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Abstract. A hyperchaotic system with fractional terms and fractional-order derivatives
is investigated in this paper. Simulations show that di�erent attractors such as equilibrium
point, limit cycle, and hyperchaotic attractor can be generated by the system. Circuit of
fractional-order integrator is designed and used to implement the circuit of the studied
system. The circuit implementation of the studied system proves its feasibility.
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1. Introduction

Fractional calculus has been an interesting topic since
the 17th century. There are di�erent de�nitions
for fractional-order derivative. Three common meth-
ods for calculation of fractional-order derivative are
Grunwald-Letnikov, Riemann-Liouville, and Caputo
de�nitions [1{3]. Fractional calculus has many appli-
cations in di�erent areas such as physics and chemical
engineering [4]. Chaotic dynamics are very complex
and several chaotic and hyperchaotic systems have been
discovered over the last decades [5]. Chaotic attrac-
tors have only one Lyapunov Exponent (LE) where
hyperchaotic attractors have more than one positive
LE. Thus, they have more complex dynamic systems
than chaotic ones. The generation of hyperchaotic
attractors of dynamical systems is not well known
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for researchers. Fractional-order systems are more
complex than integer orders. Therefore, the study of
fractional-order hyperchaotic is critical. Fractional-
order systems such as fractional-order Lorenz sys-
tem [6] and fractional-order system without any equi-
librium point [7] have been proposed recently. The time
series of a hyperchaotic system is highly dependent on
initial conditions. It is implied that a small di�erence
in the initial conditions causes a huge di�erence in the
�nal states of hyperchaotic systems.

Circuit implementation of chaotic systems is very
important since it realizes the feasibility of their
dynamics. Implementation of chaotic dynamics has
been a hot topic for many years [8{10]. Feasibility
of fractional-order systems has been studied in many
works [11]. Circuit implementation of a fractional-
order system based on Chen system was investigated
in [11]. In [12], a novel jerk chaotic system and its
circuit implementation were developed.

The paper suggests a fractional-order system with
more complex dynamics than those proposed in recent
papers. In this system, fractional-order derivatives and
fractional-order polynomial are combined. To enhance
the potential application of the investigated system,
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its electronic circuit is then implemented to prove its
feasibility.

2. Fractional calculus: Basic proprieties

In this paper, the Caputo is the adopted de�nition
for the calculation of fractional-order derivatives. This
method is used in engineering applications.

De�nition 1: The Caputo approach is de�ned
as [13]:

Dqx(t) = Jm�qx(m)(t); q > 0; (1)

where Dq is the noninteger-order di�er-integral opera-
tor. q is the fractional-order and m is its integer part.
J is the integral operator described as:

J�x(t) =
1

�(�)

Z 1
0

(t� �)��1y(�)d�: (2)

�(�) is the Gamma function [13].
The stability analysis of fractional-order systems

is more complex than the integer orders which need
particular de�nitions, as introduced below.

De�nition 2: Let us consider the following fraction-
al-order model [14]:
dqx(t)
dtq

= f(x(t)); (3)

where 0 < q < 1 and x 2 Rn. As shown in [15], the
equilibrium points of f(x(t)) are locally asymptotically
stable if all eigenvalues �i of the Jacobian matrix
J = @f(x(t))=@x(t) evaluated at the equilibrium points
satisfy jarg(�i)j > q �2 .

3. A fractional-order hyperchaotic system

A hyperchaotic system with both fractional-order
derivatives and terms is investigated. The designed
system is based on the recently proposed system intro-
duced in [16]. By modifying the derivative operator,
the designed system is as follows:8>>><>>>:

Dqx = y
Dqy = z
Dqz = �az � by +G(x)
Dqw = ky � hw +G(x)

(4)

where 0 < q < 1. G(x) is a nonlinear function de�ned
as:

G(x) =

8><>:(�c� d)x2 �m(�x)r�1; if x < 0
0; if x = 0
(�c+ d)x2 +m(x)r�1; if x > 0:

(5)

(a, b, c, d, k, h, m, r) are the system parameters.
r is a fractional number in the interval 1 < r < 2.
Parameters (a, b, c, d, k, h, m, r) are set to (0.93, 1.11,
�0:11, �0:21, 0.001, 14, 6.26, 1.3). By varying the
parameter q, System (4) exhibits di�erent attractors
as in the following:

(i) If q � 0:96, regular attractors are obtained;
(ii) If q 2 [0:96 � � � 1], strange attractors are obtained.

Phase portraits of di�erent attractors are shown
in Figure 1. If q = 1, System (4) will be equivalent
to the hyperchaotic system presented in [16]. When

Figure 1. Regular and strange attractors of System (4): (a) q = 0:88, (b) q = 0:96, (c) q = 0:97, and (d) q = 0:99.
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Figure 2. Projections of the attractor, related to the hyperchaotic System (4) when q = 0:97 in (a) xyz, (b) wyz, and (c)
wxz space.

q = 0:98, a strange attractor is observed, as shown
in Figure 2. This attractor is asymmetric and is
characterized by two scrolls with di�erent sizes.

Sensitivity to initial conditions is still valid for
fractional-order hyperchaotic systems. Figure 3 repre-
sents the time evolution of state variables x, y, z, and
w with two initial conditions (1, 1, 1, 1) and (1 + 10�6,
1, 1, 1). Figure 4 shows the errors between the two
time series of each state variable. We have deduced
that the two trajectories of System (4) for each variable
are initially identical, but they completely di�er after
a certain time. It is clear that System (4) is sensitive
to initial conditions.

System (4) exhibits four LEs such as LE1 = 0:210,
LE2 = 0:026, LE3 = 0, and LE4 = �1:199. These
LEs are estimated using the MATLAB code for LEs
of fractional-order systems described in [17]. Since
the LE spectrum has two positive LEs, System (4)
is hyperchaotic. LE1 is the largest positive one and
this exponent increases the expansion degree of the
fractional-order attractor in the phase space.

The equilibrium points of System (4) are the roots
of these equations:

y = z = w = 0; G(x) = 0: (6)

Based on [16], the following results are obtained:

(i) If x = 0, then H1 = (0; 0; 0; 0) is an equilibrium
point of System (4);

(ii) If x > 0, then H2 = (((c� d)=m)1=�; 0; 0; 0) is an
equilibrium point of System (4) when � = r � 3;

(iii) If x < 0, then H3 = ((�(�c� d)=m)1=�; 0; 0; 0) is
an equilibrium point of System (4) when � = r�3.

As a result, the hyperchaotic system admits
three asymmetric equilibrium points. By considering
the mentioned parameters, three algebraic points are
obtained as H1 = (0; 0; 0; 0), H2 = (11:73; 0; 0; 0),
and H3 = (�5:87; 0; 0; 0). To analyze the stability
of each equilibrium point, Jacobian matrix should be
computed. Table 1 summarizes eigenvalues of each
equilibrium point of System (4). An argument is
determined for each eigenvalue, noted arg(�i).

Based on De�nition 2, System (4) can exhibit a
strange attractor only when it has at least one unstable
equilibrium point. More precisely, at least one of its
equilibrium points must satisfy the following condition:

q <
2
�
jarg(�i)j; q <

2
�
arctan

� jIm(�i)j
jRe(�i)j

�
; (7)

where i = (1; � � � ; 4). Im(�i) and Re(�i) denote
the imaginary and real parts of the eigenvalues �i,
respectively. To illustrate Condition (7), Figure 5
presents the stable and unstable regions of System (4)
in q = 0:97.

Referring to Table 1, it is easy to say that for
the �rst equilibrium point H1, �1 belongs to the stable
region while �2, �3, and �4 belong to the unstable
region. However, for the equilibrium points H2 and
H3, �1 and �2 belong to the unstable region, while �3
and �4 belong to the stable region.

4. The fractional-order integrator

4.1. Approximation of the fractional derivative
Based on the Caputo de�nition and assuming that
the initial conditions are null, the Laplace transform
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Figure 3. Time series of System (4) with initial
conditions (1, 1, 1, 1) (blue) and (1 + 106, 1, 1, 1) (red):
(a) x, (b) y, (c) z, and (d) w.

Figure 4. Error between the trajectories with the initial
conditions (1, 1, 1, 1) and (1 + 10�6, 1, 1, 1): (a) x, (b) y,
(c) z, and (d) w.
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Table 1. Stability analysis of the hyperchaotic System (4).

Equilibrium points Eigenvalues arg(�i)

H1

�1 = 0 arg(�1) = 0
�2 = �0:001 arg(�2) = �
�3 = �0:465 + 0:945i arg(�3) = 2:027
�4 = �0:465� 0:945i arg(�4) = �2:027

H2

�1 = �0:001 arg(�1) = �
�2 = �1:738 arg(�2) = �
�3 = �0:404 + 1:533i arg(�3) = 1:313
�4 = �0:404� 1:533i arg(�4) = �1:313
�1 = 2dx� 2cx+ (r � 1)mxr�2

H3

�1 = �0:001 arg(�1) = �
�2 = �1:193 arg(�2) = �
�3 = �0:131 + 1:186i arg(�3) = 1:460
�4 = �0:131� 1:186i arg(�4) = �1:460
�2 = �2dx� 2cx� (r � 1)mxr�2

Figure 5. Stable and unstable regions of System (4) in
q = 0:97.

of the fractional derivative is de�ned by the following
equation [13]:

L fDqx(t)g = SqL fx(t)g: (8)

Thus, the fractional-order integration q is represented
by the transfer function F (s) = 1

sq in the fractional
domain, where s is the Laplace operator. To reduce the
calculation's complexity, F (s) is approximated by an
integer-order transfer function. There are many meth-
ods based on the concept of Fractional Power Poles
(FPP). They are called the approximation method with
n zeros and n poles or n zeros and n � 1 poles. The
most famous one is the approximation of Charef et
al. [18]. The Charef approximation allows a linear
approximation in the frequency domain. Speci�cally,
the approximation of the fractional-order integrator
( 1
sq ) depends on the desired bandwidth and the am-

plitude error between the Bode diagrams before and
after approximation.

Theorem 1 [18]. The Charef approximation is de�ned
as follows:

1
sq
' 1�

1 + s
pT

�q '
N�1Q
i=0

�
1 +

s
Zi

�
NQ
i=0

�
1 +

s
Pi

� ; (9)

where N is the approximation order and q is the
fractional-order of F (s). Pi and Zi are the poles and
zeros of the Charef approximation. 1

pT is the relaxation
time constant. According to this method, Pi and Zi are
de�ned as follows:

P0 = P�
p
b; Pi = P0(ab)i; i = 1; � � � ; N;

Zi = P0a(ab)i; i = 0; � � � ; N � 1; (10)

where P� is the selected limited frequency. a is the
location rate of one zero relative to its previous pole and
b is the location rate of one pole relative to its previous
zero. These two rates are calculated as follows:

a = 10( Y
10(1�q) ); b = 10( Y

10q );

where Y is the approximation error expressed in dB.
The approximation order N is calculated by the

following de�nition:

N = integer

0@ log �wmax
P0

�
log(ab)

1A+ 1; (11)

where wmax is the corresponding pulse to the maximum
error.
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Table 2. Coordinate points of L1, L2, and L3 for the two fractional-order transfer functions.

Points Amplitude dB
(transfer function before approximation)

Amplitude dB
(transfer function after approximation)

H1 �0:4 �2:71
H2 �58:5 �59:1
H3 �116 �116

In the literature, several fractional-order integra-
tors have been approximated by the Charef method.
There is a summary table of these orders ranging from
0.1 to 0.9 with a step 0.1 and an approximation error
1 dB. This table was presented in the reference [19].
System (4) exhibits a strange attractor where q 2
[0:96 � � � 1]. Thus, the function 1

s0:97 corresponding to
the fractional derivative D0:97 should be approximated.
Based on new works in the literature, we did not �nd
the corresponding approximation to q = 0:97. To apply
the Charef method, the parameters (P�, wmax, Y ) are
�xed to (10�3, 1000, 1 dB). P� and wmax are the limit
frequencies of the approximation. Using the MATLAB
software, the obtained results are:

N = 2; a = 2154:4346; b = 1:2679;

P0 = 0:0011; P1 = 3:0759; P2 = 8402:3085;

Z0 = 2:4259; Z1 = 6626:8301: (12)

It is an approximation of order 2 (two zeros and three
poles). The obtained transfer function is described as
follows:

1
s0:97 =

�
1 + s

Z0

��
1 + s

Z1

��
1 + s

P0

��
1 + s

P1

��
1 + s

P2

�
=
P0P1P2

Z0Z1

(s+ Z0)(s+ Z1)
(s+ P0)(s+ P1)(s+ P2)

=
0:018s2 + 12s+ 29:1

s3 + 8405:4s2 + 25854s+ 28:4291
: (13)

In order to verify the accuracy of the obtained results,
the Bode magnitude diagram for the 0.97 fractional
integrator and its approximated transfer function is re-
alized using the FOMCOM toolbox and the prede�ned
functions under MATLAB software. The obtained
results are shown in Figure 6. The two obtained Bode
diagrams are similar. Since the two simulations are
conducted with di�erent methods (FOMCOM toolbox
and MATLAB algorithm), it is di�cult to group them
on the same graph. To remedy this problem, we
identi�ed the coordinates of three speci�c points on
the two trajectories. These points are L1, L2, and
L3 corresponding to the frequencies 10�3, 1, and

Figure 6. Magnitude bode diagram of fractional-order
transfer function before and after approximation with
q = 0:97.

10�3 (rad/s), respectively. Table 2 summarizes these
coordinates.

Figure 6 and Table 2 prove that the Charef
method gives very good approximation results with
a margin of error 1 dB in the frequency range
[P�; wmax] = [10�3; 103].

4.2. Circuit design of the fractional-order
integrator

To realize the fractional-order approximation of (N+1)
poles and N zeros, several circuits are used. Figure 7
represents one of the widely used circuit to design
the approximate transfer function 1

sq based on Charef
approximation [20]. n is equal to the number of poles.

In our case, the number of poles is N + 1 = 3.
The designed circuit contains three resistors and three
capacitors. Its corresponding transfer function H(s)
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Figure 7. Circuit of the approximate function 1
sm based on Charef approximation.

Figure 8. Circuit design of H(s) in q = 0:97.

when q = 0:97 is de�ned as follows:

H(s) =R1==
1
sC1

==
�
R2 +

1
sC2

�
==
�
R3 +

1
sC3

�

=

1
C1

�
s+

1
R2C2

��
s+ 1

R3C3

�
s3 + �s2 + �s+ 


; (14)

with:

�=
(R1C1+R2C2+R1C2)R3C3+R1R2C2(C1+C3)

R3R2R1C1C2C3
;

� =
R1C1 +R2C2 +R1C2 +R1C3 +R3C3

R3R2R1C1C2C3
;


 =
1

R3R2R1C1C2C3
:

Using Eqs. (13) and (14), the numerical values are
obtained:

R1 = 10:29 k
; R2 = 293:70 k
;

R3 = 9:6 k
; C1 = 0:5524 nF;

C2 = 0:1396 nF; C3 = 0:1 nF:

Figure 8 describes the circuit of the fractional-order
integrator 0.97 with Multisim software.

5. Circuit design

5.1. Reduced system
To implement the non-integer order terms in Sys-
tem (4), we have designed a speci�c case study when
the system parameter r is �xed to 1.5. Thus, the
studied system is de�ned by the following di�erential
equations:8>>><>>>:

Dqx = y
Dqy = z
Dqz = �az�by�cx2+djxjx+m

pjxjsgn(x)
Dqw = ky�hw�cx2+djxjx+m

pjxjsgn(x)
(15)

where the parameters (a, b, c, d, m, h, k, q) are equal
to (1, 1, �0:11, �0:21, 5, 0.01, 1.4, 0.97). The strange
attractors are presented in Figure 9. Based on Figure 9,
the maximum and minimum values of the signals
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Figure 9. Three projections of the attractor of System (15) in (a) wx, (b) zx, and (c) zy planes.

w and x are in the interval [�50; 50] and [�15; 25],
respectively. 50 V and 25 V are not supported by the
used common components. Thus, the tension should
be less than 15 V to eliminate saturation problems. A
linear transformation for the fractional-order System
(15) is recommended to decrease amplitudes of the
state variables. Let consider x = 2:5u, y = 2:5v,
z = 2:5g, and w = 2:5f . The adjusted system is
described as follows:8>>>>>>>>><>>>>>>>>>:

Dqx = y;
Dqy = z;
Dqz =az � by � 2:5cx2 + 2:5djxjx

+
mp
2:5

pjxjsgn(x)

Dqw =ky � hw � 2:5cx2 + 2:5djxjx
+

mp
2:5

pjxjsgn(x)

(16)

The state variables x and w of System (16) are now
included in the interval [�15; 15]. Moreover, the
fractional-order hyperchaotic Systems (15) and (16)
have the same dynamics since the linear transformation
does not change the physical properties of nonlinear
systems.

5.2. Circuit design of the fractional-order
system

Based on the previous work in [16], the electric circuit

relative to System (16) with q = 1 is described by the
following equations:8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

_x = 1
R01C01

y;
_y = 1

R02C02
z;

_z =� 1
R03C 03

z � 1
R04C 03

y +
1

R05C 03
x2

� 1
R06C 03

jxjx+
1

R07C 03
pjxjsgn(x)

_w =� 1
R08C 04

y � 1
R09C 04

w +
1

R05C 04
x2

� 1
R06C 04

jxjx+
1

R07C 04
pjxjsgn(x)

(17)

where the resistor and capacitor values are:

C 01 =C 02 =C 03 =C 04 =1 nF; R01 =R02 =100 k
;

R03 = 70 k
; R04 = 35 k
;

R05 = 100 k
; R06 = 35 k
;

R07 = 4:5 k
; R08 = 40 k
;

R09 = 10 k
:

On the other hand, based on Eq. (8), the Laplace
transformation of System (16) in q = 0:97 is given as:
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8>>>>>>>>>>>><>>>>>>>>>>>>:

L fx(t)g = 1
s0:97L fy(t)g;

L fy(t)g = 1
s0:97L fz(t)g;

L fz(t)g =
1

s0:97L faz � by � 2:5cx2

+ 2:5djxjx+
mp
2:5

pjxjsgn(x)g;
L fw(t)g =

1
s0:97L fky � hw � 2:5cx2

+ 2:5djxjx+
mp
2:5

pjxjsgn(x)g:
Thus, based on Eq. (17), the integrator q = 1 will be
replaced by the integrator of fractional-order 0.97. The
product operation is realized with AD633 Multiplier.
The root square function is realized by two operational
ampli�er LM741 and 7 resistors as described in [16].
Figure 10 describes the obtained circuit of System (16)
designed by Multisim. For the oscillator circuit, all ac-
tive devices (UA741 and AD633) are powered by 15 V.

Several design considerations were taken into account
to prevent degrading of the hyperchaotic behavior such
as the adjustment of the electrical components relating
to the fractional-order integrator. This is also related
to the availability and standardization of electrical
components in the market. After several tests, we
opted for the following values for the fractional-order
integrator:

R1 = 180 k
; R2 = 300 k
; R3 = 10 k
;

C1 = 0:5 nF; C2 = 0:2 nF; C3 = 0:1 nF:

Figure 11 represents the attractors of the designed
circuit with Multisim software. The oscilloscope traces
have the same forms as the attractors represented in
Figure 9 (dark blue). It re
ects the steady state.
However, there is a minimal di�erence between the two

Figure 10. Design of the electrical circuit relative to System (16).

Figure 11. Strange attractors of the fractional-order System (16).



516 A. Lassoued et al./Scientia Iranica, Transactions D: Computer Science & ... 30 (2023) 507{517

attractors, which does not a�ect their structure but
rather act on the rate of expansion and contraction
over time.

6. Conclusion

In this paper, a hyperchaotic system with fractional
terms and fractional-order derivatives was studied. The
system featured di�erent attractors such as equilibrium
point, limit cycle, and hyperchaotic attractor. This
study approximated the fractional derivative and de-
signed the circuit of fractional-order integrator. Then,
the circuit of our studied system was designed, which
could show the same dynamics as the theoretical
system. Declaration of interest: The authors declare
that there is no con
ict of interests regarding the
publication of this paper.
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