian operational e�ciency and minimizing the total
pre-positioning cost. They determined the locations
of emergency facilities and the kinds and quantities of
emergency supplies stored in each facility. To solve this
model, they applied a hybrid heuristic solution method.

Generally, few quantitative models for selecting
resilient supplier have addressed the impact of re-
silience strategies on enhancing resilience levels in the
face of disruptions. This study expands upon the model

proposed by Kamalahmadi and Mellat-Parast [14] by
integrating pre-positioning inventory as a resilience
strategy. In contrast to their model, we modi�ed or
added new constraints and objective functions, which
are discussed in the following sections. Furthermore,
our SS&OA problem involves multiple products. In
addition, a quantitative model is implemented for
solving the problem of choosing resilient suppliers and
order allocation in the real world. Only a few previous
studies have considered the impact of operational risk
on resilient supplier selection. In this research, opera-
tional risks are addressed based on the uncertainty in
demand. A chance-constrained programming approach
has been utilized to face the uncertain parameter of
demand for the �rst time in this �eld. In contrast
to previous mathematical models, our model includes
a new objective function to consider the supplier's
delivery performance as one of the criteria of resilient
supplier selection and the K-means clustering method
is also utilized to cluster and decrease the number of
disruption scenarios determined in the real case.

3. Problem description and model formulation

This section describes in detail the problem of re-
silient suppliers' selection and order allocation among
them under disruption and operational risks, and the
proposed mathematical model. Automotive supply
chains are highly sensitive to disruptions. The impact
of disruptive events on auto part suppliers is quite
signi�cant due to the complexity and broadness of
automotive supply chains. An automobile is com-
prised of 20,000 pieces on average, and if one part
is not available, the production of the �nal product
will not be possible. Therefore, it is necessary that
automotive supply chains be resilient in order to re-
duce disruptions. With this important issue in mind,
the case study of the present research is the Iran
Khodro supply chain. As stated earlier, our model
is an expansion of Kamalahmadi and Mellat-Parast's
[14] model and employs strategies that include the
use of 
exible capacity suppliers and pre-positioning
inventory in order to e�ectively reduce the severity
of disruptions in Sapco Company. The presented
mathematical model is a integer, bi-objective, single-
period, and multi-product model designed to select
resilient suppliers and allocate demand among them.
The objective of the model is to minimize the expected
total cost while maximizing the delivery performance
of the suppliers. The regional disruptions are taken
into account due to the occurrence of a semi-super
event that in
uences all suppliers in a geographical
region. In the aforementioned model, operational risks
are considered based on the inherent uncertainty in
demand. Due to its incorporation of disruption risk
scenarios, the proposed model is a two-stage stochastic
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model in which decisions are categorized into two
groups:

1. First-stage decisions made in the event of uncer-
tainty regarding a random scenario occurrence;

2. Second-stage decisions made after the occurrence of
any scenario to mitigate the probable undesirable
e�ects of �rst-stage decisions [36].

The steps in implementing the suggested model are
presented in Appendix A. In the following section, some
parameters and variables are de�ned.

3.1. Types of events
In the proposed model, two kinds of events, unique and
semi-super, cause disruption risks and a�ect supplier
operations. The �rst type disrupts a single supplier.
The second type a�ects all suppliers in a particular
geographical area. Accordingly, the suppliers located in
various regions are distinguished by dividing them into
separate sets. Thus, Hr represents the set of suppliers
in region r, where H1[H2[: : :[Hr = H. The set H is
related to the set of possible suppliers. The parameters
ph and pr correspond to the occurrence probability of
unique and semi-super events in supplier h and region
r, respectively, and they are determined according to
experts opinions and historical data.

3.2. Scenarios and their occurrence probability
As mentioned, a scenario-based programming model is
presented that contains a number of discrete scenarios.
The risk of disruption is also taken into account
by assigning a probability to any scenario that may
happen due to the failure of suppliers or areas. In each
scenario, the suppliers may be disrupted and unable to
provide the allocated amount of order; therefore, the
parameter Ss;h in the model shows the delivery status

of each supplier h in scenario s. Each scenario s has
an occurrence likelihood of �s, which is determined in
three stages applying the decision-tree approach:

1. First step: The occurrence probability of a disrup-
tion in suppliers located in the region r in scenario s.

prs =
Y
h

[(1� Ss;h) ph + Ss;h (1� ph)] : (1)

2. Second step: The occurrence probability of a dis-
ruption in region r and its suppliers in scenario s.

�rs =

8>>><>>>:
pr + (1� pr) prs
If all suppliers in region r are disrupted
(1� pr) prs
Otherwise

(2)

3. Third step: The occurrence probability of sce-
nario s.

�s =
Y
r

�rs : (3)

For example, Figure 2 shows the decision tree and how
to calculate the probability of each scenario for two
regions and one supplier in each region [14].

3.3. Flexibility of suppliers
In the present model, we consider that suppliers have
a 
exible production capacity as a disruption man-
agement strategy that permits them to deliver contin-
gency orders in case other suppliers face disruptions.
Thus, the parameter of supplier 
exibility bi;h refers
to the supplier's ability to deliver items greater than
the amount allocated to it when other suppliers fail.
This parameter could be measured based on suppliers'
production capacity, capacity commitment to other
customers, logistics capability and geographical prox-
imity.

Figure 2. Decision tree related to two regions and one supplier in each region [14].
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3.4. Associated costs
In the proposed two-stage stochastic planning model,
costs are classi�ed into two groups, namely �rst-stage
costs and second-stage costs. First-stage costs involve
costs that the company must pay in the �rst stage
before becoming aware of any scenario that may occur.
The second-stage costs are those that the company will
incur to respond to that scenario. Table 2 provides
types of costs and a brief description of each.

3.5. Pre-positioning inventory
Based on Kamalahmadi and Mellat-Parast's [4] model,
to deal with disruptions, pre-positioned inventory is
taken into account as a redundancy strategy according
to the experts' opinions of the case study company.
This type of inventory (safety stock) must be procured
from suppliers and stored in warehouses prior to any
potential disruption. It is then utilized to ful�ll demand
after the occurrence of disruptions that render suppliers
unavailable. For this purpose, two parameters yi;h and
gi;s are added to the model which indicate the number
of parts i purchased from supplier h to be stored in
warehouses and the amount of withdrawal of each part
i from its inventory in warehouses in each scenario s,
respectively.

3.6. Model formulation
In this section, �rst, assumptions and notations (in-
cluding sets, indices, parameters, and variables) uti-
lized to formulate the mathematical model are de�ned;
then, the functions of objectives and constraints are
described.

3.6.1. Assumptions of model
The following are the assumptions of our model:

1. The occurrence likelihood of unique events for
suppliers located in a place is di�erent;

2. The probability of each scenario is di�erent and is
calculated by the formula provided;

3. There is only one demand point (the buyer com-
pany);

4. Failure to satisfy the demand leads to �nancial loss
per unit (mi);

5. The demand for each part is uncertain and has a
normal probability distribution with a speci�c mean
and variance;

6. There is a limitation on the amount of warehouse
space available for storing each part;

7. If suppliers deliver parts sooner than the program-
matic delivery date, the delay is considered zero;

8. The quality of the suppliers' parts is considered
acceptable by the buyer company.

3.6.2. Notations
Sets
H Set of suppliers, h 2 H
R Set of regions, r 2 R
I Set of parts, i 2 I
S Set of scenarios, s 2 S
Parameters
Fh Fixed cost of management for supplier

h
Cai;h Capacity of supplier h for part i
Cni;h Purchasing cost of part i from supplier

h in normal conditions
Cdi;h Extra purchasing cost of part i from

supplier h in disruption conditions
when suppliers deliver parts more than
its base allocation

Tni;h Transportation cost of part i from
supplier h in normal conditions

Tdi;h Transportation cost of part i from
supplier h in disruption conditions

Hli Holding cost of part i (safety stock) in
the warehouse

bi;h Flexibility of supplier h for part i
vi Warehouse capacity for holding part i
wi Minimum inventory required for part i

that must be purchased as safety stock
mi Loss cost for not received part i due to

supplier failure
di Demand of part i for the programming

period
Lh Delay time of supplier h
Lth Actual lead time of supplier h
P lth Programmatic lead time of supplier h
rh Ratio of the delay time to

programmatic lead time of supplier h
OSh Delivery performance score of supplier

h
Ss;h Binary parameter associated with the

state of supplier h in scenario s
ph Occurrence probability of unique event

in supplier h

pr Occurrence probability of semi-super
event in region r

prs Occurrence probability of disruptions
in suppliers positioned in region r,
h 2 Hr, in scenario s

�rs Occurrence probability of disruptions
in region r and its suppliers, h 2 Hr,
in scenario s

�s Occurrence probability of scenario s
1� � Con�dence level
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Table 2. Types of existing costs in the presented model.

Cost type Symbol Cost name Description

First-stage cost

SMC Supplier Management Cost

The cost that the company incurs to

manage and maintain relations with

suppliers. This cost increases

with the increasing number of

suppliers

SOC Safety stock Order Cost
The investment for purchasing safety

stocks from suppliers

STC
Safety sock Transportation

Cost from suppliers

to warehouses

The cost of transporting

parts purchased

(as a safety stock)

from suppliers to the warehouse of the company

SHC Safety stock Holding Cost
The cost to be paid for holding

safety stocks in the warehouse

Second-stage cost

OCs Order cost in scenario s
This cost is based on the number of

parts sent from each supplier in

each scenario

TCs Transportation cost in scenario s

This cost for the normal

allocation of available

suppliers and additional

allocation of them is

based on the normal cost

of transportation and

transportation costs in

disruption, respectively

PCs Premium cost in scenario s

The cost that the company pays to

suppliers to produce more

than their normal allocation to meet

the unsatis�ed demand by disrupted

suppliers

LCs Loss cost in scenario s

This cost is calculated

based on the amount of

unsatis�ed demand

in each scenario
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Decision variables of �rst-stage
Zi;h Binary variable of selecting or not

selecting supplier h to supply part i
ai;h Number of parts i assigned to supplier

h
yi;h Number of parts i assigned to supplier

h as safety stock in the pre-disruption
stage

Decision variables of second-stage
qi;h;s Number of parts i sent from supplier h

in scenario s
Aqi;h;s Number of parts i sent from supplier h

in scenario s being more than its base
allocation

gi;s Number of parts i used from its safety
stock in scenario s

Ui;s Number of unsatis�ed parts i in
scenario s

As mentioned earlier, the decision variables of the
model are classi�ed into two stages. Figure 3 illustrates
these two di�erent stages and their relevant variables.
It should be noted that the �rst-stage variables are
determined before the occurrence of any scenario.
However, the second-stage variables are determined
while one of the scenarios has taken place and di�ers
under various scenarios.

3.6.3. Objective functions
We consider two objective functions for the proposed
model:

1. Expected total cost: The initial objective function
minimizes the expected total cost which is the
sum of �rst-stage and second-stage costs. The
associated costs are calculated as follows:

SMC =
X
h2H

FhZi;h; (4)

Figure 3. Illustration of two di�erent stages and their
relevant variables.

SOC =
X
i2I

X
h2H

Cni;hyi;h; (5)

STC =
X
i2I

X
h2H

Tni;hyi;h; (6)

SHC =
X
i2I

X
h2H

Hliyi;h; (7)

OCs =
X
i2I

X
h2H

Cni;hqi;h;s; (8)

TCS =
X
i2I

X
h2H

Tni;hSs;hai;h

+
X
i2I

X
h2H

Tdi;hAqi;h;s; (9)

PCs =
X
i2I

X
h2H

Cdi;hAqi;h;s; (10)

LCs =
X
i2I

miUi;s: (11)

The objective function related to minimizing the
expected total cost is given below:

Min ETC = SMC + SOC + STC + SH

+
SX
s=1

�s
�
OCs+TCs+PCs+LCs

�
: (12)

2. Supplier delivery performance: The supplier de-
livery performance is taken into account in this
model as one of the criteria for selecting the resilient
supplier. Obviously, if the supplier's lead time is
long, it creates a critical path in the supply network
and eventually, the likelihood of the company's vul-
nerability increases against disruptions. Therefore,
a new objective function is added to the model
that maximizes the delivery performance score of
suppliers and is calculated according to suppliers'
actual lead time, programmatic lead time, and
delay time given below:

Max SDP =
X
i2I

X
h2H

X
s2S

�s
�
Osh:qi;h;s

�
; (13)

Lh = Lth � Plth; (14)

rh = Lh=P lth; (15)

Osh = 100� (rh � 100) : (16)

3.6.4. Constraints

P

 X
h2H

ai;h = di

!
� 1� �; (17)
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ai;h (1 + bi;h) � Zi;hCai;h 8h 2 H; i 2 I; (18)

ai;h � 0:1diZi;h 8h 2 H; i 2 I; (19)

qi;h;s � ai;h (1 + bi;h)Ss;h

8i 2 I; h 2 H; s 2 S; (20)

qi;h;s � ai;hSs;h 8i 2 I; h 2 H; s 2 S; (21)

Aqi;h;s = (qi;h;s � ai;h)Ss;h

8i 2 I; h 2 H; s 2 S; (22)X
h2H

yi;h � vi 8i 2 I; (23)

X
h2H

yi;h � wi 8i 2 I; (24)

yi;h � Zi;h (cai;h � ai;h) 8i 2 I; h 2 H; (25)

gi;s �X
h2H

ai;h (1� Ss;h) 8i 2 I; s 2 S; (26)

gi;s �X
h2H

yi;h 8i 2 I; s 2 S; (27)

P

 
Ui;s +

X
h2H

qi;h;s + gi;s = di

!
� 1� �

8i 2 I; s 2 S; (28)

zi;h = f0; 1g 8h 2 H; (29)

ai;h; qi;h;s; Aqi;h;s; Ui;s; yi;h; gi;s � 0;

integer 8i 2 I; h 2 H; s 2 S: (30)

Constraint (17) ensures that at least 1 � �, the
demand for each part, will be allocated to selected
suppliers. Constraint (18) indicates the utilization
limit of supplier's capacity in order to respond to addi-
tional orders during the disruption. Constraint (19)
prevents selecting suppliers with a very low order
quantity and accordingly, the amount of each supplier
allocation should be 10% of the demand for each
part. Constraints (20) and (21) represent the upper
and lower limits of the number of parts to be sent
from each supplier in each scenario. Constraint (22)
calculates the number of additional parts satis�ed by
available suppliers in di�erent scenarios. According to
Constraint (23), the safety stock quantity of each part
must be equal to or less than the warehouse capacity.
Constraint (24) indicates the minimum safety stock of
each part which should be allocated to suppliers and
stored in the warehouse. Constraint (25) indicates
that the amount of safety stock allocated to each

supplier for every part must be less than or equal to the
supplier's available capacity, which is calculated as the
di�erence between the supplier's overall capacity and
its allocation. According to Constraint (26), the safety
stock of each part is used only in disruption conditions.
It also limits the extent of using safety stock to the
allocation of disrupted suppliers in a particular sce-
nario. Constraint (27) ensures that the usage quantity
of safety stock of each part must be less than its total
inventory in the warehouse. Constraint (28) indicates
the amount of unsatis�ed demand for each part in each
scenario. Finally, Constraints (29) and (30) relate to
the type of decision variables.

4. The proposed chance-constrained
programming approach

In the present study, due to the inherent demand
uncertainty, chance-constrained programming for �x-
ing the demand has been used. Chance-constrained
programming is a method that deals with optimiza-
tion problems in which some of the parameters are
non-deterministic and include chance constraints that
should be satis�ed with the minimum con�dence
level [37]. One of the advantages of chance-constrained
programming is that decision-makers can control the
satisfaction level of chance constraints [38]. In the
presented model, Constraints (17) and (28) are chance
constraints realized with the probability of at least 1��
(0 � � < 1). The chance constraint P (

P
h2H ai;h =

di) � 1 � � is converted into deterministic constraint
as follows [39].

Random variable di (demand for each part) is
assumed to have a normal distribution with mean E(di)
and standard deviation �(di) and in order to check
the normal distribution of demand data, Kolmogorov-
Smirnov test was utilized in the SPSS 24.0 software
package. The results of the test con�rm the normality
of demand data.X
h2H

ai;h � E (di)� Z1��:� (di) : (31)

Similarly, other chance constraints (constraint of un-
satis�ed demand) become deterministic as follows:

Ui;s +
X
h2H

qi;h;s + gi;s � E (di)� Z1��:� (di) : (32)

The con�dence level (1 � �) is considered 0.95 and
the corresponding value for the standard normal dis-
tribution function can be found in the table of values
(Ref. [39] for further study).

5. The augmented "-constraint method

The literature has discussed several techniques for
solving multi-objective programming models, includ-
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ing the weighted sum method, goal programming, "-
constraint methods, and fuzzy programming methods.
In the present study, due to the multi-objective nature
of the proposed stochastic programming model, the
augmented "-constraint method is used to solve the
model. One advantage of the "-constraint method is
that it changes the original feasible area and provides
non-extreme e�cient solutions. This method, unlike
the weighted sum method, is utilized in multi-objective
integer and mixed integer programming. The scale lim-
itation of objective functions does not have much e�ect
on the results. Also, in the "-constraint method, we can
control the generated e�cient solutions by correctly
setting the network points in each range of the objective
function [40,41]. This method is a modi�ed version of
the overall "-constraint method, which provides Pareto
optimal solutions and avoids ine�cient solutions [2,41].
In this method, the most important objective function
is considered to be the principal objective function, and
the rest of the objective functions are added to the
model as a limitation [41,42] (refer to Refs. [40,41] for
further study).

5.1. Selection of the best pareto solution
After determining the set of optimal Pareto solutions,
a fuzzy approach can be used to facilitate the decision-
making process to select the best Pareto optimal
response and to determine its degree of optimality.
In this fuzzy method, assuming the k Pareto optimal
solution, the membership function �k

i denotes the
optimality degree for the objective function i in the
Pareto solution k and is calculated using the following
formula:

1. For minimizing the objective function, we have:

�ki =

8><>:
1 fki (x) � li
ui�fki (x)
ui�li li < fki (x) � ui

0 fki (x) > ui

(33)

2. For maximizing the objective function, we have:

�ki =

8><>:
0 fki (x) � li
fki (x)�li
ui�li li < fki (x) � ui

1 fki (x) > ui

(34)

In these formulas, li and ui represent the lower and
upper limits of objective function fi, respectively, and
fki (x) expresses the value of the objective function i in
the optimal Pareto solution k, so that fki (x) 2 [li; ui].

After determining the weight vector for each
objective function by the decision maker (wi), which
represents the relative value of the objective function
i, the total value of the membership function of the
Pareto solution k(�k) can be calculated using the
following equation:

�k =

mP
i=1

wi:�ki
mP
i=1

wi
: (35)

The solution with the highest value of �k is chosen as
the best Pareto solution [42].

6. Case study

As mentioned earlier, the case study for the present
study is the Iran Khodro supply chain, with Sapco
Company responsible for managing the parts supply
system in this supply chain. The responsibilities of this
Company comprise technical designing and supplying
parts required for Iran Khodro production lines. The
area where the Sapco Company operates is subject to
wide and various disruptions (such as natural disasters,

uctuations of the exchange rate and prices, supplier
interruptions, limited capacity of suppliers, low quality
and high prices of suppliers' products, in
exibility of
suppliers, etc.), which can reduce customer satisfaction,
competitiveness, and ultimately, the company's prof-
itability. This company often enjoys plenty of sources
for supplying the same parts. One of the reasons for
this issue is the uncertainties and risks involved in
the performance and behavior of the suppliers that
complicate single sourcing. In this context, one of the
most signi�cant ways to achieve the company's goals is
to determine the optimal number of resilient suppliers
and appropriate allocation of orders between selected
suppliers that are able to meet and respond to the
company's demand in the event of disruption. Also,
a numerical example is presented in Appendix B to
demonstrate the applicability of the proposed model
for the real case.

6.1. Model data and parameters
For this study, 18 types of parts required by Sapco
Company were selected to be supplied by 15 di�erent
suppliers. Among all the parts of a car, very important
parts were also chosen. Table 3 lists the selected parts
and suppliers of each part and di�erent regions. As for
multiple sourcing of the company and the regionaliza-
tion of the supply chain, in order to reduce the impacts
of environmental disruptions, the 15 selected suppliers
are positioned in di�erent cities. Other parameters
required for the model (including the related costs,
supplier capacity, warehouse capacity, demand, event
probability, and 
exibility rate) were determined using
organizational documentation.

6.2. Model scenarios
In the proposed model, scenarios are determined based
on the binary parameter (Ss;h) that represents the sta-
tus of suppliers when disruption occurs. If the number
of suppliers is n, the number of disruption scenarios is
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Table 3. Suppliers related to each part and geographic location of selected suppliers.

Suppliers

Parts 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 } } } } { { { { { { { { { { {

2 } } } { } { { { { { { { { { {

3 { } } } } { { { { { { { { { {

4 } } } } } { { { { { { { { { {

5 { { { { { } } } } } { { { { {

6 { { { { { } } } } } { { { { {

7 { { { { { } } } } } { { { { {

8 { { { { { } } } } } { { { { {

9 } } { { } { { { { { { { { { {

10 { { { { { } } } } } { { { { {

11 { { { { { { { { { { } } } { }
12 { { { { { { { { { { } } } } }
13 { { { { { { { { { { } } } } }
14 { { { { { { { { { { } } } } }
15 { { { { { { { { { { } } } } }
16 { { { { { { { { { { } } } } }
17 { { { { { { { { { { } } } } }
18 { { { { { { { { { { } } } } }

Regions G
ar

m
sa

r

T
ak

es
ta

n

Sa
va

dk
uh

Sa
ve

h

Sa
ve

h

E
sf

ah
an

E
sh

te
ha

rd

T
eh

ra
n

Sa
ve

h

E
sf

ah
an

T
ak

es
ta

n

T
eh

ra
n

T
eh

ra
n

T
eh

ra
n

T
eh

ra
n

equal to 2n. The number of these disruption scenarios
increases exponentially upon increase in the number of
suppliers, and it is di�cult or impossible to solve the
model with a huge number of scenarios. Therefore,
the K-means clustering method is used to reduce
the occurrence probability for scenarios. K-means
technique is a relatively common clustering method
due to its simple implementation, broad application of
large data sets, and high e�ciency. In this method,
�rst, k samples are randomly selected from all the
samples which are known as the representation of k
cluster and are sometimes taken as the center of the
cluster. Using criteria such as Euclidean distance, the
similarity between each of the remaining samples and
the k representation is calculated, and the sample is
assigned to the cluster that has the nearest center.
Subsequently, for each cluster, a new center is selected
by computing the average among cluster members.
This process is repeated until achieving convergence

(such as �xing members of the clusters or minimizing
the error function) [43].

The disruption scenarios in Sapco Company were
identi�ed based on historical data and the allocation
of each part to di�erent suppliers (whose number was
400) was taken into account. Then, before solving the
presented model, similar scenarios were clustered using
K-means clustering method in SPSS 24.0 software
package. The number of clusters was equal to 10.
Finally, from each cluster, scenarios with higher impor-
tance and occurrence probability were selected. All sce-
narios considered in the presented model are presented
reported in Appendix C. For example, in Scenario 5,
all suppliers are available and able to supply orders,
except Suppliers 1 and 2 who have been disrupted.

7. Computational results for the case study

As already mentioned, the augmented "-constraint
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Table 4. Values of objective functions and the membership degree for di�erent Pareto points

Objective functions Membership degree (�k)
Pareto points Expected total cost Supplier delivery performance

1 1555085000 3142772.59 0.8797
2 1555255000 3193961.21 0.8918
3 1555413000 3244735.75 0.9037
4 1555575000 3295717.33 0.9157
5 1555773000 3346698.91 0.9278
6 1556111000 3397680.49 0.9398
7 1556463000 3448663.06 0.9518
8 1557233000 3499643.94 0.9637
9 1559236000 3550625.23 0.9756
10 1563428000 3601606.81 0.9873
11 1581396000 3652588.39 0.9979

Figure 4. Pareto chart for two objective functions.

method is used for solving the proposed model. The
mathematical model was coded in GAMS 24.1.3 on a
personal computer with Intel Core i5 CPU and 4 GB
of RAM. The input data of the model was recalled
from EXCEL software. The number of constraints
and variables of the model was 36312 and 24738,
respectively. In the augmented "-constraint method,
the cost objective function was taken into account
as the main objective and the objective function of
the supplier delivery performance was considered as a
constraint. After solving the model using the GAMS
software, the optimal Pareto solutions were obtained,
which are shown in Table 4. Pareto chart for these
solutions can be observed in Figure 4. In order to
choose the best Pareto optimal solution, the total value
of the membership function for each Pareto point was
obtained. In order to calculate the total membership
function (�k) value, the weight of the �rst and second
objective functions was considered 0.4 and 0.6, respec-
tively, according to the opinion of the experts of Sapco
Company. Finally, with respect to the values obtained
for the membership function, the Pareto point 11,
which has the highest value of (�k), was selected as the
best Pareto optimal solution to the problem of choosing
the resilient supplier and demand allocation.

Based on the Pareto point 11 as the best Pareto
optimal solution, the optimal values of demand
allocation to di�erent suppliers for each part were
determined, which are reported in Appendix D. Given
that the objective function related to the supplier
delivery performance was of greater importance
and weight than the cost objective function, the
supplier delivery performance criteria were prioritized
compared to reliability and cost criteria and the
suppliers with less delivery performance score than
other suppliers were not allocated. The results
indicate that at the Pareto point 11, the size of the
supply base decreased because of the selection of
suppliers with high delivery performance. However,
due to the occurrence likelihood of the disruptions, the
loss cost and, consequently, the total cost increased.
In other words, selection of fewer suppliers with high
delivery performance in comparison to the selection of
a large set of suppliers with low delivery performance
reduces delay time and increases the loss cost and
thus, the total cost. Therefore, the balance between
delivery performance and costs must be considered.

The order value of safety stock from di�erent
suppliers for each part is reported in Appendix D. The
results indicate that the cost criterion holds greater
weight in allocating required safety stock to suppliers,
meaning that suppliers with lower purchasing cost were
selected for supplying emergency inventory. In other
words, the reliability, 
exibility, and supplier delivery
performance criteria are much less important than the
cost criterion in providing safety stocks since the supply
of safety stock is a process that may occur only once
during the period.

In general, if disruption occurs at one or more
suppliers and regions, the company may adjust the
allocation amount of disrupted suppliers to the avail-
able suppliers based on the 
exibility rate and their
delivery performance score, or use the safety stock in
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warehouses (which is purchased and stored before the
occurrence of any disruption scenario). For example,
the value of second-stage variables for some scenarios
are presented in Appendix E. Since the objective func-
tion related to supplier delivery performance is more
important, during a supply disruption, the allocation
amount of disrupted suppliers has been adjusted to
the available suppliers and their 
exible capacity was
utilized to compensate for any parts not supplied by
the disrupted suppliers. Then, in case of failing to
satisfy the demand fully, the safety stock was used.
Also, according to the results, it can be seen that
among available suppliers, those with higher delivery
performance scores and those with higher 
exibility
rates were selected to meet the unsatis�ed demand.
In other words, when allocating additional parts to
available suppliers, the supplier delivery performance
is prioritized to its 
exibility rate. In the case of the
same delivery performance score and 
exibility rate
of suppliers, the cost index in selecting the available
suppliers is determinative.

Based on the table presented in Appendix E,
it can be seen in Scenario 24 that Suppliers 6 and
10 (located in the same region) are disrupted and
will be unable to supply parts. Therefore, their
allocation has been switched to Suppliers 7 and 9
whose geographic location is di�erent. It should be
noted that if all these suppliers are located in a region,
all of them are a�ected by regional disruptions and
the order allocated to them cannot be met. Thus,
the importance of regionalizing the supply chain and
selecting suppliers from di�erent regions in order to
respond to disruptions can be seen and con�rmed.

8. Sensitivity analysis

In this section, in order to understand the behavior of
the model in various conditions and also to increase the
reliability of the results, the e�ect of changes in several
parameters on the results of the mathematical model
was investigated and the best Pareto optimal solution
(Pareto point 11) was selected for sensitivity analysis.
Each time, one of the objective functions was consid-
ered the most important objective function, while the
other was treated as a constraint (with a constant value
assumed for it). The model was then solved, and new
values of the decision variables and objective functions
were obtained. Sensitivity analysis of selected param-
eters and the results are presented in the following.

8.1. Score of supplier delivery performance
This section examines how the supplier delivery per-
formance score a�ects the �nal result of the supplier
choice and order allocation. For this purpose, the
Supplier 1 with a low score in the delivery performance
was selected. According to Figure 5, values 10, 53, 90,

Figure 5. E�ect of supplier delivery performance 1 on
suppliers' allocation for Part 2.

Figure 6. E�ect of Supplier 3 reliability on the suppliers'
allocation for the Part 2 (objective: minimization of cost).

96, 100, and 102 were considered for this parameter,
and then, the sensitivity analysis at Pareto point 11
was carried out with the aim of maximizing the delivery
performance of the suppliers. The results indicate
that by increasing the delivery performance score of
Supplier 1, the demand was allocated to it so that the
allocation amount of Supplier 2 with a less delivery
performance score than Supplier 5 could be reduced
and the allocation amount of the Supplier 1 increased.
According to Figure 5, the allocation of this supplier
increased as long as its delivery performance score
remained equal to 90, and from this level onwards, its
allocation value was kept �xed. It was also observed
that by increasing the delivery performance of Sup-
plier 1, the value of the delivery performance objective
function and, also, the loss cost increased. The reason
for the increase in loss costs is that the Supplier 1 is
less reliable than other suppliers and therefore, has a
higher likelihood of failure. As a result, the existence of
this supplier in the supply base has led to an increase
in shortages and associated costs.

8.2. Supplier reliability
In order to investigate the e�ect of supplier reliability
on their allocation amount, Supplier 3 with the highest



A. Bakhtiari Tavana et al./Scientia Iranica, Transactions E: Industrial Engineering 30 (2023) 1796{1821 1811

Figure 7. E�ect of Supplier 3 reliability on suppliers'
allocation for Part 4 (objective: minimization of cost).

probability of the disruptive event (0.292) among the
suppliers was selected and for the reliability of this
supplier, the values 0, 0.01, 0.05, 0.1, 0.2, and 0.292
were considered. The results of any change in the
reliability were investigated for Parts 2 and 4, as can
be seen in Figures 6 and 7. In the best Pareto optimal
solution, assuming the cost objective function as the
main objective and the objective function of the supply
delivery performance as a constraint, the sensitivity
analysis was conducted. It can be observed that upon
reducing the failure probability of Supplier 3 (the one
in the optimal solution was not selected due to its low
reliability), it was placed at the supply base. The
allocation of Supplier 2 for Part 2 (which is more
probable to fail than the other suppliers) was reduced
and allocated to Supplier 3.

Also, for Part 4 which was initially allocated
to Suppliers 4 and 5, increasing the reliability of
Supplier 3 will result in the supply being shared among
Suppliers 2, 3, and 5. In other words, the Supplier 4 is
removed and its allocation is transferred to Suppliers 2
and 3. By selecting Supplier 2 in the supply base
(having a high failure probability and lower cost),
the balance between reliability and cost is achieved.
Also, between Suppliers 4 and 5, Supplier 5 with
a high delivery performance and less reliability than
Supplier 4 remains in the supply base. In addition,
by selecting Supplier 3 (with a lower delivery perfor-
mance and more reliability than Supplier 5), a balance
between delivery performance score and reliability is
established. When the objective function of supplier
delivery performance is considered the most important,
the corresponding parameter change resulted in an
infeasible region for the problem. However, when the
reliability of Supplier 3 was set to 0.2, an optimal
solution was obtained, and Supplier 3 was selected for
supplying Part 4.

8.3. Regions' reliability
In this section, the behavior of the model is analyzed
when the occurrence probability of semi-super events

Figure 8. E�ect of Region 3 reliability on suppliers'
allocation for Part 2 (objective: minimization of cost).

Figure 9. E�ect of Region 3 reliability on suppliers'
allocation for Part 4 (objective: minimization of cost).

for regions changes. The reliability of Region 3 varies
from 0 to 0.25. When the goal is to maximize the
supplier delivery performance and the reliability of
Region 3 is set to 0, 0.05, or 0.1, the problem remains
infeasible. However, if the reliability value of 0.15
is assigned to Region 3, Supplier 3 located in the
third region will be selected to supply Part 4. Also,
if the failure probability of this region exceeds 0.15,
Supplier 3 will not be selected. When considering the
cost objective function as the main objective, as shown
in Figures 8 and 9, an increase in the reliability of
Region 3 results in the third supplier being included in
the supply base to supply Parts 2 and 4. By considering
the reliability of zero (pr = 0) for the third region,
Supplier 3 located in this region and Supplier 2 are
selected to supply Part 4 and Supplier 4 is removed
from the supply base. The choice of Supplier 2 implies
making a balance between reliability, risk, and cost due
to the lower cost of this supplier. Also, when the failure
probability of Supplier 3's region is less than or equal
to the reliability of other regions, Supplier 3 is selected
despite its low reliability. This indicates a trade-o�
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Table 5. Comparison of the loss cost in the condition of existence and lack of 
exibility in the suppliers' capacity.

Objective Loss cost
Main model Eliminating suppliers' 
exibility

Minimization of cost 14709690 18554010
Maximization
of supplier delivery
performance

14709760 19230240

Figure 10. E�ect of Region 4 reliability on suppliers'
allocation for Part 5 (objective: maximization of delivery
performance).

between the reliability of the region and the reliability
of the supplier.

In the next step, the e�ect of region reliability
on the results was investigated by selecting Region 4,
where Suppliers 4, 5, and 9 are located. The range
of change in the reliability of this region ranges from
0.05 to 0.25. The results of sensitivity analysis with
regard to the delivery performance of the supplier
as the objective function are presented in Figure 10.
Accordingly, when the reliability of Region 4 varies
from 0.05 to 0.25, the allocation of Supplier 9 for
Part 5 is reduced and added to the allocation of
Suppliers 6 and 7. Although Suppliers 6 and 10 are
in the same region, the allocation of Supplier 9 shifts
to Supplier 6 since it has a lower failure probability
than Supplier (10). Supplier 9 remains in the supply
base due to the high delivery performance and high
reliability, and only its allocation is reduced.

8.4. Suppliers' 
exibility
In this section, the e�ect of changing the supplier's

exibility parameter on their selection and allocation
is examined. For this purpose, the 
exibility rate of
Supplier 4 for Part 3 was considered at �ve levels of 0.1,
0.2, 0.4, 0.6, 0.8, and 1. After solving the model with
the aim of maximizing the delivery performance, it can
be seen that upon increasing the 
exibility of Supplier
4, the demand allocated to it for Part 3 decreases.
Therefore, when a supplier has a very 
exible capacity,

the most appropriate strategy is to reserve its 
exible
capacity for disruptions. The �ndings demonstrate
that enhancing the 
exibility of certain suppliers does
not lead to a shift in their allocation, as there are
su�cient safety stocks available for those speci�c parts.

Also, to examine the e�ect of supplier 
exibility
on results, it was assumed that the 
exibility of all
suppliers was zero. Therefore, the only action during
contingency planning under disruption is to use safety
stock to obviate the shortage. In this case, when the
objective is to minimize costs, all suppliers will be
selected to prevent the shortage during the disruption
and in each scenario, the number of additional parts
sent from the available suppliers is zero. In addition,
according to Table 5, the cost of loss increases to its
previous value. Upon maximizing the supplier delivery
performance as the primary objective, the elimination
of 
exibility across all suppliers results in the selection
of only those with high delivery performance scores.
As compared to the cost objective function, a smaller
number of suppliers are chosen, which in turn leads to
higher loss costs.

8.5. Minimum safety stock
In this section, the e�ect of changing the parameter
wi (minimum required safety stock) on the results is
investigated. When the value of this parameter is
reduced by 50%, the loss cost rises relative to the main
model and the total cost decreases. Therefore, while
the total cost decreases due to lower purchasing and
holding costs of safety stocks, the loss cost increases as
a result of the limited use of suppliers' 
exible capacity
and the incomplete compensation for shortages through
supplier 
exibility. In general, the appropriate strategy
for contingency planning is the simultaneous use of the
suppliers' 
exible capacity and safety stock. Therefore,
complete elimination of safety stocks from the view
of supply chain risk management is not logical since
there is the occurrence likelihood of environmental risks
in the supply chain and all suppliers of a region are
a�ected. Therefore, in such a situation, the most
appropriate action is to use safety stock.

9. Conclusions and future works

In today's changing business environment, the automo-
tive supply chain as one of the most critical and com-
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plex supply chains may be exposed to various types of
risks and disruptions, and suppliers as the main source
of external risks can cause a broad range of disruptions.
Therefore, it is essential to consider approaches that
reduce the severity of the potential e�ects of these
disruptions and revert them to the initial state. In this
research, the problem of choosing resilient suppliers
and order allocation in the Iran-Khodro supply chain
(Sapco Company) was studied. First, the present struc-
ture of the supplier selection in the case study company
was investigated by interviewing relevant experts, and
the criteria for selecting the supplier were appointed
according to the conditions of the resilience. Then, the
mathematical model for choosing resilient supplier was
designed with the purpose of minimizing total costs
and maximizing the supplier's delivery performance
(in order to reduce the delay time in the process of
supplying parts). In this proposed model, disruption
and operational risks were considered. Also, the
presented model included contingency plans to support
the implementation of resilience strategies in order to
reduce the negative impact of disruptions. Then, after
determining the disruption scenarios in the company
and reducing the number of them through K-means
clustering method and collecting input data and model
parameters, the model was solved by utilizing the
augmented "-constraint method. The mathematical
model of the present study was a stochastic (scenario-
based), integer, bi-objective, single-period, and multi-
product model. In addition, the chance-constrained
programming approach was applied due to the uncer-
tainty in demand for parts.

The regionalization of the supply chain was con-
sidered as a way of reducing the impact of environmen-
tal disruptions. Our results supported regionalizing
the supply chain by selecting multiple suppliers from
various regions.

By examining the results, it can be seen that
due to the occurrence likelihood of disruptions in the
suppliers or regions (occurrences such as natural dis-
asters, economic crises, bankruptcies, employee strikes,
disruptions in transportation, etc.) and as a result of
disruptions in procurement processes, the implemen-
tation of contingency planning should be considered to
reduce the e�ects of these disruptions. The contingency
plan suggested in this study includes transferring the
order allocation of disrupted suppliers to the available
suppliers based on their 
exibility level and their deliv-
ery performance, as well as the purchasing and storing
of additional inventory as safety stock. As previously
noted, the sensitivity analysis of the 
exibility and
minimum safety stock parameters indicates that the
utilization of safety stocks should be accompanied by

exibility in supplier capacity. Otherwise, the loss cost
will exceed previous levels. It is often believed that
pre-positioning inventory (safety stock) can mitigate

disruptions and associated shortages, but at the same
time, it may increase costs and reduce pro�tability.
However, in addition to supply disruptions, there is
a probability of environmental disruptions occurring in
the supply chain. Thus, it is necessary to maintain
safety stock to mitigate the risks associated with such
disruptions. The results also show that allocating fewer
orders to suppliers with high 
exibility and reserving
their 
exible capacity can help reduce the e�ects of dis-
ruptions. In general, it can be stated that for supplier
selection in a normal situation, delivery performance,
reliability, and cost criteria are important. However, in
a disruptive situation, when ordering additional parts
from the available supplier, 
exibility rate and delivery
performance criteria should be prioritized. In other
words, when supplying additional parts to compensate
for shortages, among suppliers with similar 
exible
capacities, those with higher delivery performances
should be selected. In addition, the results of the
present study indicate that the 
exibility, delivery
performance, and reliability of suppliers and regions,
as well as achieving a balance between these criteria,
should be considered as important determinants in
developing contingency plans for selecting resilient sup-
pliers and allocating orders. Finally, the results of this
research can help the managers of Sapco Company and
also other managers and researchers to design resilient
supply chains to respond to disruptions e�ectively.

The directions worth considering in future re-
search are as follows:

1. Designing a mathematical model in a multi-period
mode and considering the time dimension;

2. Considering the uncertainty of other parameters of
the model including capacity, cost, etc;

3. Using other resilience strategies in choosing resilient
suppliers, including the adoption of backup suppli-
ers, protection of suppliers, etc;

4. Considering dependent disruption events where a
disrupted supplier can a�ect other suppliers that
depend on it.
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Appendix A
The steps in implementing the suggested model are
shown in Figure A.1.

Appendix B
The parameters and optimal solutions of numerical
example are shown in Tables B.1 to B.5.

Appendix C
De�ned disruption scenarios and their occurrence prob-
ability are shown in Table C.1.

Figure A.1. Steps of implementing the presented model.
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Table B.1. The parameters of numerical example.

Part
code

Holding
cost

(Hli)

Loss
cost
(mi)

Demand of
part
(di)

Warehouse
capacity

(vi)

Minimum
inventory
required

(wi)

Supplier
code

Flexibility
of supplier

(bi;h)

Capacity of
supplier
(Cai;h)

Purchasing
cost

(Cni;h)

Transportation
cost

(Tni;h)

1

56000 84900 475 4410 250

1 0.2 3000 25000 105
1 2 0.3 4000 26000 280
1 3 0.4 5000 27000 380
1 4 0.5 6000 28000 400
2

52500 78800 495 4410 252

1 0.2 3200 25100 102
2 2 0.3 4100 26280 285
2 3 0.4 5500 27250 385
2 4 0.5 6100 28250 405
3

48000 72700 371 4410 255

1 0.2 3100 25220 106
3 2 0.3 4200 26250 282
3 3 0.4 5100 27260 380
3 4 0.5 6200 28240 400
4

44000 66700 475 4410 320

1 0.2 3500 25120 105
4 2 0.3 4000 26240 282
4 3 0.42 5200 27230 385
4 4 0.5 6000 28240 400
5

121000 181000 305 2604 200

1 0.19 3200 25300 108
5 2 0.32 4400 26640 250
5 3 0.4 5000 27630 382
5 4 0.5 6200 28640 410

Table B.2. The parameters of numerical example.

Regions (pr) Region 1 (0.010) Region 2 (0.015)
Suppliers 1 2 3 4

ph 0.042 0.039 0.035 0.03
Osh 21 25.65 26.25 28.75
Fh 3000 3000 3000 3000

Table B.3. The optimal solutions of numerical example.

Supplier code Supplier code
Part code 1 2 3 4 Part code 1 2 3 4

ai;h

1 { 174 { 301

yi;h

1 { 250 { {
2 { 187 { 308 2 { 252 { {
3 { 90 { 281 3 { 255 { {
4 { 120 { 354 4 { 320 { {
5 31 53 { 221 5 200 { { {

Table B.4. Values of objective functions for di�erent Pareto points.

Pareto points
Objective functions

Expected
total cost

Supplier delivery
performance

1 162663500 45718.92
2 162821900 46859.21
3 163123200 48000.57
4 163451500 49139.82
5 163805900 50280.1
6 164230400 51420.39
7 164727000 52560.68
8 165438300 53700.99
9 166260900 54841.27
10 167400900 55981.56
11 169315500 57121.85
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Table C.1. De�ned disruption scenarios and their occurrence probability.

Occurrence
probability (�s )

Suppliers

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0.10334 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 0.09127 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

3 0.03052 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1

4 0.01968 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

5 0.00609 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

6 0.00124 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1

7 0.00004 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1

8 0.00075 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1

9 0.00101 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1

10 3.0517E-6 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1

11 2.687E-6 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

12 0.00049 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1

13 0.00099 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1

14 0.00004 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1

15 0.00002 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1

16 0.00001 1 1 1 0 1 1 1 1 0 1 1 0 1 0 1

17 2.794E-6 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1

18 0.00117 1 0 1 1 1 1 0 1 1 1 0 0 1 1 1

19 0.00031 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

20 0.00057 1 1 1 0 1 1 1 1 0 1 1 1 0 1 0

21 1.598E-6 1 0 1 0 1 1 1 1 0 1 0 1 1 0 1

22 2.97E-6 1 1 1 0 1 1 1 1 0 1 0 0 0 1 1

23 3.7012E-8 1 0 1 1 0 1 1 1 1 0 0 1 1 1 0

24 4.725E-9 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0

25 0.00458 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1

26 5.225E-9 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1

27 2.549E-6 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1

28 0.00104 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1

29 5.657E-7 1 0 1 0 0 1 1 1 0 0 1 1 0 0 0

30 8.0501E-9 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0

31 1.755E-10 1 0 0 1 0 1 1 0 1 0 1 0 1 0 0

32 9.353E-9 1 1 1 0 1 0 0 0 0 0 1 1 0 1 0

33 8.743E-11 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0

34 7.802E-7 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0

35 9.282E-7 1 0 1 0 1 1 0 1 0 1 0 0 0 0 0

36 6.178E-13 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1

37 1.852E-13 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1

38 1.266E-7 0 0 1 0 1 1 0 1 0 1 0 0 0 0 0

39 6.244E-7 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0

40 2.727E-14 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1
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Table D.1. Allocation value of each part to di�erent suppliers in the best Pareto optimal solution (ai;h).

Supplier code
Part code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 { 6947 { 7500 { { { { { { { { { { {
2 { 35752 { { 46153 { { { { { { { { { {
3 { 19305 { 26666 20869 { { { { { { { { { {
4 { { { 5364 6333 { { { { { { { { { {
5 { { { { { 159 254 { 969 200 { { { { {
6 { { { { { 166 316 { 969 200 { { { { {
7 { { { { { { 124 { 912 200 { { { { {
8 { { { { { 159 254 { 969 200 { { { { {
9 { 1090 { { 9804 { { { { { { { { { {
10 { { { { { 102 117 { 225 572 { { { { {
11 { { { { { { { { { { 102 15 15 { 15
12 { { { { { { { { { { 93 17 17 17 17
13 { { { { { { { { { { 137 { 20 { {
14 { { { { { { { { { { 184 31 31 31 31
15 { { { { { { { { { { 189 33 33 33 33
16 { { { { { { { { { { 189 33 33 33 33
17 { { { { { { { { { { 141 { 35 { {
18 { { { { { { { { { { 141 { 35 { {

Table D.2. Order optimal value of safety stock for each part (yi;h).

Supplier code
Part code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 { { { 300 { { { { { { { { { { {
2 { { { { { { { { { { { { { { {
3 { 1000 { { { { { { { { { { { { {
4 { { { 1269 1267 { { { { { { { { { {
5 { { { { { { 840 { { { { { { { {
6 { { { { { { 549 { { { { { { { {
7 { { { { { { 840 { { { { { { { {
8 { { { { { { 801 { 291 { { { { { {
9 { { { { 1464 { { { { { { { { { {
10 { { { { { 363 131 { 23 172 { { { { {
11 { { { { { { { { { { 298 232 385 { 385
12 { { { { { { { { { { 157 144 233 233 233
13 { { { { { { { { { { 133 { { { {
14 { { { { { { { { { { 176 237 329 329 329
15 { { { { { { { { { { 131 274 287 287 287
16 { { { { { { { { { { 151 262 307 307 307
17 { { { { { { { { { { { { 160 { {
18 { { { { { { { { { { { { 136 { {

Appendix D

Table D.1. Allocation value of each part to di�erent
suppliers in the best Pareto optimal solution (ai;h).

Table D.2. Order optimal value of safety stock for
each part (yi;h).

Appendix E
The optimal value of second stage variables for some

parts in scenarios 1, 20, and 24 are shown in Table E.1.
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Table E.1. The optimal value of second stage variables for some parts in scenarios 1, 20, and 24.

Part code Supplier
code

Scenario 1 Scenario 20 Scenario 24

qi;h;s qi;h;s Aqi;h;s gi;s Ui;s qi;h;s Aqi;h;s gi;s Ui;s

2
2 35752 35752 0

0 0
50052 14300 4600

27253
5 46153 46153 0 0 0

3

2 19305 19305 0

0 0

27027 7722

1000 68144 26666 26666 0 31999 5333

5 20869 20869 0 0 0

6

6 166 182 16

0 0

0 0

0 0
7 316 0 0 323 76

9 969 1259 290 1259 290

10 200 210 10 0 0

9
2 1090 1090 0

0 0
1417 327

1464 8013
5 9804 9804 0 0 0

10

6 102 102 0

0 0

0 0

641 0
7 117 0 0 128 11

9 225 225 0 247 22

10 572 689 117 0 0

12

11 93 110 17

0 0

0 0

96 0

12 17 0 0 22 5

13 17 17 0 20 3

14 17 17 0 23 6

15 17 17 0 0 0

14

11 184 215 31

0 0

0 0

200 0

12 31 0 0 34 3

13 31 31 0 37 6

14 31 31 0 37 6

15 31 31 0 0 0

16

11 189 222 33

0 0

0 0

201 0

12 33 0 0 39 6

13 33 33 0 42 9

14 33 33 0 39 6

15 33 33 0 0 0

18
11 141 141 0

0 0
0 0

133 0
13 35 35 0 43 8
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