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Abstract. This paper presents the bending analysis of simply supported Functionally
Graded (FG) size-dependent beams based on modi�ed strain gradient theory. Shear and
normal deformations are considered in displacement �eld according to hyperbolic shear
deformation theory. Governing equations and corresponding boundary conditions for FG
micro beam are derived utilizing principle of minimum total potential energy. Mori-
Tanaka homogenization scheme and the classical rule of mixture are used for prediction of
material properties through the thickness. E�ects of Winkler-Pasternak elastic foundation
parameters are studied at di�erent side-to-thickness ratios. E�ects of di�erent aspect ratios,
elastic foundation parameters, power law gradient indexes, and di�erent loading conditions
are investigated. The e�ciency and accuracy of the presented model is demonstrated
against the existing results in particular cases.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Beams on the order of microns and sub-microns are
unavoidable parts of modern world and widely used
as sensors [1], actuators [2], atomic force micro-
scopes [3], and in Micro/Nano Electro-Mechanical Sys-
tems (MEMS/NEMS). A number of experiments have
proved that results of classical continuum approach are
not acceptable when the size decreases and this is the
de�ciency of classical theory for capturing size e�ects
[4], which can account for the size dependencies of
micro and nano structures.

The development of higher order theories dates
back to 19th century by works of Piola [5] and
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Cosserat and Cosserat [6]. Several approaches have
been introduced in order to consider micro-/nano-
scale e�ects, among which the continuum mechanics
approach provides greater simplicity and e�ciency in
predicting size e�ect behavior than Molecular Dynamic
(MD) approach [7]. Mindlin [8] considered second-
order gradients of deformation and introduced general
higher-order theory with �ve length scale parameters.
Couple Stress Theory (CST) is presented in the works
of Toupin [9], Mindlin and Tiersten [10], and Koiter
[11]. In this theory, higher order rotation gradients are
incorporated. Yang et al. [12] modi�ed the classical
CST and developed Modi�ed Couple Stress Theory
(MCST) by enforcing the couple stress tensor to be
symmetric, in which only one length scale parameter
was included.

Subsequently, Fleck and Hutchinson [13,14] ex-
tended and reformulated the �rst version of Mindlin
theory and renamed it Strain Gradient Theory (SGT),
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in which the deformation gradient tensor is com-
posed of one rotation gradient and two independent
stretch gradient tensors. Lam et al. [15] utilized the
higher-order equilibrium equation suggested by Yang et
al. [12] and presented Modi�ed Strain Gradient Theory
(MSGT). The presented theory included three material
length scale parameters to characterize dilatation, devi-
atoric and symmetric rotation gradient tensors. MCST
can be achieved as a special case of MSGT by including
only a rotation tensor.

MSGT formulation has gained much attention
recently and has been widely employed by researchers.
Dal [16] analyzed Euler-Bernoulli micro gold beams
and demonstrated the accuracy of the results in com-
parison to the existing experiment tests. Ashoori
and Mahmoodi [17] presented a geometric nonlinear
formulation for analysis of thick plates. Chu et al. [18]
elaborated general MSGT for static bending and natu-
ral frequency analysis of Functionally Graded Material
(FGM) Euler-Bernoulli piezoelectric nanobeams. They
used volume fraction function for FGM nanobeams
and concluded that material distribution function,

exoelectric coe�cient ratio, and span-to-depth ra-
tio had considerable e�ects on the electromechanical
response of nanobeams. Tai et al. [19] investigated
free vibration of Functionally Graded (FG) hexagonal
beryllium crystal micro plates by using Iso-Geometric
Analysis (IGA). They employed MSGT in conjunction
with Higher order Shear Deformation Theory (HSDT)
in order to consider shear e�ects. Another study on
micro plates using IGA was performed by Farzam and
Hassani [20]. They analyzed bending and buckling
responses of FGM micro plates under mechanical and
thermal loads. They assumed that the materials with
temperature-dependent properties and several rise pat-
terns were explored. They also presented the margins
for material length scale ratio at which scale e�ects
were negligible. Cornacchia et al. [21] solved the static
bending of laminated Kirchho� nano plates and exam-
ined di�erent stacking sequences and loading pro�les.
Recently, some studies have employed IGA analysis and
conducted further experiments based on the nonlocal
and HSDT for free vibration and bending analysis
of FG plates [22], geometrically nonlinear transient
analysis of FGM nanoplates [23,24], and static and free
vibration analyses of porous FG nanoplates [25].

Farzam and Hassani [26] examined the bending,
buckling, and free vibration behaviors of in-plane FG
porous microplates. They also investigated thermal
and mechanical buckling analyses of FG carbon nan-
otube reinforced composite nanoplates based on MCST
and IGA [27] and investigated the accuracy and e�-
ciency of the proposed model for di�erent dimensional
and power indexes. E�ective computational optimiza-
tion approaches based on Eringen's nonlocal elasticity
and four variables re�ned plate theory were introduced

for optimal design [28] and porosity-dependent analysis
of FG sandwich nanoplates [29]. Zhao et al. [30]
proposed a nonlinear size-dependent formulation for
bending and vibration analysis of nanobeams. They
used MSGT and generalized di�erential quadrature
method to derive and discretize nonlinear governing
equations. They found that both strain gradient and

exoelectric coupling had considerable impact on non-
linear behavior. Moreover, inclusion of surface e�ects
diminished the 
exoelectric response. Zanoosi [31]
discussed the free vibration of porous FG micro beams
under thermo-mechanical loading using MSGT. He
further explored the e�ects of di�erent parameters such
as thermal loading, slender ratio, and gradient index for
di�erent beam theories.

Classical Beam Theory (CBT) is the simplest
theory for beam analysis, but the results are limited to
thin beams. Rotary inertia and shear e�ects were �rst
reported by Timoshenko [32] with some improvements
over CBT, and several studies [33] were conducted
using First-order Shear Deformation Theory (FSDT).
Higher order shear deformation theories have been
introduced to cover shortcomings of the latter theory,
i.e., stress free surface condition. These theories
assume power series expansion in thickness coordinate
and o�er acceptable precision compared to existing
theories. In HSDT, conventional higher order terms
take into consideration shear e�ects and compensate
the above-mentioned drawbacks of FSDTs. Reddy
[34] considered a third-order polynomial expansion
for displacement �eld and studied the bending anal-
ysis of isotropic and anisotropic beams. Afterwards,
di�erent types of HSDTs were implemented [35,36].
Ninh and Bich analyzed the nonlinear vibration [37]
and nonlinear torsional buckling [38] of Eccentrically
Sti�ened (ES) FG toroidal shell segments in thermal
environment with the geometrical nonlinearity and
surrounded by an elastic medium based on the classical
shell theory.

Quasi-3D theories are presented as another ex-
tension of shear deformation theories by introducing
thickness stretching e�ects in transverse de
ection
function. These theories can be used by a uni�ed
formulation presented by Carrera [39], and they were
consequently developed by Demasi [40]. Karamanli
and Vo [41] investigated the 
exural behavior of FG
micro beams by employing quasi-3D formulation and
MCST. They employed �nite element method and
studied di�erent boundary conditions and length scale
parameters. Benahmed et al. [42] used a hyperbolic
quasi-3D theory for bending and free vibration analysis
of FG plates. They also studied the e�ects of elastic
foundation parameters. Nguyen et al. [43] investigated
the free vibration and buckling analysis of FG sandwich
beams for various boundary conditions by employing
Ritz-type quasi-3D solution. Farzam and Hassani [44]
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developed a new HSDT for static and free vibrations
and buckling analysis of FG plates with in-plane and
through-thickness sti�ness variations. Farzam-Rad et
al. [45] studied static and free vibrations of FG and
sandwich plates based on IGA and quasi-3D theory.
A quasi-3D shear deformation plate theory combined
with MCST theory was employed by Thai et al. [46].
They studied the impact of length-to-thickness ratios,
weight fraction values, and material length scale-to-
thickness ratios on free vibration and buckling behavior
of multilayer FG graphene platelet-reinforced compos-
ite microplates.

In order to simulate the interaction between
beams and elastic foundations, various models have
been introduced. The simplest model is Winkler [47]
elastic foundation that assumes a series of vertical
independent springs. Pasternak [48] o�ered a more
general model that accounts for the shear interaction
between Winkler springs. Atmane et al. [49] studied
the e�ects of porosity and thickness stretching on
the static and dynamic responses of FG micro beams
resting on elastic foundation. Lee et al. [50] studied
the static bending response of simply supported plates.
The material properties assumed to vary according to
exponential power law, and e�ects of two-parameter
Pasternak elastic foundation were investigated. Li
et al. [51] employed MSGT combined with HSDT in
order to study the buckling behavior of organic solar
cells. The model rested on Winkler-Pasternak elastic
foundation and Galerkin procedure was employed to
determine critical buckling loads. They also considered
thermal e�ects and stated that mechanical buckling of
the organic solar cell was more critical than thermal
buckling. Ninh et al. [52] investigated the nonlinear
vibration of W-Cu sandwich shell that contained heavy
water under thermo-mechanical loads. They concluded
that the nonlinear response of sandwich shells was
signi�cantly in
uenced by geometrical parameters, ma-
terial, temperature, and elastic foundation.

Zeighampour et al. [53] studied the wave propa-
gation in viscoelastic single-walled carbon nanotubes
resting on a viscoelastic Pasternak foundation. They
employed Hamilton's principle for deriving govern-
ing equations and Kelvin-Voigt model for expressing
the viscoelastic property. Several studies have been
performed on responses of beams and plates resting
on elastic foundation and under moving loads [54],
micro beams conveying 
uid [55], and interaction with
viscoelastic foundations [56].

Bich and Ninh performed several studies on static
and dynamic analyses of FGM toroidal shell segments
including nonlinear dynamic buckling [57], nonlinear
vibration in an external thermal environment contain-
ing 
uid [58] and nonlinear buckling and post-buckling
behavior of shells surrounded by elastic foundation [59].
They examined the e�ects of imperfection, 
uid, and

geometrical and material parameters on the nonlinear
behavior of shell segments.

In the present study, a simply supported size-
dependent beam resting on elastic foundation is con-
sidered. The displacement �eld is based on quasi-3D
theory. Static bending responses for di�erent geometri-
cal and foundation parameters were investigated using
MSGT. To the best of the authors' knowledge, e�ects
of foundation parameters on bending behavior of FGM
size-dependent beams based on quasi-3D approach
(accounting for "zz 6= 0) in conjunction with MSGT
have not been studied before. Quasi 3-D theories
are subject to lower computational costs than 3-D
theories; moreover, they o�er acceptable accuracies
compared to existing approaches. Possible applications
of the present model might include curvature sensors,
structural health monitoring, and implantable Bio-
MEMS devices.

2. Problem formulation

2.1. Quasi-3D displacement �eld
The beam under study is assumed to have a rectangular
cross-section with length L along x direction, and it
rests on a two-parameter elastic foundation, as depicted
in Figure 1. Right-handed Cartesian coordinate system
is adopted. Width b and thickness h lie along y and z
directions, respectively. The FG size-dependent beams
are generally composed of two di�erent materials on the
top and bottom surfaces. Gradual changes in material
properties for beam from bottom to top surface were
estimated according to power law index. Here, the
Young modulus and Poisson's ratio are assumed to
vary through thickness according to the classical rule
of mixture and Mori-Tanaka scheme.

The displacement �eld for quasi-3D HSDTs is
commonly considered as follows:

u(x; z) = u0(x)� zdwb(x)
dx

� f(z)
dws(x)

dx
;

w(x; z) = wb(x) + ws(x) + g(z)wz(x); (1)

where u0, wb, and ws are axial displacement, bending,
and shear parts of transverse displacements, respec-

Figure 1. Geometry of a functionally graded
size-dependent beam.
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tively. The contribution of normal strain to the
displacement �eld is accounted by g(z)wz(x; t) term.
In the present research, f(z) and g(z) functions in
Eq. (1) are assumed as follows [60]:

f(z) =
h
� sinh(�hz)� z
cosh(�2 )� 1

;

g(z) = 1� df(z)
dz

: (2)

Based upon the assumed displacement �eld in Eq. (1),
the non-zero strain-displacement terms can be achieved
through di�erentiation respect to the variables x and z
below:

"x =
du0

dx
� zd2wb

dx2 � f(z)
d2ws
dx2 ;

"z =
dg(z)

dz
wz;

2"xz = g(z)
�

dws
dx

+
dwz
dx

�
: (3)

2.2. Functionally Graded Materials (FGM)
2.2.1. Classical rule of mixture
The e�ective material properties of the FG beam using
classical rule of mixture are given below:

E(z) = Em + (Ec � Em)
�

1
2

+
z
h

�p
;

�(z) = �m + (�c � �m)
�

1
2

+
z
h

�p
; (4)

where subscripts m and c represent metal and ceramic
constituents, respectively, and p is the gradient power
law index in the z direction.

2.2.2. Mori-Tanaka homogenization scheme
Based on the Mori-Tanaka homogenization scheme, the
e�ective bulk modulus (Ke) and the e�ective shear
modulus (Ge) of the FG beam are given by Eq. (5)
[61] as shown in Box I, where V is the volume fraction
of the phase materials. The volume fraction of metal
and ceramic constituents of the FG microbeam can be
related as follows:
Vm + Vc = 1; (6)

where:

Vc(z) =
�
z
h

+
1
2

�p
;

Vm(z) = 1�
�
z
h

+
1
2

�p
: (7)

Consequently, according to Mori-Tanaka homogeniza-
tion scheme, the e�ective Young's modulus and Pois-
son's ratio can be expressed below:

E(z) =
9KeGe

3Ke +Ge
;

�(z) =
3Ke � 2Ge
6Ke + 2Ge

: (8)

2.3. Modi�ed Strain Gradient Theory (MSGT)
According to the MSGT presented by Lam et al. [15],
the strain energy stored in a linear elastic continuum,
including higher order terms, can be expressed as
follows:

U =
1
2

Z



(�ij"ij + pi
i + � (1)
ijk�

(1)
ijk +ms

ij�
s
ij)d
; (9)

where "ij , 
i, �
(1)
ijk, and �sij are strain tensor, dilatation

gradient tensor, deviatoric stretch gradient tensor,
and symmetric rotation gradient tensor, respectively,
where:

"ij =
1
2

(ui;j + uj;i);


i = "mm;i;

�ijk = �sijk � 1
5

(�ij�smmk + �jk�smmi + �jk�smmj);

�sij =
1
4

(eipq"qj;p + ejpq"qi;p); (10)

in which:

�sijk =
1
3

(ui;jk + uj;ki + uk;ij): (11)

According to the assumed displacement �eld, the non-
zero coe�cients of Eq. (10) are as follows:

"11 =
du
dx
� zd2wb

dx2 � f d2ws
dx2 ;

"13 =
1
2
g
�

dws
dx

+
dwz
dx

�
;

Ke �Km

Kc �Km
=

Vc
1 + Vm(Kc �Km)=(Km + 4Gm=3)

;

Ge �Gm
Gc �Gm =

Vc
1 + Vm(Gc �Gm)=[Gm +Gm(9Km + 8Gm)=(6(Km + 2Gm))]

: (5)

Box I
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"33 =
1
2

dg
dz
wz;


1 =
d2u
dx2 � zd3wb

dx3 � f d3ws
dx3 +

dg
dz

dwz
dx

;


3 = �d2wb
dx2 � df

dz
d2ws
dx2 +

d2g
dz2wz;

�111 =
2
5

d2u
dx2 � 2

5
z

d3wb
dx3 � 2

5
f

d3ws
dx3

� 2
5

dg
dz

dwz
dx

+
1
5

d2f
dz2

dws
dx

;

�113 =�311 = �131 = �8
5

df
dz

d2ws
dx2 +

4
15

d2ws
dx2

+
4
15
g

d2wz
dx2 � 4

15
d2wb
dx2 � 1

5
d2g
dz2wz;

�133 =�313 = �331 =
8
15

dg
dz

dwz
dx
� 4

15
d2f
dz2

dws
dx

� 1
5

d2u
dx2 +

1
5
z

d3wb
dx3 +

1
5
f

d3ws
dx3 ;

�122 =�212 = �221 = �1
5

d2u
dx2 +

1
5
z

d3wb
dx3 +

1
5
f

d3ws
dx3

� 2
5

dg
dz

dwz
dx

+
1
15

d2f
dz2

dws
dx

;

�223 =�322 = �232 =
1
15

d2wb
dx2 +

2
15

df
dz

d2ws
dx2

� 1
5

d2g
dz2wz � 1

15
d2ws
dx2 � 1

15
g

d2wz
dx2 ;

�333 =
2
5

d2g
dz2wz +

1
5

d2wb
dx2 +

2
5

df
dz

d2ws
dx2

� 1
5

d2ws
dx2 � 1

5
g

d2wz
dx2 ;

�sij =
1
4

(eipq"qj;p + ejpq"qi;p): (12)

The corresponding classical stress �eld associated with
the above strain terms is given below [62]:8<:�11
�33
�13

9=;=

264 E(z)
1��2(z)

E(z):�(z)
1��2(z) 0

E(z):�(z)
1��2(z)

E(z)
1��2(z) 0

0 0 E(z)
2(1+�(z))

3758<: "11
"33
2"13

9=; :
(13)

In addition, higher order stresses can be expressed as:

pi = 2�l20
i;

�1
ijk = 2�l21�ijk;

ms
ij = 2�l22�

s
ij ; (14)

where l0, l1 and l2 are three length scale parameters
in MSGT. This theory can be converted to MCST by
allowing l0 = l1 = 0 and to CBT by l0 = l1 = l2 = 0.

2.4. Governing equations
In order to obtain the governing equations, the mini-
mum total potential energy principle is used as follows:

�
Z
V

(U + Uf �W )dt = 0; (15)

where U is the strain energy, Uf is the strain energy
of elastic foundation, and W is the work done by the
external applied forces. The strain energy induced by
elastic foundation will be:

Uf =
1
2

Z
A

kw
�
wb2 + ws2	dA

+
1
2

Z
A
kp
�

d(wb + ws)
dx

�2

dA; (16)

where kw and kp are Winkler and Pasternak sti�ness
parameters of the elastic foundation, respectively. The
work done by external force can be obtained as follows:

W =
Z
A

q fwb + wsgdA: (17)

By substituting Eqs. (9), (16), (17) into Eq. (15)
through some mathematical processes and employing
integration by the technique, the following governing
equations and corresponding boundary conditions can
be achieved:

�u :� dN11

dx
+

d2P1

dx2 +
2
5

d2T111

dx2 � 3
5

d2T133

dx2

� 3
5

d2T122

dx2 = 0; (18a)

�wb :� d2Na
11

dx2 � d2M12

dx2 � d2P a1
dx2 +

2
5

d3T a111
dx3

� 4
5

d3T113

dx3 � 3
5

d3T a133
dx3 � 3

5
d3T a122

dx3

+
1
5

d2T223

dx2 +
1
5

d2T333

dx2 + kw(wb + ws)

� kP
�

d2wb
dx2 +

d2ws
dx2

�
� q = 0; (18b)

�ws :� d2N b
11

dx2 + 2
dS13

dx
� d2M12

dx2 +
1
2

d2Ma
12

dx2

� 1
2

dM23

dx
� d2P b1

dx2 � d2P a3
dx2 +

2
5

d3T b111
dx3

� 1
5

dT d111
dx

� 8
5

d2T b113
dx2 +

4
5

d2T113

dx2 +
4
5

dT d133
dx
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+
3
5

dT b133
dx

� 3
5

d3T122

dx3 � 1
5

dT d122
dx

+
2
5

d2T b223
dx2

� 1
5

d2T223

dx2 +
2
5

d2T b333
dx2 � 1

5
d2T333

dx2

+ kw(wb+ws)�kP
�

d2wb
dx2 +

d2ws
dx2

�
�q=0;

(18c)

�wz :� 2
dS13

dx
+R33 � 1

2
d2Ma

12
dx2 +

1
2

dM23

dx

� dP c1
dx

+ P b3 +
2
5

dT c111
dx

+
4
5

d2T a113
dx2 � 3

5
T c113

� 8
5

dT c133
dx

+
2
5

dT c122
dx

� 3
5
T c223 � 1

5
d2T a223

dx2

+
2
5
T c333 � 1

5
d2T a333

dx2 = 0; (18d)

where stress resultants in the above equations can
be calculated by integrating through the thickness as
follows:�

N11; Na
11; N

b
11
	

=
Z h=2

�h=2
f�11; �11z; �11fgdA;

S13 =
Z h=2

�h=2
�13gdA;

R33 =
Z h=2

�h=2
�33

dg
dz

dA;

fM12;Ma
12;M23g =

Z h=2

�h=2
fm12; �11g; �23gdA;

�
P1; P a1 ; P

b
1 ; P

c
1
	

=
Z h=2

�h=2

�
p1; p1z; p1f; p1

dg
dz

�
dA;

�
P3; P a3 ; P

b
3
	

=
Z h=2

�h=2

�
p3; p3

df
dz
; p3

d2g
dz2

�
dA;�

T111; T a111; T
b
111; T

c
111; T

d
111
	

=
Z h=2

�h=2

�
�111; �111z; �111f; �111

dg
dz
; �111

d2f
dz2

�
dA;�

T113; T a113; T
b
113; T

c
113
	

=
Z h=2

�h=2

�
�113; �113g; �113

df
dz
; �113

d2g
dz2

�
dA;�

T133; T a133; T
b
133; T

c
133; T

d
133
	

=
Z h=2

�h=2

�
�133; �133z; �133f; �133

dg
dz
; �133

d2f
dz2

�
dA;

�
T122; T a122; T

b
122; T

c
122; T

d
122
	

=
Z h=2

�h=2

�
�122; �122z; �122f; �122

dg
dz
; �122

d2f
dz2

�
dA;�

T223; T a223; T
b
223; T

c
223
	

=
Z h=2

�h=2

�
�223; �223g; �223

df
dz
; �223

d2g
dz2

�
dA;�

T333; T a333; T
b
333; T

c
333
�

=
Z h=2

�h=2

�
�333; �333g; �333

df
dz
; �333

d2g
dz2

�
dA: (19)

By substituting Eqs. (12){(14) into Eq. (19), the
components of classical stress resultants in terms of
displacements can be obtained as follows:8<:N11

Na
11

N b
11

9=; =

8<:A1
A2
A3

9=; du
dx
�
8<:A2
A5
A4

9=; d2wb
dx2 �

8<:A3
A4
A6

9=; d2ws
dx2

+

8<:B1
B2
B3

9=;wz;

R33 = B1
du
dx
�B2

d2wb
dx2 �B3

d2ws
dx2 +A7wz;

S13 =
1
2
D8(

dws
dx

+
dwz
dx

); (20a)

and the higher order stress resultants can be achieved
as follows:8>><>>:

P
P a1
P b1
P c1

9>>=>>;
1

= 2l20

�8>><>>:
D1
D2
D3
E2

9>>=>>; d2u
dx2 �

8>><>>:
D2
D6
D5
E3

9>>=>>; d3wb
dx3

�
8>><>>:
D3
D5
D7
E4

9>>=>>; d3ws
dx3 +

8>><>>:
E2
E3
E4
E8

9>>=>>; dwz
dx

�
;

8<:P3
P a3
P b3

9=; =2l20

�
�
8<:D1
E1
F2

9=; d2wb
dx2

�
8<:E1
E7
F5

9=; d2ws
dx2 +

8<:F2
F5
F8

9=;wz
�
;

�
M12
Ma

12

�
=� l22

�
D1
D4

��
d2wb
dx2 +

d2ws
dx2

�
+

1
2
l22

�
D4
D8

��
d2ws
dx2 � d2wz

dx2

�
;
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M23 =
1
2
l22E8

�
dws
dx
� dwz

dx

�
;

8>>>><>>>>:
T111
T a111
T b111
T c111
T d111

9>>>>=>>>>; =2l21

�
2
5

8>>>><>>>>:
D1
D2
D3
E2
F1

9>>>>=>>>>;
d2u
dx2 � 2

5

8>>>><>>>>:
D2
D6
D5
E3
F3

9>>>>=>>>>;
d3wb
dx3

� 2
5

8>>>><>>>>:
D3
D5
D7
E4
F9

9>>>>=>>>>;
d3ws
dx3 � 2

5

8>>>><>>>>:
E2
E3
E4
E8
F6

9>>>>=>>>>;
dwz
dx

+
1
5

8>>>><>>>>:
F1
F3
F9
F6
F7

9>>>>=>>>>;
dws
dx

�
;

8>><>>:
T113
T a113
T b113
T c113

9>>=>>; =2l21

�
� 8

15

8>><>>:
E1
E5
E7
F5

9>>=>>; d2ws
dx2

+
4
15

8>><>>:
D1
D4
E1
F2

9>>=>>; d2ws
dx2 +

4
15

8>><>>:
D4
D8
E5
F4

9>>=>>; d2wz
dx2

� 4
15

8>><>>:
D1
D4
E1
F2

9>>=>>; d2wb
dx2 � 1

5

8>><>>:
F2
F4
F5
F8

9>>=>>;wz
�
;

8>>>><>>>>:
T122
T a122
T b122
T c122
T d122

9>>>>=>>>>; =2l21

�
� 1

5

8>>>><>>>>:
D1
D2
D3
E2
F1

9>>>>=>>>>;
d2u
dx2 +

1
5

8>>>><>>>>:
D2
D6
D5
E3
F3

9>>>>=>>>>;
d3wb
dx3

+
1
5

8>>>><>>>>:
D3
D5
D7
E4
F9

9>>>>=>>>>;
d3ws
dx3 � 2

15

8>>>><>>>>:
E2
E3
E4
E8
F6

9>>>>=>>>>;
dwz
dx

+
1
15

8>>>><>>>>:
F1
F3
F9
F6
F7

9>>>>=>>>>;
dws
dx

�
;

8>>>><>>>>:
T113
T a133
T b133
T c133
T d133

9>>>>=>>>>; =2l21

�
8
15

8>>>><>>>>:
E2
E3
E4
E8
F6

9>>>>=>>>>;
dwz
dx
� 4

15

8>>>><>>>>:
F1
F3
F9
F6
F7

9>>>>=>>>>;
dws
dx

� 1
5

8>>>><>>>>:
D1
D2
D3
E2
F1

9>>>>=>>>>;
d2u
dx2 +

1
5

8>>>><>>>>:
D2
D6
D5
E3
F3

9>>>>=>>>>;
d3wb
dx3

+
1
5

8>>>><>>>>:
D3
D5
D7
E4
F9

9>>>>=>>>>;
d3ws
dx3

�
;

8>><>>:
T223
T a223
T b223
T c223

9>>=>>; =2l21

�
1
15

8>><>>:
D1
D4
E1
F2

9>>=>>; d2wb
dx2 +

2
15

8>><>>:
E1
E5
E7
F5

9>>=>>; d2ws
dx2

� 1
5

8>><>>:
F2
F4
F5
F8

9>>=>>;wz � 1
15

8>><>>:
D1
D4
E1
F2

9>>=>>; d2ws
dx2

� 1
15

8>><>>:
D4
D8
E5
F4

9>>=>>; d2wz
dx2

�
;

8>><>>:
T333
T a333
T b333
T c333

9>>=>>; =2l21

�
2
5

8>><>>:
F2
F4
F5
F8

9>>=>>;wz +
1
5

8>><>>:
D1
D4
E1
F2

9>>=>>; d2wb
dx2

+
2
5

8>><>>:
E1
E5
E7
F5

9>>=>>;
17

d2ws
dx2 � 1

5

8>><>>:
D1
D4
E1
F2

9>>=>>; d2ws
dx2

� 1
5

8>><>>:
D4
D8
E5
F4

9>>=>>; d2wz
dx2

�
;

(20b)

where:

fA1; A2; A3; A4; A5; A6; A7g

=
Z
A

E(z)
1� �2(z)

(
1; z; f; zf; z2; f2;

�
dg
dz

�2
)

dA;
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fB1; B2; B3g

=
Z
A

E(z)�(z)
1� �2(z)

�
dg
dz
; z

dg
dz
; f

dg
dz

�
dA;

fC1; C2; C3; C4; C5; C6g

=
Z
A

E(z)�2(z)
1��2(z)

(
1; g; g2;

df
dz
; g

df
dz
;
�

df
dz

�2
)

dA;

fD1; D2; D3; D4; D5; D6; D7; D8g

=
Z
A
�
�

1; z; f; g; zf; z2; f2; g2	dA;

fE1; E2; E3; E4; E5; E6; E7; E8g

=
Z
A
�
�

df
dz
;

dg
dz
; z

dg
dz
; f

dg
dz
; g

df
dz
;

fg
dg
dz
;
�

df
dz

�2

;
�

dg
dz

�2�
dA;

fF1; F2; F3; F4; F5; F6; F7; F8; F9g =Z
A
�
�

d2f
dz2 ;

d2g
dz2 ; z

d2f
dz2 ; g

d2g
dz2 ;

df
dz

d2g
dz2 ;

dg
dz

d2f
dz2 ;�

d2f
dz2

�2

;
�

d2g
dz2

�2

; f
�

d2f
dz2

��
dA; (21)

and corresponding boundary conditions at the beam
ends (x = 0, L) are expressed as:

�u = 0 or

N11� dP1

dx
� 2

5
dT111

dx
+

3
5

dT133

dx
+

3
5

dT122

dx
=0; (22a)

�
�

du
dx

�
= 0 or

P1 +
2
5
T111 � 3

5
T133 � 3

5
T122 = 0; (22b)

�wb = 0 or

dNa
11

dx
+

dM12

dx
� 2

5
d2T a111

dx2 +
4
5

dT113

dx
+

3
5

d2T a133
dx2

+
3
5

d2T a122
dx2 � 1

5
dT223

dx
� 1

5
dT333

dx
� d2P a1

dx2 = 0;
(22c)

�
�

dwb
dx

�
= 0 or

�Na
11 �M12 +

2
5

dT a111
dx

� 4
5
T113 � 3

5
dT a133

dx

�3
5

dT a122
dx

+
1
5
T223 +

1
5
T333 +

dP a1
dx

= 0; (22d)

�
�

d2wb
dx2

�
= 0 or

�2
5
T a111 +

3
5
T a133 +

3
5
T a122 +

1
5
T223 � P a1 = 0; (22e)

�ws = 0 or

dN b
11

dx
� 2S13 +

dM12

dx
� 1

2
dMa

12
dx

+
1
2
M23

+
dP a3
dx
� 2

5
d2T b111

dx2 +
1
5
T d111 +

8
5

dT b113
dx

�4
5

dT113

dx
� 4

5
dT d133

dx
� 3

5
T b133 � d2P b1

dx2

+
3
5

d2T b122
dx2 +

1
5
T d122 � 2

5
dT b223

dx
+

1
5

dT223

dx

�2
5

dT b333
dx

+
1
5

dT333

dx
= 0 (22f)

�
�

dws
dx

�
= 0 or

�N b
11 �M12 +

1
2
Ma

12 � P a3 +
2
5

dT b111
dx

� 8
5
T b113

+
4
5
T113 +

3
5
T b133 +

dP b1
dx
� 3

5
dT b122

dx

+
2
5
T b223 � 1

5
T223 +

2
5
T b333 � 1

5
T333 = 0; (22g)

�
�

d2ws
dx2

�
= 0 or

�2
5
T b111 � P b1 +

3
5
T b122 = 0; (22h)

�wz = 0 or

�2S13 +
1
2

dMa
12

dx
� 1

2
M23 + P c1 � 2

5
T c111 � 4

5
dT a113

dx

+
8
5
T c133 � 2

5
T c122 +

1
5

dT a223
dx

+
1
5

dT a333
dx

= 0;
(22i)

�
�

dwz
dx

�
= 0 or

�1
2
Ma

12 +
4
5
T a113 � 1

5
T a223 � 1

5
T a333 = 0: (22j)
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3. Solution methodology

In this section, the Navier exact closed-form solution is
employed in order to automatically satisfy the simply
supported boundary conditions. In the latter method,
the displacement terms are expressed as functions with
undetermined coe�cients. The beam is supposed to
be simply supported at x = 0; L. The expansion of
displacement �eld is expressed as:

u(x) =
NX
m=1

um cos
�m�
L
x
�
;

wb(x) =
NX
m=1

wbm sin
�m�
L
x
�
;

ws(x) =
NX
m=1

wsm sin
�m�
L
x
�
;

wz(x) =
NX
m=1

wzm sin
�m�
L
x
�
; (23)

where um, wbm, wsm, and wzm are arbitrary param-
eters to be determined. In addition, the transverse
applied load can be expanded in Fourier series as
follows:

q(x) =
NX
n=1

Qn sin
�n�
L
x
�
; (24)

where:

For single sine load:

Qn = q0; n = 1:

For uniformly distributed load:

Qn =
4q0

n�
; n = 1; 3; 5; :::

For point load at the middle:

Qn =
2P
L

sin
n�x
L

; n = 1; 2; 3; ::: (25)

4. Results and discussion

In order to demonstrate the accuracy of the present
formulation, results for bending of micro beams in a
special case (l0 = l1 = 0) are compared to those in [62].
The FG beam is composed of Sic/Al and associated
material properties are expressed in Eq. (26). The
classical rule of mixture and Mori-Tanaka scheme are
employed to estimate material properties through the
thickness. The material length scale parameter in the
present study is considered to be l = 15�m [63]. Table 1
shows the comparison of results at di�erent aspect
ratios and dimensionless size-dependent parameters for
a di�erent power indexes. It can be observed that there
is a good agreement between results for both classical
rule of mixture and Mori-Tanaka scheme.
EC = 427 GPa �C = 0:17;

Em = 70 GPa �m = 0:3: (26)

The dimensionless transverse de
ections are calculated
as follows:

�w =
100Emh3

12q0L4 w(x; 0); ŵ =
100Emh3

12PL3 w(x; 0);

��xx =
�xxh
q0L

(x; z); ��xz =
�xzh
q0L

(x; z);

�kw =
kwL4

EI
; �kp =

kpL2

EI
: (27)

Table 1. Dimensionless de
ection of functionally graded micro beam under uniformly distributed loading for di�erent
gradient power indexes (q0 = 10 N/m2).

L=h h=l Theory �w (classical rule of mixture) �w (Mori-Tanaka scheme)
p = 0 p = 0:5 p = 1 p = 10 p = 0 p = 0:5 p = 1 p = 10

5

1 Ref. [62] 0.0364 0.0527 0.0663 0.1569 0.0364 0.0713 0.0920 0.1870
Present MCST 0.0363 0.0525 0.0660 0.1550 0.0363 0.0708 0.0914 0.1845

2 Ref. [62] 0.0989 0.1461 0.1861 0.4034 0.0989 0.1975 0.2535 0.4771
Present MCST 0.0986 0.1454 0.1851 0.3980 0.0986 0.1964 0.2518 0.4707

1 Ref. [62] 0.2313 0.3567 0.4670 0.8599 0.2313 0.4823 0.6109 0.9956
Present CBT 0.2310 0.3550 0.4647 0.8528 0.2306 0.4800 0.6079 0.9876

10

1 Ref. [62] 0.0352 0.0510 0.0643 0.1522 0.0352 0.0691 0.0894 0.1809
Present MCST 0.0352 0.0510 0.0643 0.1518 0.0352 0.0690 0.0893 0.1803

2 Ref. [62] 0.0949 0.1404 0.1792 0.3838 0.0949 0.1900 0.2437 0.4535
Present MCST 0.0949 0.1403 0.1791 0.3824 0.0949 0.1898 0.2434 0.4517

1 Ref. [62] 0.2178 0.3380 0.4429 0.7818 0.2178 0.4554 0.5737 0.9129
Present CBT 0.2179 0.3379 0.4426 0.7789 0.2179 0.4552 0.5732 0.9096
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Table 2. Dimensionless de
ections of functionally graded size dependent beam under point load: P =100 �N.

ŵ (classical rule of mixture) ŵ (Mori-Tanaka scheme)
L=h = 10 L=h = 100 L=h = 10 L=h = 100

Theory h=l p = 0 p = 1 p = 10 p = 0 p = 1 p = 10 p = 0 p = 1 p = 10 p = 0 p = 1 p = 10

MCSTa

1 0.0564 0.1029 0.2429 0.0557 0.1017 0.2409 0.0564 0.1429 0.2885 0.0557 0.1416 0.2859
2 0.1520 0.2868 0.6125 0.1497 0.2829 0.6025 0.1520 0.3898 0.7236 0.1497 0.3844 0.7115
4 0.2639 0.5186 0.9919 0.2586 0.5097 0.9643 0.2639 0.6865 1.1641 0.2586 0.6731 1.1332
8 0.3236 0.6502 1.1757 0.3162 0.6375 1.1347 0.3236 0.8481 1.3746 0.3162 0.8286 1.3304

MSGTb

1 0.0348 0.0623 0.1512 0.0346 0.0627 0.1525 0.0348 0.0871 0.1 797 0.0346 0.0878 0.1812
2 0.1087 0.1995 0.4462 0.1079 0.2010 0.4494 0.1087 0.2744 0.5276 0.1079 0.2764 0.5313
4 0.2290 0.4370 0.8579 0.2259 0.4399 0.8626 0.2290 0.5831 1.0073 0.2259 0.5865 1.0138
8 0.3112 0.5971 1.0795 0.3050 0.6123 1.1025 0.3112 0.7846 1.2235 0.3050 0.7985 1.2922

aMCST: Modi�ed Couple Stress Theory; bMSGT: Modi�ed Strain Gradient Theory.

Table 3. E�ects of foundation parameters on bending of functionally graded size-dependent beam under point load:
P = 100 �N, h=l = 1, and L = 50 h.

ŵ

p = 0 p = 1 p = 10

Theory �kw �kp = 0 �kp = 10 �kp = 102 �kp = 0 �kp = 10 �kp = 102 �kp = 0 �kp = 10 �kp = 102

CBTa

0 0.3418 0.2937 0.1308 0.6960 0.5223 0.1641 1.2072 0.7663 0.1846

10 0.3362 0.2896 0.1300 0.6733 0.5095 0.1629 1.1404 0.7392 0.1831

102 0.2932 0.2573 0.1233 0.5209 0.4177 0.1527 0.7635 0.5619 0.1707

103 0.1304 0.1230 0.0817 0.1647 0.1534 0.0953 0.1880 0.1738 0.1038

MCSTb

0 0.0558 0.0543 0.0440 0.1018 0.0971 0.0685 0.2410 0.2160 0.1125

10 0.0556 0.0542 0.0439 0.1013 0.0966 0.0683 0.2382 0.2138 0.1119

102 0.0543 0.0529 0.0431 0.0970 0.0927 0.0663 0.2158 0.1956 0.1068

103 0.0439 0.0430 0.0363 0.0683 0.0661 0.0516 0.1120 0.1064 0.0738

MSGTc

0 0.0347 0.0341 0.0297 0.0628 0.0609 0.0483 0.1524 0.1420 0.0883

10 0.0346 0.0340 0.0297 0.0626 0.0607 0.0481 0.1513 0.1411 0.0879

102 0.0341 0.0335 0.0293 0.0609 0.0592 0.0472 0.1419 0.1329 0.0847

103 0.0297 0.0292 0.0260 0.0481 0.0471 0.0392 0.0880 0.0845 0.0623

aCBT: Classical Beam Theory; bMCST: Modi�ed Couple Stress Theory; cMSGT: Modi�ed Strain Gradient Theory.

Table 2 lists dimensionless de
ections of MSGT and
MCST theories for di�erent aspect ratios (L=h), dimen-
sionless size-dependent parameters (h=l), and power
index numbers. The dimensionless de
ections for both
MSGT and MCST theories increase with the increase of
power index numbers and dimensionless size-dependent
parameters (h=l). For simplicity and in order to
compare the results of di�erent theories, it was assumed
that (l0 = l1 = l2 = l) for MSGT.

Table 3 contains e�ects of foundation parameters
and power law indexes on dimensionless de
ection for
di�erent theories under point load in the middle of the
beam based on the classical rule of mixture. Remark-
able variations have been observed for results of CBT,

whereas results of MSGT have experienced relatively
few changes. Moreover, the e�ects of dimensionless
Pasternak shear parameter (�kp) have been more no-
ticeable than dimensionless Winkler parameter (�kw).

Figure 2 illustrates the dimensionless de
ections
for di�erent theories. Results of MSGT and MCST
theories are closer to each other than to the results
of CBT. Classical continuum theory is not capable of
approximating size-dependent behavior and assumes
the beam under study to be more 
exible (less sti�)
than higher order continuum theories (MSGT, MCST).
For di�erent theories (CBT, MSGT, MCST), Mori-
Tanaka scheme o�ers higher values than the classical
rule of mixture for dimensionless de
ections.
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Figure 2. Comparison of the dimensionless static
de
ection for simply supported micro beam subjected to
point load: P = 100 �N (L = 10 h, p = 0:3).

Figure 3. Variation in dimensionless axial stress �xx
through non-dimensional thickness for di�erent power
index parameters under transverse single sine load
(x = L=2).

Figure 4. Variation in dimensionless normal stress �zz
through non-dimensional thickness for di�erent power
index parameters under transverse single sine load
P = 100 �N (x = L=2).

Figures 3 and 4 show the changes in dimension-
less axial and normal stresses through dimensionless
thickness (L = 10 h) based on MSGT theory and
under single sine load q0 = 10 N/m2 for di�erent
power indexes, respectively. An increase in power index

Figure 5. Variation in dimensionless axial stress �xx
through non-dimensional thickness for di�erent elastic
foundation parameters under transverse single sine load
(x = L=2).

Figure 6. Variation in dimensionless transverse shear
stress �xz through non-dimensional thickness for di�erent
elastic foundation parameters under transverse single sine
load (x = L=4).

number forces the material constituents to change
from ceramic to metal and both axial and normal
stresses undergo more obvious changes through non-
dimensional thickness. For the present dimensionless
thickness (L = 10 h), that thickness is comparable
to the length of size-dependent beam and the amount
of changes for normal stresses are more pronounced
than axial stresses. The material properties of the
size-dependent FG beams are very important in the
bending response, especially in higher gradient indexes
(p = 10), and the number of variations from bottom to
top surface is remarkable.

Figures 5 and 6 depict the variation in non-
dimensional axial and transverse shear stresses through
dimensionless thickness based on MSGT theory for p =
1 and L = 10 h under single sine load q0 = 10 N/m2,
respectively. E�ects of foundation parameters were in-
vestigated for both dimensionless axial and transverse
shear stresses through non-dimensional thickness of the
FG size-dependent beams.

In Figures 5 and 6, inclusion of foundation pa-
rameters results in reducing the variation in non-
dimensional axial and transverse shear stresses through
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dimensionless thickness, respectively. In addition, the
calculated dimensionless axial, normal, and transverse
shear stresses using Mori-Tanaka scheme follow the
same trends as the classical rule of mixture, albeit
mostly with slightly higher values. Pasternak pa-
rameters (shear layer) resulted in reduction of the
dimensionless axial stresses in magnitude compared to
Winker elastic foundation and the situation that the
elastic foundation is neglected. Results of dimension-
less transverse shear stresses (Figure 6) approach are
close to one another for Mori-Tanaka and classical rule
of mixture schemes as the values of the foundation
parameters (Kw, Kp) increase.

5. Conclusion

In the present study, static bending of a functionally
graded size-dependent beam was performed using Mod-
i�ed Strain Gradient Theory (MSGT). Di�erent types
of loading, volume fraction indexes, material proper-
ties schemes and elastic foundation parameters were
investigated for simply supported beams. Stretching
e�ects were also considered in displacement �eld, which
were noticeable in the case of thick beams. Parametric
study demonstrated that the impact of the Pasternak
coe�cient was more signi�cant than the Winkler one
for bending behavior. Results of the present paper were
compared to the existing ones in special cases (MCST
and CBT). It can be seen that the beam behaves sti�er
in MSGT than Modi�ed Couple Stress Theory (MCST)
theory, because the additional higher order terms were
considered. The MCST only involved the rotation
gradients as higher order terms in governing equations,
while Classical Beam Theory (CBT) was not capable of
predicting small-scale behavior. The obtained results
illustrated that the inclusion of foundation parameters
caused a reduction in variation of non-dimensional ax-
ial and transverse shear stresses through dimensionless
thickness.

Nomenclature

x; y; z Coordinates system
b; h; L Width, thickness, and length of the

beam, respectively
Em; Ec Young modulus of metal and ceramic

constituents, respectively
�m; �c Poisson's ratio of metal and ceramic

constituents, respectively
Km;Kc Bulk modulus of metal and ceramic

constituents, respectively
Gm; Gc Shear modulus of metal and ceramic

constituents, respectively
Ke; Ge E�ective bulk and shear modulus,

respectively

Vm; Vc Volume fraction of metal and ceramic
constituents, respectively

�; � Lame constants
u;w Displacement of micro beam in x and

z directions, respectively
u0 Middle surface displacements in the

x-direction
wb; ws; wz Bending, shear, and normal parts of

transverse displacement, respectively
um; wbm; wsm; wzmUndetermined Fourier coe�cient
�w; ŵ Dimensionless transverse de
ection
��xx; ��xz Dimensionless axial and transverse

stresses, respectively
q Distributed applied load
f; g Shear deformation shape functions
p Gradient power law index in the z

direction
kw; kp Winkler and Pasternak sti�ness

parameters of the elastic foundation,
respectively

�kw; �kp Dimensionless Winkler and Pasternak
sti�ness parameters, respectively

U;Uf ;W Strain energy, strain energy of elastic
foundation, and work of external
applied forces, respectively

�ij ; eipq Kronecker delta and permutation
symbol, respectively

�ij ; �
(1)
ijk ;m

s
ij ; pi Classical and higher order stresses

tensors
"ij ; 
i; �

(1)
ijk; �

s
ij Classical strain, dilatation gradient,

deviatoric stretch gradient, and
symmetric rotation gradient tensors,
respectively

�sijk Symmetric part of second-order
deformation gradient tensor

�ijk Second-order deformation gradient
tensor

l0; l1; l2 Length scale parameters
M;N;R; S Classical and non-classical forces and

moment resultants
P Dilatation resultants and moments
T Deviatoric stretch resultants and

moments
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