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Collective behaviors of dynamical networks are the
focus of intense research in various fields of science [1,2].
Dynamical networks can be considered as populations
of interacting nonlinear systems from which complex
spatiotemporal patterns can emerge [3-5]. For in-
stance, one of such emerging patterns is synchroniza-
tion, which refers to the strongest form of network
cooperative dynamics [6,7]. FEach individual in the
network tends to share common rhythms and the same
dynamical behavior in the synchronization state [§].
The emergence of the traveling and propagating waves,
especially spiral waves, is another example of fasci-
nating collective behaviors of dynamical networks [9].
The other important examples are associated with
the simultaneous coexistence of both incoherent and
coherent states in networks, which is called chimera
state [10,11].

Various studies in the literature have investigated
the mechanism of appearance of collective behavior in
dynamical networks, numerically and analytically [12—-
15].  Generally, they have pointed out three main
factors in the emergence of collective behaviors [16,17]:
1) the dynamics of the individual system in each
node, 2) the coupling type and strength, and 3) the
topology of the network. Different types of complex
nonlinear systems can be located in each network
node, such as systems expressed by ordinary differ-
ential (or difference) equations [18] and fractional-

order systems [19-21]. Finding the proper coupling
strength that regulates the interactions of dynamical
networks is another important point in this field of
research [22,23]. The structure of a network can
also affect the functions of emerging collective behav-
iors [24]. The dynamical networks can be identical
or non-identical [25], weighted or unweighted [26],
directed or undirected [27], time-varying [28,29] or fixed
in different types of topologies such as regular, ran-
dom [30], scale-free [31,32], small-world [33], etc. Many
recent hot topics are related to collective behavior of
nonlinear dynamical networks. Some examples are
“resilience indicators of complex networks” [34], “mul-
tilayer and multiplex networks” [35,36], “coherence
resonance” [37,38], “explosive synchronization” [39,40],
“cluster synchronization” [41,42], “chimera states in
networks” [43,44], “wave propagation in networks” [45],
and “spiral waves in networks” [46,47].

This mini special issue reviews the current state
of the art in the research on collective behaviors of
the dynamical networks, which is the key factor in
reaching more accurate network models as well as
enriching our knowledge about the function of the
natural networks. In [48], the authors investigated the
slowness in ischemic stroke patients. A Trier Social
Stress Test (TSST) is used to reveal the slowness of
the biological system. The slowness of dynamics is
calculated for the ECG of healthy individuals and
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patients with ischemic stroke. Ten healthy individuals
and nine ischemic stroke patients are studied. Six early
warning indicators based on slowness and variability
are used in this study. The indicators are applied to
the RR interval of individuals in four stages. Heart rate
variations are studied as another measure of slowness
for the dynamics. The results reveal that there is no
significant difference in the slowness of healthy and
patient cases.

In [49], the authors considered the network of
Lorenz systems with time-varying links to study syn-
chronization and chimera patterns. It is assumed that
the non-local connections of the network are switched
on/off with a specified period, while the local links are
fixed. The ratio of time of on to off links is called
the discontinuity rate. They investigated the network
for different periods and discontinuity rates analytically
and numerically. They reported a new pattern called
intermittent transient chimera in which the chimera
and the synchronization changed alternatively in time.
The results show that when the continuous links change
to switching, the coupling strength needed for synchro-
nization increases. Furthermore, as the discontinuity
rate decreases, the region for observing chimeras is
enlarged.

The authors in [50] introduced an adaptive cou-
pling for the network of randomly coupled Kuramoto-
Sakaguchi oscillators. The adaptive coupling allows
for incorporation of the dynamics of the oscillators
in the strength of connections. They reported the
emergence of several synchronized, cluster synchro-
nized, and partial synchronized patterns relying on
the coupling. The effect of the random delusion of
the links was also investigated. The results indicated
that as the number of links decreased, the incoherency
increased in the network. However, the authors found
some sparse topologies which point to stable in-phase
synchronization.

A modified Fitzhugh and Rinzel neuron model
was proposed in [51] upon introducing the magnetic
flux variable. The authors analyzed the stability
of the novel model by calculating the equilibrium
points in the presence and absence of electromagnetic
induction. Furthermore, the bifurcation diagrams and
the Lyapunov exponents were derived and it was shown
that the model was multi-stable and could exhibit
diverse firing patterns. The authors also investigated
the effects of coupling strength as well as the frequency
and amplitude of the external stimuli on the behaviors
of a two-dimensional network of the proposed model.
They compared wave propagation in the network with
and without electromagnetic induction.

Thus, this special issue provides a brief perspec-
tive of current research on the collective behavior of
dynamical networks and we hope that the related
researchers in this field find it useful. We wish to

express our appreciation to the authors of all the papers
in this special issue for the excellent contributions as
well as the reviewers for their high-quality work on
reviewing the manuscripts.
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