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Abstract. Integration of Distributed Generation (DG) into a distribution network reduces
the costs of network expansion and increases the network reliability by reducing the voltage
magnitude deviations. This study proposes a Symbiotic Organisms Search (SOS)-based
technique for determining the best size and position of DG in radial distribution networks
to improve their voltage pro�le and voltage security state. The objective is to minimize
the bus voltage variation and maximize Voltage Stability Index (VSI) of the network as a
multi-objective optimization problem in the presence of source and load uncertainties. In
addition, the uncertainty regarding the solar power, wind power, and load is modeled using
2m point estimate method along with SOS algorithm. To better illustrate the e�ect of
the DG placement on the voltage security state of the distribution system, the system was
classi�ed into three states depending on the VSI values. The simulation results obtained
from two standard (IEEE) radial distribution networks con�rm the e�ciency and accuracy
of the proposed SOS method. The results of the SOS-based method are compared with
those obtained by some other techniques proposed in recent literature based on which it can
be concluded that the SOS algorithm outperforms other standard optimization techniques.
© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

Due to the increasing environmental concerns as well
as electricity market restructuring, Distributed Gener-
ation (DG) has been widely applied to the distribu-
tion networks. Integration of DG into the distribution
system a�ects its power 
ow, voltage pro�le, voltage
stability, reliability, and loadability [1]. Proper allot-
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ment of DG to distribution networks can improve their
operating state [2]. Due to the high R=X ratio of
the distribution system, the power loss is greater than
that in the transmission system. As the last assembly
between the generation site and consumer, the distribu-
tion system has one main drawback, i.e., power quality
problem. In order to overcome this problem, it is re-
quired to install renewable DGs of ideal size in optimal
locations in distribution systems [3]. Given that the
arbitrary placement of DG may increase the power loss,
the power 
ow may be in the opposite direction, which
may increase heat generation in feeders [4].

In the literature, di�erent technical and economic
objectives were utilized for DG installation in the
distribution networks [5]. In [6], a probabilistic Voltage
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Stability Index (VSI) was used that could combine the
cumulants using the maximum entropy algorithm to
study the radial distribution network considering the
uncertainty. In [7], a new and fast method for tracing
the P-V curve was established to analyze the voltage
stability. An analytical method of DG assignment
and sizing was proposed in [8] to reduce the system
loss. Backtracking search optimization algorithm was
employed in [9] to obtain the objective function capable
of reducing the system real power loss and improving
the voltage pro�le. In [10], many conventional and
metaheuristic techniques were discussed followed by
reviewing di�erent analytical techniques for DG alloca-
tion. In [11], a multi-objective function was introduced
to minimize the annual total cost and distribution
network risk, considering the correlations between the
generation and load uncertainties. Grey wolf optimiza-
tion technique was implemented in [12] to minimize
the reactive power loss and improve the voltage pro�le.
Modi�ed traditional �re
y method was also used in [13]
for optimal allocation and size determination of the DG
with the objective of reducing the active power or daily
energy losses. Shu�ed bat algorithm proposed in [14]
could minimize the power losses, cost, and voltage
deviation. Ant Lion Optimization (ALO) technique
presented in [15] minimized the line loss and improved
the voltage pro�le as well as VSI for optimal DG
placement within the distribution system. Placement
of large-scale utility-owned wind DG was achieved
in [16] using the cumulative probabilistic distribution
function and congestion improvement ratio. In [17],
a teaching-learning-based method for DG placement
was suggested where the objective function comprised
the loss reduction, voltage pro�le improvement, annual
saving improvement, and VSI maximization. Monte
Carlo-dependent multi-objective optimal placement of
renewable DG using open computing language was
done by authors in [18] based on the line loss and
cost of DG as the objective function. In [19], the
investment cost, highest income, lowest environmental
cost, and minimum loss were considered as the objec-
tive functions for DG assignment under uncertainty
through Dempster-Shafer evidence theory and a�ne
arithmetic method. A new stochastic method for
DG allocation in the distribution system with the
objective of loss reduction based on the optimal power

ow and sensitivity analysis was proposed in [20].
Genetic algorithm was used in [21] to determine the
optimal size of DG and optimal recon�guration of
the network, aiming to minimize the line losses as
well as total harmonic distortion and to improve the
voltage pro�le of the network. A novel multi-objective
opposition-based chaotic di�erential evolution algo-
rithm was proposed in [22] for ideal placement of DG,
considering the reduction of the power loss, yearly
economic loss, and voltage deviation as the objective

function. In [23], uncertainties in the output power
of the renewable energy sources were evaluated by
proposing a new formulation obtained from Particle
Swarm Optimization (PSO) algorithm-based optimal
location and sizing wind, solar, and fuel cells in the
distribution system. Multi-objective Taguchi approach
was presented in [24] for best allotment of DG in
both small and large distribution systems with the
objective functions of minimization of the real power
loss, minimization of reactive power loss, minimization
of node voltage deviation, maximization of Voltage
Stability Margin (VSM), and maximization of VSI. A
novel chaotic stochastic fractal search method was used
in [25] to determine the optimal siting, sizing, and
number of DG units in the distribution system where
the objective function was power loss minimization.
Under di�erent loading conditions, the optimal sizing
and siting of DG vary. In [26], examination as to how
the optimal solution would change as a result of di�er-
ent load compositions was conducted by proposing a
local PSO variant algorithm as the solution algorithm.
A hybrid technique for reducing the distribution system
losses was utilized in [27] to optimize the position
and size of DG units. The hybrid technique is a
combination of Grasshopper Optimization and Cuckoo
Search algorithms. A novel approach to DG placement
was presented in [28] where weak buses were identi�ed
�rst using Voltage Stability Margin Index (VSMI)
while the optimum size of DG unit was computed via
MATLAB curve-�tting approximation. In [29], a recent
optimization method called improved raven roosting
optimization algorithm was used for optimal placement
of DG in the radial distribution system where the
technical issues were included via a weighted multi-
objective index. In [30], the Pareto-front of non-
dominated solutions was obtained from the contradic-
tory relationship between the reduction in the MVA
rating of DGs and that in the power losses of the system
using multi-objective di�erential evolution algorithm.
In [31], minimization of the system total real power loss
was mentioned as the main objective while determining
the optimal location and size of di�erent DG types
using a hybrid technique composed of Weight-Improved
Particle Swarm Optimization (WIPSO) and Gravi-
tational Search Algorithm (GSA) called the hybrid
WIPSO-GSA algorithm.

The discussed heuristics optimization methods in
the literature succeeded in providing an approximate
solution when the classical methods failed to do so;
however, the convergence speed of these algorithms
is slow, and many of them fail to �nd the optimal
solution. On the contrary, analytical techniques alone
are not enough for optimal placement of DGs [32]. In
the earlier research works of the same authors, DG
placement problem was solved through Spider Monkey
Optimization (SMO) technique with only voltage devi-
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ation minimization as the objective function. Of note,
a correct solution may not be found through the SMO
technique due to the arbitrary parameters [33].

In this regard, in an e�ort to improve their
previous work, the authors of this study used Symbi-
otic Organisms Search (SOS) and considered a multi-
objective optimization problem consisting of simulta-
neous voltage deviation minimization and VSI maxi-
mization. According to the �ndings, SOS outperformed
some other population-based algorithms since it o�ered
mutualism strategy to modify the candidate solutions,
a strategy that was not used in PSO and Di�erential
Evolution. A unique SOS characteristic is its use of
another mutation operator called Parasitism. The
main advantage of SOS is that the speci�c parameters
are not required to run the algorithm [34].

The referenced studies demonstrated the e�ect
of DG allocation on the loss reduction, voltage pro-
�le improvement, and indicator value enhancement.
However, the main focus of this study was to show
the e�ect of DG allocation on the voltage security
state of the distribution system. To increase the e�-
ciency of the SOS, weighted sum technique [35] was
employed to solve the multi-objective problem, which
could generate di�erent Pareto optimal solutions. Due
to the power system restructuring and unpredictable
nature of renewable energy sources, it is very important
to model the uncertainty of the power systems. The
current study utilized a 2m Point Estimation Method
(2m PEM) as a non-iterative, e�cient, simple, and easy
technique with no convergence problem to model the
generator and load uncertainties [36].

SOS technique was also used for DG placement.
Based on this algorithm, the candidate buses for DG
allocation along with DG sizes were calculated. In
addition, the outcomes of SOS were crosschecked using
Quasi-Oppositional Swine In
uenza Model Based Op-
timization with Quarantine (QOSIMBO-Q) and Swine
In
uenza Model Based Optimization with Quarantine
(SIMBO-Q) [37] to prove its superiority. During
contingency, the state of the distribution systems under
test was categorized into three operating states namely
secure, intermediate, and emergency based on the VSI
values [38]. This methodology was tested on two stan-
dard IEEE distribution networks, and the obtained re-
sults revealed that the SOS technique could ensure the
utmost voltage pro�le improvement and improve the
voltage security states of the distribution system since
the proposed scheme could increase the indicator value.

2. Problem formulation

2.1. Objective functions
2.1.1. Improvement of voltage pro�le
Voltage security of a system depends mostly on the
bus voltage magnitudes [39]. To be speci�c, the system

with less deviation of the bus voltages from the rated
magnitude is more secure. In this regard, in the
current study, minimization of the voltage variation
was considered as the �rst objective function for voltage
pro�le improvement in each bus.

The objective function for voltage pro�le improve-
ment or voltage variation reduction for N node network
can be written as:

f1 = Min
NX
i=1

(jVij � jVratedj )2; (1)

where Vi is the magnitude of voltage at Node l, and
Vrated the magnitude of the rated voltage (which is 1
p.u in this study).

2.1.2. Improvement of VSI
In case of contingency in the distribution system, the
value of the system indicator will vary. For this reason,
improvement of the stability indicator is considered
as the second objective function. Several indices were
developed by the researchers to analyze the operating
condition of the power system. The VSI proposed by
Chakravorty and Das [38] is given below:

V SI = V 4
k � 4[PlX �QlR]2 � 4[PlR+QlX]V 2

k ; (2)

where R is the line resistance, X the line reactance, Vk
the voltage of sending end node, Pl the total real power
load available at receiving end node, and Ql the total
reactive power load available at the receiving end node.

For stable operation of the radial distribution
system, the range of VSI should be between 0 and 1.

The bus for which the value of VSI is the lowest
is considered as the weakest bus in the system. In this
situation, either Eq. (2) or f2 should be maximized
which is mathematically represented as follows:

f2 = Min
�

1
V SI(l)

�
; (3)

where l = 1; 2; 3; :::; N .
The VSI value determines the voltage stability

condition of the bus in the distribution system. The
DGs should be installed on the bus with the lowest VSI
value given the higher possibility of the collapse of the
voltage of the mentioned bus. The higher value of the
VSI is indicative of the less chance of voltage collapse
and in the current research, the VSI improvement was
considered the second objective function, i.e., maxi-
mizing Eq. (2) or minimizing f2. The third objective
function is a multi-objective problem consisting of
minimization of voltage deviation and maximization of
VSI. As in the multi-objective problem, both objective
functions should be written in either minimization or
maximization forms, and maximization of the VSI part
is converted into the minimization of the inverse of VSI.
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2.1.3. Improvement of voltage pro�le and VSI
The third objective function is a multi-objective prob-
lem where both voltage pro�le and VSI should be
simultaneously improved, as expressed in the following
equation:

f3 = Min(f1 � w + f2 � (1� w)); (4)

where f1 and f2 are the functions of the voltage pro�le
and VSI improvements, respectively, and w is the
weighting factor which varies uniformly between 0 and
1 with a step of 0.05.

2.2. Constraints
2.2.1. Equality constraint
The equality constraint here is the power balance
equation that should be satis�ed at each bus:

Pgl = Pdl + Vl
NX
k=1

VkYlk cos(�l � �k � �lk); (5)

Qgl = Qdl + Vl
NX
k=1

VkYlk sin(�l � �k � �lk); (6)

where Pgl and Qgl are the generated active and reactive
power at bus l, respectively, Pdl and Qdl are demands
for active and reactive power at bus l, respectively,
Vk\�k and Vl\�l are the voltages of the kth and lth
buses, respectively, Ylk is the magnitude of the lkth
element of admittance matrix, and N is the total
number of buses.

2.2.2. Inequality constraints
In this optimization problem, there are three inequality
constraints that are discussed in the following sub-
sections.

� Limits of bus voltage magnitude. The voltage
magnitude should lie between the upper and lower
values at every node of the network. Voltage
magnitude constraint can be written as:

V min
l � Vl � V max

l ; (7)

where V min
l and V max

l are the minimum and maxi-
mum bus voltage magnitudes equal to 0.95 p.u and
1.05 p.u, respectively.

� DG active power constraints. DG capacity at
any given location is dependent on the sources of
energy available at that site. In this respect, it is
important to keep the DG active power capacity
within the upper and lower limits [40].

The range of DG active power is determined in
the following:

Pmin
gl � Pgl � Pmax

gl : (8)

Here,

X
Pgl �

NX
i=2

PLOAD; (9)

where Pmin
gl and Pmax

gl are the minimum and max-
imum values of the total real power production of
DG, PLOAD is the total real power load linked in
the network, and N represents the number of nodes.
In this study, the power injected by the three DGs
is considered as less than or equal to the total real
power load of the system.

� Line capacity constraint. The amount of
complex power 
owing through a line should be
less than its rated value, which is expressed by the
following equation:
Sl � S(rated); (10)

where Sl is the actual complex power at bus l, and
S(rated) the rated complex power at bus l.

3. Modeling of uncertainties

The output power of the solar energy-based DG is not
constant given its dependency on the solar intensity,
which is also variable. The output power obtained from
the wind power-based DG is dependent on the wind
speed that also varies from time to time. The amount
of load demand also changes. Normally, deterministic
forecasts give information about the historical perfor-
mance of the proposed technique, but they are unable
to estimate the uncertainty associated with the given
prediction. In this situation, uncertainty is expressed in
the form of probabilistic forecasts. Use of probabilistic
forecasts can bring about more economic bene�ts [41].
This research introduced some variable parameters
such as solar intensity, wind speed, and load demand
based on the Probability Density Function (PDF).

The signi�cant superiority of the probabilistic
approach over its deterministic counterpart is that the
potential scenarios of the stratigraphic con�guration
and stratum properties can be sampled according to the
characterized uncertainty, and this type of sampled sce-
narios is more systematic and complete than the other
types in the limited scenarios given by deterministic
approach [42].

3.1. Uncertainty of wind power
Since wind speed is stochastic in nature, the power out-
put from wind turbine is uncertain. In this paper, the
PDF of wind is described based on Weibull distribution
and expressed as follows [11]:

f(v) =
�
k
c

��v
c

�(k�1)
exp

�
��v

c

�k�
; (11)

where the constants of Weibull distribution are c and k.
Normally, the wind speed is monitored at a height

of 10 m and is converted into the wind speed at required
height based on the following equation [11]:
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VH = V10

�
H
10

� 1
7

; (12)

where VH is the wind speed at height H and V10 the
wind speed at 10 m. Based on the parameters of wind
turbine generator and VH , the value of Pwtg can be
calculated through the following equation [11]:

Pwtg=

8><>:0 0 � VH � Vci or Vco � VH
P rwtg

VH�Vci
Vr�Vci Vci � VH � Vr

P rwtg Vr � VH � Vco (13)

where P rwtg is the rated active power of wind turbine
generator, and Vci; Vr; Vco are cut in speed, rated
speed, and cut out speed of wind turbine generator,
respectively.

3.2. Uncertainty of solar power
Although many factors can a�ect the output power
of the solar photo voltaic cell, the solar intensity, S
in particular, is emphasized here for simplicity. The
stochastic light intensity, which is also known as Beta
distribution, can be written as follows [11]:

f(s) =
�(�+ �)
�(�)�(�)

�
S
Sr

���1�
1� S

Sr

���1

; (14)

where � and � are known as the shape parameters
of Beta distribution; Sr and �(:) are the rated light
intensity and Gamma function, respectively.

The active power obtained from the solar photo
voltaic cell can be calculated from the following equa-
tion [11]:

Ppvg =

(
Ppvg;r SSr ; S � Sr
Ppvg;r; S > Sr

(15)

where Ppvg;r is the rated active power of the solar photo
voltaic cell.

3.3. Uncertainty of load
The load demand of the consumers varies on di�erent
days, hence considered a stochastic variable. To better
describe the load uncertainty, normal distribution was
taken into consideration in this study. The PDF for
the load demand can be written as [11]:

f(Pl) =
1

�p
p

2�
exp

"
� (Pl � �p)2

2�2
p

#
; (16)

Ql = Pl tan('l); (17)

where Pl and Ql denote random active and reactive
power of load, respectively; �p is the mean of active
power, and 'l the load power factor.

3.4. Two-point estimate method
The current research used Hong's 2m PEM method for

uncertainty modeling of the renewable energy sources
and loads [43]. In case 2m PEM method is used for
stochastic problem, two deterministic points on each
side of the mean value are found for every random
variable. In the next step, the required problem is
solved twice for every random variable by generating
two deterministic points where the values of other
random variables are assumed to be equal to their mean
value. Here, the uncertain variables are solar or wind
output and load amount. In the �rst step of 2m PEM
method, the initial values are calculated as follows:

E(A)(1) = 0; E(A2)(1) = 0: (18)

In the second step, two standard locations and
probability are expressed in Eqs. (19), (20), (21), and
(22), as shown below:

�m;1 =
�m;3

2
+

s
n+
�
�m;3

2

�2

m = 1; :::; n; (19)

�m;2 =
�m;3

2
�
s
n+

�
�m;3

2

�2

m= 1; :::; n; (20)

Pm;1 =
��m;2

2n
q
n+ (�m;32 )

2
m = 1; :::; n; (21)

Pm;2 =
��m;1

2n
q
n+ (�m;32 )

2
m = 1; :::; n: (22)

Based on these equations, two estimated locations for
the mth uncertain variable can be written as:
xm;1 = �x;m + �m;1:�x;m; (23)

xm;2 = �x;m + �m;2:�x;m; (24)

where �x;m and �x;m represent the mean and variance
of the random variable m, respectively.

Thereafter, the objective function is evaluated for
the same input parameters and same values for the mth
uncertain variable.

The output variable Y can be calculated with
respect to input variable X as:

Y = f(X); (25)

X=[�m;1; �m;2; � � � ; xm;i; � � � ; �m;n]8i 2 f1; 2g: (26)

For all random variables calculated, the following
parameters are given:

E(Y )m+1 �= E(Y )m +
2X
i=1

Pm;i:h(X); (27)

E(Y 2)m+1 �= E(Y 2)m +
2X
i=1

Pm;i:h2(X): (28)

The mean or expected value and standard deviation
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of Y can be expressed as:

 Y = E(Y ); (29)

�Y =
q
E(Y 2)�  2

Y : (30)

4. SOS algorithm

SOS is a meta-heuristic algorithm developed by Cheng
and Prayogo in 2014. In this algorithm, the symbiotic
strategies of the organisms among themselves are used
to simulate and survive in the ecosystem. There are
three types that have a symbiotic relationship in nature
namely the mutualism, commensalism, and parasitism.
Based on these relationships, the SOS algorithm can be
formulated as follows:

4.1. Mutualism phase
Both organisms bene�t from each other at the Mutu-
alism phase of SOS. The example of Mutualism is the
relationship between bees and 
owers. The bees collect
nectar and bene�t from 
owers to make honey. At the
time of collecting nectar, bees also take pollen grains
from the 
ower and give them to another 
ower, which
helps pollination. This phase can be expressed by the
following equations [44]:

Xknew = Xk + rand(0; 1)

�(Xbest �Mutual V ector �BF1); (31)

Xlnew = Xl + rand(0; 1)

�(Xbest �Mutual V ector �BF2); (32)

Mutual V ector =
Xk +Xl

2
; (33)

where Xk is the kth member organism of the ecosystem
and Xl is a random parameter to interact with Xk. In
Eqs. (31) and (32), vector `rand(0; 1)' includes random
numbers. BF1 and BF2 are bene�t vectors that are
either 1 or 2. The mutual relation between organisms
Xk and Xl is represented by Mutual V ector.

4.2. Commensalism phase
In nature, the relationship between two spices in which
one collects food from the other without harming or
providing bene�t to the other is called Commensalism.
Such a relationship is found between the remora �sh
and shark in which remora �sh is fed by the leftover
of the shark's food by always remaining attached to it
which, in turn, brings no bene�t or harm to the shark.
At this phase, Xl is chosen randomly which will interact
with Xk to create a new organism, fmax

i , using the
following equation:

Xknew = Xk + rand(�1; 1) � (Xbest �Xl); (34)

where (Xbest �Xl) represents the advantage provided
to Xk by Xl to raise its bene�t in the ecosystem to the
highest degree up to Xbest.

4.3. Parasitism phase
Parasitism is the relationship between two organisms
in which once one gets harmed, the other will stand to
bene�t in the ecosystem. The bene�tted organism is
called parasite, while the harmed one is known as the
host. An example of Parasitism is deer tick attached
to the host to suck its blood. However, as a carrier
of Lyme disease, it causes joint damage and kidney
problems with lack of blood to the host, i.e., deer.

Here, the host in SOS is Xl which is selected
randomly. An arti�cial organism called Parasite Vector
is created in the search space. When the value of
Parasite Vector is larger than Xl, the position of Xl
will be taken by the parasite. On the contrary, in case
of the higher �tness of Xl, the Parasite Vector will not
survive in the ecosystem.

5. SOS-based optimal placement and sizing
DG

For determining the optimal location and sizing of DG
based on SOS in the distribution system, the following
steps should be taken:

Step 1. Initialize ecosystem with eco size, number
of iterations, termination criteria, and maximum
number of �tness function evaluations (max-�t-eval);

Step 2. Initialize a number of DGs and power output
of each DG by assigning the maximum and minimum
output of each DG;

Step 3. Create an initial ecosystem by determining
the random location and size of DG;

Step 4. Run the load 
ow and check the constraints.
If the constraints are satis�ed, go to the next step;
otherwise, create the ecosystem again;

Step 5. Continue the outer loop up to the maximum
value of iteration while the inner loop will do work
until the last member of ecosystem is reached;

Step 6. At the Mutualism phase, choose an organism
Xl such that Xl 6= Xk;

Step 7. Determine the Mutual-Vector and Bene�t
Factor (BF);

Step 8. Modify Xk and Xl based on Eqs. (31) and
(32);

Step 9. Calculate the �tness value of the modi�ed
organism. If the modi�ed organism has a higher
�tness value, it will replace the old one;

Step 10. At the commensalism phase, select an
organism Xl randomly such that Xl 6= Xk;
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Step 11. Modify Xk using Xl based on Eq. (34);

Step 12. Calculate the �tness value of the new
organism. If the �tness value of the new organism
is higher than that of others, it will be retained in
the ecosystem;

Step 13. At the parasitism phase, select an organism
Xl randomly such that Xl 6= Xk;

Step 14. Parasite-Vector is created from organism
Xl;

Step 15. Calculate the �tness value of the Parasite
Vector and if the �tness value is higher than Xl, the
position of Xl will be replaced by Parasite Vector;

Step 16. Repeat the steps for eco size;

Step 17. To achieve the termination criteria, stop
the process and �nd an optimal solution to the single-
objective optimization problem; otherwise, repeat the
steps from Steps 6 to 16. In the case of the multi-
objective problem, when the current iteration exceeds
or is equal to the maximum number of iterations, the
result will be stored in an array (Pareto-optimal set)
and the iteration will stop; otherwise, repeat the steps
from Steps 6 to 16;

Step 18. For bi-objective problem, the value of will
vary from 0 to 1 in the steps of 0.05; in Steps 3 to 17,
it will be repeated until the value of reaches 1;

Step 19. In the proposed technique for the bi-
objective optimization problem, di�erent Pareto-
optimal solutions are obtained using di�erent weights
and then, the best compromise result is selected from
the optimal Pareto set. The two objective functions
have di�erent ranges and dimensions. As a result, a
fuzzy satisfying method is utilized to normalize the
objective functions.

In order to solve the multi-objective optimization
problem, the best result from the Pareto-optimal front
was selected using the fuzzy membership technique,
which maps the value of the objective function into the
interval [0, 1]. For the ith objective function, the fuzzy
membership function Kfi can be written as follows:

Kfi =

8><>:0;Ki � 0
Ki; 0 < Ki < 1
1; Ki � 1

(35)

where:

Ki =
fmax
i � fi

fmax
i � fmin

i
; (36)

where fmin
i and fmax

i are the minimum and maximum
values of the ith objective function, respectively. The
normalized membership function for each solution j can

be written as:

FDM j =

26664
nP
i=1

Kj
fi

MP
j=1

nP
i=1

Kj
fi

37775 ; (37)

where M and n are the values of the non-dominated
solutions and number of objective functions, respec-
tively. The best compromise solution is found for the
maximum value of FDM j . Figure 1 illustrates the
SOS-based optimal DG placement technique.

6. Simulation results and discussion

SOS algorithm used for determining the best location
and DG rating was simulated in MATLAB and tested
on two di�erent distribution networks, i.e., IEEE 33
bus radial distribution system (Test System-I) and
IEEE 69 bus radial distribution system (Test System-
II). In both networks, three DGs are installed using
the optimization algorithm, and the DGs are con-
sidered Type-1 DG; in other words, they can inject
real power only. The maximum sizes of all DGs are
considered as 1.5 MW. The e�ect of DG installation
on the voltage pro�le, VSI, and voltage security state
of the distribution system was also analyzed in the
present study under all single line contingencies. In
this analysis, those buses that do not get power due
to particular contingency were eliminated from the
system; for example, tripping the line between buses 3
and 23 as well as between buses 24 and 25 does not get
power for Test System-I. Therefore, buses 24 and 25 are
excluded from the recon�gured network for analysis. A
similar technique is applicable to every line tripping in
all test systems.

This study took into account three di�erent cases
for optimal location and sizing of three DGs. Case 1
and Case 2 focus on the voltage pro�le and VSI
improvements, respectively, and Case 3 is a multi-
objective problem that simultaneously takes into ac-
count the voltage pro�le and VSI improvements. Ini-
tially, all the three cases are modeled without consid-
ering the solar, wind, or load uncertainties. In the next
part, the e�ect of uncertain parameters on the objective
functions of the distribution systems is discussed.
Upon using the SOS-based renewable DG integration
in the test systems, Weibull PDF and Beta PDF
are generated for every time section, considering that
uncertainty requires historical hourly wind speed data
and historical hourly solar irradiance data, respectively.
It is also assumed that the buses within the test system
are geographically so close to each other that the solar
data, wind data, and their corresponding distributions
are also the same for all buses. In this study, the
cut-in, rated, and cut-out speeds of the wind DG are
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Figure 1. Algorithm of the DG placement by SOS.
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considered as 3 m/s, 11.5 m/s, and 20 m/s, respectively.
The scale parameter c and shape parameter K used
for Weibull distribution are measured as 8.78 and 1.75,
respectively. For Beta distribution, the values of the
shape parameters � and � were obtained as 6.38 and
3.43, respectively. The rated output power of all the
three DGs is 1.5 MW, and they operate at unity power
factor. Load demand was modeled in this paper using
normal distribution, considering 5% standard deviation
from mean value.

6.1. Test System-I: IEEE 33 bus radial
distribution system

Test System-I has reactive power demand of 2300 kVAr,
active power demand of 3715 kW, 33 buses, and 32
lines. The base kV and base MVA values are 11 kV and
100 MVA, respectively. The data table was extracted
from the referenced study [45]. Figure 2 shows the one-
line diagram of IEEE 33 bus radial distribution system.
In [37], the performance of Test System-I was evaluated
without installing DG in the system with the voltage
deviation of 0.1338 p.u and VSI�1 of 1.4988.

6.1.1. Objective functions evaluation without
considering uncertainty

For performance analysis of Test System-I, three dif-
ferent cases were studied based on the three objective
functions. In Case 1, the locations and sizes of DGs
were determined based on the maximization of bus
voltage pro�le as the objective function. In Case 2, VSI
improvement was considered the objective function.
A multi-objective function was evaluated in Case 3

Figure 2. One-line diagram of IEEE 33 bus radial
distribution system.

which aimed to �nd a compromise solution between
maximization of bus voltage pro�le and improvement
of VSI.

Case 1: Improvement of voltage pro�le. Ac-
cording to the SOS algorithm in Case 1, buses 7,
13, and 31 are the most excellent locations for DG
placement with rating values of 1.5 MW, 0.9535 MW,
and 1.2631 MW, respectively, as shown in Table 1.
The bus numbers and DG sizes by QOSIMBO-Q and
SIMBO-Q are also shown in Table 1.

In this case, the objective functions for
voltage pro�le improvement obtained from the
SOS, QOSIMBO-Q, and SIMBO-Q algorithms were
0.000656 p.u, 0.00066 p.u, and 0.00075 p.u, respec-
tively, as shown in Figure 3. In addition, the optimal
DG placement using the SOS algorithm delivers the
best results, compared to QOSIMBO-Q and SIMBO-
Q, since the objective function value o�ered by SOS
is the smallest among the others. Although voltage
pro�le improvement is considered as the objective
function in Case 1, optimal allotment of DG also
a�ects the other objective function namely VSI�1

and its values for SOS, QOSIMBO-Q, and SIMBO-
Q algorithms were obtained as 1.0685, 1.0685, and
1.0711, respectively. In this case study, the voltage
deviation decreased from 0.1338 p.u to 0.000656 p.u
while the VSI�1 value decreased from 1.4988 to
1.0685 through the SOS method.

Figure 4 represents the convergence graph of the
voltage deviation obtained from SOS algorithm in the
case of DG placement in Test System-I. This graph
shows that the SOS algorithm converges to very small
numbers of iterations.

Table 1. Simulation results of the voltage pro�le
improvement for Test System-I.

Method Bus no. DG size (MW)

SOS 7, 13, 31 1.5000, 0.9535, 1.2631
QOSIMBO-Q [26] 7, 13, 31 1.4903, 0.9580, 1.2714
SIMBO-Q [26] 7, 31, 13 1.0608, 1.4418, 1.0558

Figure 3. Comparison of the voltage deviation by SOS,
QOSIMBO-Q, and SIMBO-Q in Test System-I.
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Figure 4. Convergence curve of the voltage deviation by
SOS algorithm in Test System-I.

Figure 5. Voltage pro�le change of the Test System-I
with installation of DG by SOS.

Figure 5 shows the e�ects of installing DG using
SOS algorithm on the bus voltage pro�le of Test
System-I. Clearly, with proper allotment of DG, the
minimum voltage magnitude for the system can be
improved from 0.8820 p.u (at bus 18) to 0.9836 p.u
(at bus 25) under base con�gurations. Voltage
magnitudes of all buses are also improved due to the
DG placement via SOS technique.

Case 2: Improvement of VSI. In case the SOS
algorithm is used for VSI improvement, buses 12, 31,
and 25 are the appropriate locations for DG place-
ment with rating of 1.5 MW, 1.5 MW, and 0.7095
MW, respectively. Through the QOSIMBO-Q and
SIMBO-Q algorithms, the optimal location and size
of DGs can also be calculated, as shown in Table 2.

The values for the objective functions in this
case in the SOS, QOSIMBO-Q, and SIMBO-Q algo-

Table 2. Simulation results of the VSI improvement for
Test System-I.

Method Bus no. DG size (MW)

SOS 12, 31, 25 1.5000, 1.5000, 0.7095

QOSIMBO-Q [26] 12, 25, 31 1.5000, 0.7199, 1.5000

SIMBO-Q [26] 16, 25, 33 1.4866, 0.6873, 1.4995

Figure 6. Comparison of inverse of VSI values by SOS,
QOSIMBO-Q, and SIMBO-Q in Test System-I.

Figure 7. Convergence characteristics of VSI�1 of Test
System-I by SOS.

rithms were 1.02918, 1.02920, and 1.03370, respec-
tively, as depicted in Figure 6. As observed in this �g-
ure, SOS algorithm has the lowest objective function
value, compared to the QOSIMBO-Q and SIMBO-Q
algorithms. In Case 2, the voltage deviation values
resulting from the DG installation through the
SOS, QOSIMBO-Q, and SIMBO-Q algorithms
were 0.00066 p.u, 0.00066 p.u, and 0.00310 p.u,
respectively. SOS-based DG placement decreased
voltage deviation and VSI�1 values from 0.1338 p.u to
0.00066 p.u and from 1.4988 to 1.02918, respectively.

Figure 7 illustrates the convergence graph of
the VSI�1 obtained from SOS algorithm in the DG
placement in Test System-I according to which it
can be deduced that the SOS algorithm converges to
very small numbers of iterations.

Case 3: Improvement of voltage pro�le
and VSI. Based on the simulation result of the
bi-objective case, which ensured simultaneous
voltage pro�le and VSI improvements, buses 31, 25,
and 12 were selected as the optimum locations of
DG placement with the DG sizes of 1.5 MW, 0.7089
MW, and 1.5 MW, respectively, as shown in Table
3. This bi-objective problem can be solved by the
SOS algorithm for Test System-I, which in turn
satis�ed all the constraints mentioned in Subsection
2.2. Table 3 makes a comparison between the results
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Table 3. Simulation results of the bio-objective case for
Test System-I.

Method Bus no. DG size (MW)

SOS 31, 25, 12 1.5000, 0.7089, 1.5000

QOSIMBO-Q [26] 12, 25, 31 1.5000, 0.7199, 1.5000

SIMBO-Q [26] 25, 33, 12 0.7160, 1.5000, 1.5000

Figure 8. Comparison of voltage deviation and inverse of
VSI by SOS, QOSIMBO-Q, and SIMBO-Q in Test
System-I.

obtained from SOS and those from QOSIMBO-Q
and SIMBO-Q.

The best compromise solution values obtained
from the SOS algorithm for voltage pro�le and
VSI improvements were 0.000651 p.u and 1.0291,
respectively. These values were then compared with
the results from QOSIMBO-Q and SIMBO-Q in
Figure 8 according to which it can be stated that
the compromise solution obtained from the SOS
algorithm was better than those obtained from the
QOSIMBO-Q and SIMBO-Q algorithms.

Figure 9 presents the pareto-optimal front obtained
from the SOS algorithm to facilitate the simultaneous
voltage pro�le and VSI improvements in the three
DGs functioning based on the unity power factor.

Figure 9. Pareto-optimal front by SOS for voltage pro�le
and VSI improvement in Test System-I.

According to this graph, the best compromise solution
was obtained from the SOS algorithm when the values
of voltage deviation and VSI�1 were 0.000651 p.u and
1.0291, respectively.

6.1.2. Objective functions evaluation considering
uncertainty

Given the stochastic nature of wind and solar power
and variations in the load demands, probabilistic anal-
ysis is highly recommended. In this section, 2m PEM
method in coordination with SOS technique remodels
all the cases mentioned in the previous subsections.
In this test system, three DGs are to be installed,
which are renewable (wind or solar). Therefore, their
outputs are uncertain and for this reason, the output
powers of the three DGs are three uncertain variables.
At the same time, the test system has 32 load buses
with uncertain loads; hence, there are 32 uncertain
load parameters. Here, there are entirely 35(32 + 3)
uncertain parameters and 70(2 � 35) deterministic
points for �nding the optimal solution since 2m PEM
method calculates two deterministic points on each side
of the mean value for every random variable.

Case 1: Improvement of voltage pro�le. Upon
using 2m PEM method and SOS in the Test System-
I, the mean and standard values of voltage deviation
in Case 1 were measured as 0.0051 and 0.0050,
respectively. In this case, the optimal buses for DG
allocation are buses 33, 12, and 9.

Case 2: Improvement of VSI. Based on a combi-
nation of 2m PEM method and SOS, the mean and
standard deviation values of VSI�1 in Case 2 were
1.1124 and 0.0441, respectively, where the candidate
buses for DG allotment are buses 11, 6, and 33.

Case 3: Improvement of voltage Pro�le and
VSI. In Case 3, a compromise solution was found
between the voltage pro�le and VSI improvements
by modeling the uncertainties in the SOS program.
The mean and standard deviation values for the
voltage pro�le improvement were obtained as 0.0051
and 0.0050, respectively, and the mean and standard
deviation values for VSI improvement were 1.0942
and 0.0349, respectively. In this case, the candidate
buses for DG allocation are buses 9, 33, and 12.
Table 4 presents the simulation results for Cases 1
and 3.

6.1.3. E�ect of DG placement on system's voltage
security state

Given that the optimal allocation of DGs in the distri-
bution system can improve the VSI of the distribution
system, it further improves the voltage security state
of the very system. At every single line contingency,
the VSI values of the system are calculated for Test
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Table 4. SOS-based simulation results of the Test System-I considering uncertainty.

Case Mean of voltage
deviation

Standard deviation
of voltage deviation

Mean of
VSI�1

Standard deviation
of VSI�1

Candidate buses for
DG allocation

1 0.0051 0.0050 { { 33, 12, 9
2 { { 1.1124 0.0441 11, 6, 33
3 0.0051 0.0050 1.0942 0.0349 9, 33, 12

Figure 10. Change of the voltage security state due to
the optimal placement of DG by SOS in Test System-I.

System-I. Natural Breaks methodology [46] is em-
ployed to classify the VSI values into three categories
by choosing the suitable group split as there is the
least divergence in side every data set and highest
dissimilarity among groups. These three categories
will identify three classes of the operating states of
the distribution system, namely Secure (> 0:7185 and
< 1:00), Intermediate (0.6950{0.7185), and Emergency
(< 0:6950) states. For some line contingencies after DG
allocation, the values of the VSI of the system may be
improved such that the operating states of the system
will go to the next category. For some contingencies,
the system VSI value and operating states (before and
after DG allocation) are depicted in Figure 10, showing
that proper DG allocation via SOS technique improves
the VSI value as well as the operating states of the
power network. For this reason, the operating states in
the intermediate state earlier are now shifted to secure
states and similarly, in the emergency state, they are
now taken to the secure state.

6.2. Test System-II: IEEE 69 bus radial
distribution system

Test System-II has reactive power load of 2694.1 kVAr,
active power load of 3791.89 kW, 69 buses, and 68 lines.
The base kV and base MVA are 11 kV and 100 MVA,
respectively. The data of the system are available in
Reference [47]. The one-line diagram of IEEE 69 bus
radial distribution system is shown in Figure 11. The
objective function value of voltage deviation is 0.0993
and that of VSI�1 is 1.4635 [37].

Figure 11. One-line diagram of IEEE 69 bus radial
distribution system.

6.2.1. Objective functions evaluation without
considering uncertainty

The performance of Test System-II is evaluated under
three di�erent cases. Case 1 is modeled with SOS for
improvement of voltage pro�le; Case 2 is simulated
for the improvement of VSI, whereas Case 3 is a
multi-objective problem that considers voltage pro�le
improvement and VSI improvement simultaneously.

Case 1: Improvement of voltage pro�le. For
three DGs installation in case of voltage pro�le
improvement objective function, the optimal size and
location are obtained using SOS algorithm. Buses
14, 63, and 57 are found as the best possible nodes
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Table 5. Simulation results of the voltage pro�le
improvement for Test System-II.

Method Bus no. DG size (MW)

SOS 14, 63, 57 0.8827, 1.5000, 1.1293
QOSIMBO-Q [26] 14, 57, 63 0.8777, 1.1559, 1.4914
SIMBO-Q [26] 63, 14, 57 1.5000, 0.9011, 1.1320

of the network to place DGs and the ratings are
0.8827 MW, 1.5000 MW, and 1.1293 MW, as shown
in Table 5. The locations and sizes of DGs obtained
by QOSIMBO-Q and SIMBO-Q are also shown in
Table 5.

A comparison between di�erent techniques for
voltage deviation minimization is made, as shown
in Figure 12, revealing that SOS-based technique
obtained the greatest outcome among the other
algorithms such as QOSIMBO-Q and SIMBO-Q in
terms of delivering the lowest value of voltage devi-
ation. Here, the value of VSI�1 obtained by SOS,
QOSIMBO-Q, and SIMBO-Q is 1.0235.

The convergence graph of voltage deviation for
Test System-II is shown in Figure 13 from which it is
seen that SOS algorithm converges very fast to give
the optimal solution.

The voltage magnitudes of all the buses of
Test System-II before DG installation and after DG
installation by SOS technique are compared in Fig-

Figure 12. Comparison of the voltage deviations by SOS,
QOSIMBO-Q, and SIMBO-Q in Test System-II.

Figure 13. Convergence curve of the voltage deviation
based on SOS algorithm in Test System-II.

Figure 14. Voltage pro�le change of the Test System-II
followed by installation of DG by SOS.

Table 6. Simulation results of the VSI improvement for
Test System-II.

Method Bus no. DG size (MW)

SOS 53, 14, 61 1.3271, 0.8929, 1.5000
QOSIMBO-Q [26] 58, 12, 61 0.8465, 1.5000, 1.4534
SIMBO-Q [26] 12, 58, 61 1.5000, 0.8000, 1.5000

ure 14, showing that there is a de�nite increase in
bus voltage magnitude after DG placement by SOS.
Due to SOS-based DG installation, the minimum
value of bus voltage magnitude of the network, which
was earlier 0.8776 p.u (at bus number 65 under base
con�guration), improved to 0.9942 p.u (at bus 50).

Case 2: Improvement of VSI. In this case, SOS
algorithm is used to �nd the optimal locations and
size of 3 DGs where the main aim is to improve
VSI. From the result of Case 2, the optimal locations
of DG placement include buses 53, 14, and 61 with
ratings of 1.3271 MW, 0.8929 MW, and 1.5000 MW,
respectively. A comparison among SOS, QOSIMBO-
Q, and SIMBO-Q regarding DG size and location is
presented in Table 6.

The value of VSI�1 obtained by SOS is 1.00210,
whereas the value obtained by QOSIMBO-Q and
SIMBO-Q is 1.02350, as shown in Figure 15. Among
SOS, QOSIMBO-Q, and SIMBO-Q, it is found that

Figure 15. Comparison of inverse of VSI by SOS,
QOSIMBO-Q and SIMBO-Q in Test System-II.
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Figure 16. Convergence characteristics of VSI�1 of Test
System-II by SOS.

the proposed SOS technique gives the best result out
of the other established algorithms. When DGs are
placed based on SOS, QOSIMBO-Q, and SIMBO-
Q algorithms for minimization of VSI�1, the value
of voltage deviation o�ered by SOS is 0.00038 p.u,
whereas the value as 0.00049 p.u is determined by
QOSIMBO-Q and SIMBO-Q.

Figure 16 shows the convergence graph of VSI�1

using the SOS algorithm in Test System-II, which
shows high convergence rate of the SOS algorithm in
case of DG placement using improvement of VSI as
the objective function.

Case 3: Improvement of voltage pro�le and
VSI. Table 7 lists the candidate buses for DG allo-
cation along with the DG sizes determined through
the SOS, QOSIMBO-Q, and SIMBO-Q algorithms
for the bi-objective problem.

The voltage pro�le and VSI improvement values
of the best compromise solution obtained from the SOS
were obtained as 0.00024 p.u and 1.02348, respectively,
which were then compared with the results from
QOSIMBO-Q and SIMBO-Q algorithms, as shown
in Figure 17. In this �gure, the compromise result
obtained from the SOS is best compared to those from
other techniques.

Figure 18 shows the Pareto-optimal front
obtained through the SOS for Case 3 of Test System-II
according to which the SOS technique can o�er an
optimal solution in Case 3 when the values of voltage
deviation and VSI�1 are 0.00024 p.u and 1.02348,
respectively.

6.2.2. Objective functions evaluation considering
uncertainty

There are 68 load buses with uncertain loads in the

Table 7. Simulation results of the bi-objective case for
Test System-II.

Method Bus no. DG size (MW)
SOS 58, 15, 3 0.6745, 1.5000, 0.5992
QOSIMBO-Q [26] 62, 57, 13 1.4703, 1.1272, 1.1113
SIMBO-Q [26] 13, 57, 62 1.1231, 1.1276, 1.5000

Figure 17. Comparison between voltage deviation and
inverse of VSI by SOS, QOSIMBO-Q, and SIMBO-Q in
Test System-II.

Figure 18. Pareto-optimal front by SOS for voltage
pro�le and VSI improvement in Test System-II.

Test System-II, and three DGs will be installed on the
system by optimization of the uncertain output power.
Therefore, a total of 71 (68+3) uncertain variables are
available in the Test System-II.

Case 1: Improvement of voltage pro�le. Upon
adding 2m PEM method-based uncertainty modeling
with SOS program, the mean and standard deviations
of the voltage deviation can be calculated as 0.0017
and 0.0016, respectively. In this case, the candidate
buses for DG allocation are buses 13, 57, and 63.

Case 2: Improvement of VSI. Considering the
uncertainty of solar, wind, and load demand, SOS
method �nds the appropriate buses for DG allocation,
i.e., buses 53, 15, and 61. The mean and standard
deviation of the VSI�1 are 1.0123 and 1.0052, respec-
tively.

Case 3: Improvement of voltage pro�le and
VSI. The mean and standard deviation for the
voltage deviation in the best compromise solution
obtained from the SOS, considering uncertainty in
bi-objective problem, were obtained as 0.0016 and
0.0015, respectively, while the corresponding values
for VSI�1 were 1.0045 and 1.0048, respectively. In
this case, buses 63, 13, and 57 were selected as the
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Table 8. SOS-based simulation results of Test System-II considering uncertainty.

Case Mean of voltage
deviation

Standard deviation
of voltage deviation

Mean of
VSI�1

Standard deviation
of VSI�1

Candidate buses for
DG allocation

1 0.0017 0.0016 { { 13, 57, 63
2 { { 1.0123 1.0052 53, 15, 61
3 0.0016 0.0015 1.0045 1.0048 63, 13, 57

Figure 19. Variation of the voltage security state due to
optimal placement of DG by SOS in Test System-II.

appropriate buses for DG allocation. Table 8 shows
the results of Cases 1{3.

6.2.3. E�ect of DG placement on system's voltage
security state

In case of line contingency in the presence of DGs,
the system will be in a more secure position than
the situation when the system is run without DG.
To demonstrate the impact of DG placement on Test
System-II, the VSI values of the system are calculated
at every single line contingency and depending on these
values, the system is classi�ed into three states namely
Secure (> 0:7387 and < 1:00), Intermediate (0:6930 �
0:7387), and Emergency (< 0:6930) by Natural Breaks
methodology [33]. In Figure 19, the VSI values and
states before and after DG allocation for some con-
tingencies indicate that the operating system states
are shifted to a secure position from the intermediate
situation and to the intermediate state from emergency
condition when DGs are placed in the system.

7. Conclusion

The present research employed the Symbiotic Organ-
isms Search (SOS) algorithm for optimal Distributed
Generation (DG) placement in the distribution net-
work. Voltage security state improvement of a power
network was found to be directly dependent on the
bus voltage magnitude variation. This study could
achieve the voltage level elevation and, consequently,
voltage security enhancement in the distribution net-
work through minimization of voltage deviation and

inverse of the VSI-based multi-objective optimization
problem. The results obtained from the SOS-based
method were compared with those from other method-
ologies. The simulation �ndings revealed that the
SOS algorithm yielded more superior results to those
of Quasi-Oppositional Swine In
uenza Model Based
Optimization with Quarantine (QOSIMBO-Q) and
Swine In
uenza Based Optimization with Quarantine
(SIMBO-Q). The SOS method could achieve the lowest
values of the objective functions, hence superior to
other previous standard techniques. The operating
states of the test systems were classi�ed into three
categories based on which it can be concluded that
the SOS-based DG placement could not only minimize
the bus voltage magnitude deviation and increase the
stability indicator value of the system, but also it
elevates the voltage security level of the distribution
networks under contingent conditions. As a result, the
proposed methodology is used as a tool for the demand
side management in the modern day.
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