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Abstract. The present study investigates nonlinear buckling and post-buckling behaviors
of composite plates with the circular/elliptical cut-out using Particle Semi-Energy (PSE)
method. The semi-energy is based on the solution of the compatibility equation obtained
from an Airy force and out-of-plane displacement functions. The unknown parameters
of these functions were determined by minimizing the potential energy. The integrals
of the potential energy were then replaced by the summations at the perforated plate
particle (node). The cut-out was easily modeled using these nodes. This method enjoys
some advantages, namely easy cut-out modeling by nodes and proposing just one of
the displacement �elds (i.e., out-of-plane). According to the results, there was good
agreement (1.25%) between the post-buckling loads derived from PSE in this paper and
the experimental test of the literature. According to the experimental test results, the
accuracy of Finite Element Method (FEM) was 7.5%. This study also evaluated the e�ects
of rotating the elliptical cut-out and replacing it with two other circular cut-outs in the
same areas on the post-buckling load.
© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Composite materials are among the most useful engi-
neering structures that are preferred over other com-
mon materials owing to their desirable structural prop-
erties such as higher speci�c strength and lightness.
This study suggests a new technique in the semi-
energy method for nonlinear post-buckling analysis of
composite plates with cut-outs.

The buckling and post-buckling behaviors of the
composite laminates containing a cut-out were de-
veloped using Semi-Energy Finite Strip Method (SE-
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FSM) [1]. Based on Lagrangian strain, the strains of
the composite plate were de�ned that comprised both
linear and nonlinear displacement �elds. According to
the semi-energy method [2], the shape function for the
out-of-plane displacement was set as the trigonometric
functions based on the boundary conditions of plate
edges in the longitudinal direction and Hermitian poly-
nomial was used in transverse direction of the plate.
The in-plane forces were de�ned as the di�erential of
Airy force functions. Having been substituted into von
K�arm�an's compatibility equation, these Airy functions
became related to out-of-plane displacement. Then,
the in-plane displacement �elds were achieved based
on the strain de�nition using out-of-plane displacement
and Airy functions. The non-linear equilibrium equa-
tions were derived through minimizing the potential
energy. The governing equations of the equilibrium
were solved using the Newton-Raphson technique. To
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model the cut-out, the plate was divided by strips and
semi-energy method was applied to the strips. The po-
tential energy of the cut-out was not added to the whole
potential energy of the incomplete strips placed in
the cut-out region. Moreover, SE-FSM was employed
to evaluate the e�ects of the sti�ener on the post-
buckling behavior of composite laminates with circular
cut-out [3]. The potential energy of the planer and
ring types of sti�ener was added to the whole potential
energy of the strips placed in the sti�ener region. The
numerical results were validated by the experimental
tests. Although the end-shortening capacity of plates
with a planer sti�ener is the highest, this plate has the
lowest buckling load compared to the plate with ring
and longitudinal types of sti�ener. The buckling load
of the plate with a longitudinal type of sti�ener is the
highest.

Numerical buckling analysis of carbon �bre-epoxy
composite plates with one, two, and three central
rectangular cut-outs was carried out [4]. The areas
allocated to all types of cut-outs were equal. Linear
and nonlinear Finite Element Methods (FEMs) were
employed to model the buckling state using the elastic
composite plate elements. The results were validated
by the experimental test [5]. Increasing the number
of rectangular cut-outs with constant area summation
would increase maximum buckling load and decrease
maximum de
ection.

The post-buckling behavior of relatively thick
composite plates with circular/elliptical holes was in-
vestigated using full energy method as well as the
�rst-order shear deformation plate theory [6]. De�ned
based on Green strain [7], the strains of the composite
plate are characterized by both linear and nonlinear
displacement �elds and size-dependent e�ect of the
plate thickness. The out-of-plane shear strain added
to the strain �eld corresponds to the �rst-order shear
deformation plate theory. According to full energy
method [8], the shape functions for the in- and out-
of-plane displacements �elds as well as the rotations of
a strip edges were set as trigonometric functions based
on boundary conditions of plate edges. The non-linear
equilibrium equations were derived from minimizing
the potential energy. The governing equations of
the equilibrium were solved by the Newton-Raphson
technique. In this study, the continuous integrals of the
potential energy were replaced by summations calcu-
lated over all nodes on the perforated plate. Nodes were
selected based on Gauss-Chebyshev quadrature. To
this end, three di�erent types of boundary conditions
were employed. All types were featured based on
a simple support boundary condition along the axial
loading. One of the longitude edges was simple/clamp
and the other was simple/free. The post-buckling
results and buckling loads were validated using FEM
and experimental results, respectively [9]. In case the

four boundaries are simple, the buckling load of the
plate with the elliptical cut-out aligned in the loading
direction is lower than that of the plate with a vertical
elliptical cut-out. This result varies in other boundary
conditions [10].

The post-buckling of the relatively thick
functionally-graded plates with square and rectangular
cut-outs was investigated using full energy method and
�rst-order shear deformation plate theory [11]. The
plate was modeled by assembling eight plate elements
placed around the cut-out. This modeling was called
Penalty method. The strains and shape functions of
the displacement and rotations of eight plate elements
were similar to those reported in the research [6]. The
free boundary conditions were �rst considered in the
Ritz approximation for the sharing edges between
the adjoining elements. The non-linear equilibrium
equations were derived in [6] and the continuous
integrals of the potential energy were replaced by
summations calculated over all nodes in the eight plate
elements. The governing equations of equilibrium were
solved using the quadratic extrapolation technique.
Moreover, FEM was employed to validate the results
of this study.

The buckling load parameters for the function-
ally graded carbon nanotube sandwich structure were
investigated using numerical method. The plate was
under the compression loading [12] as well as the
uniform [13{15] and non-uniform [14,16{18] thermal
loading. The temperature pro�le was assumed to
linearly [16] and nonlinearly [17] increase from the
bottom surface at room temperature to the top surface
of the composite plate. Further, the free vibration
fundamental frequency of this structure under uniform
thermal loading was obtained [19,20]. A higher-order
polynomial displacement with nine unknown parame-
ters [12{19,21] and low-order polynomial displacement
[20] was used to calculate the global mid-plane displace-
ment. The mechanical and thermal strain vectors were
de�ned in the form of nodal displacement vector via
Green-Lagrange assumption. The governing equilib-
rium equation was derived by the variational principle.
The total strain energy and the work done due to
temperature rise were also calculated. This equilibrium
equation was rearranged in the form of eigenvalue and
eigenvectors, and the subsequent algebraic form was
achieved through the iso-parametric displacement �nite
element steps. The spherical geometry represented the
highest critical buckling temperature. The uniform
critical buckling temperature decreased following an
increase in the length-to-thickness and curvature ratios
of the plate.

In the literature, the post-buckling of composite
plates was analyzed using full-energy and semi-energy
method. These methods were then applied to the
whole plate analytically or to the strips and elements
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numerically. The accuracy of the full-energy method
was lower than that of the semi-energy method, mainly
because the former set the shape functions to all
displacement and the latter just set the shape function
for out-of-plane displacement, and other ones were
derived using strain de�nition and Airy function. The
Airy functions satis�ed the compatibility equations. In
the strip modeling [1], the circular cut-out was modeled
as the summation of some small rectangles. Calculating
the potential energy integration of each strip requires a
considerable amount of time. Increasing the number of
strips approximately would change the rectangular cut-
out shape to the ideal circle, as shown in [22]; however,
solving the integration still requires much time. The
error of FEM was higher than that of the semi-energy
method [1].

The present study aimed to investigate the post-
buckling behavior of composite laminates containing a
circular/elliptical cut-out using Particle Semi-Energy
(PSE) method and classical plate theory. To this end,
a shape function was set to out-of-plane displacement
based on the boundary condition. In-plane displace-
ments were then derived using strain de�nition and
Airy function. The non-linear equilibrium equations
were also obtained through minimizing the potential
energy. The continuous integrals of the potential
energy were replaced by summations calculated over all
nodes in the perforated plate. The governing equilib-
rium equations were �nally solved through the Newton-
Raphson technique. Further, the buckling loads were
calculated by increasing the end-shortening capacity.
The results were validated using the experimental tests
[1] and FEM.

2. Basic formulation of composite laminate

The strains of the composite plate are de�ned based on
Lagrangian strain containing the linear and nonlinear
displacement �elds:
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and u; v are in-plane and w the out-of-plane displace-
ments. The strain-displacement relations (1) satisfy
the compatibility equation as follows:
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Generalized Hook's equation for a composite laminate
is formulated as Eq. (4).�
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where �, N , and M are the curvature of the neutral
plane of composite element, forces, and moments per
unit length acting on the component of the element, re-
spectively. The curvatures are de�ned based on out-of-
plane displacement derivations �x =

�
@2w=@x2� ; �y =�
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�
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�
. The coe�cient ma-

trices are derived as A� = A�1; B� = �A�1:B;H� =
B:A�1; D� = D � B:A�1:B. The matrix A is the in-
plane sti�ness matrix of the composite material, B the
coupling matrix of the forces imposed on the in- and
out-of-plane moments, and D the sti�ness of moments
as well as the curvatures of the element. The matrices
A, B, and D were determined in Ref. [1].

The forces per unit length acting on the compo-
nent of the element are expressed in Eq. (6) based on
the Airy force function (F ) derivations:
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@2F
@y2 ; Ny =

@2F
@x2 ; Nxy = � @2F

@x@y
: (6)

Given that the matrix B� = 0 and A�13 = A�23 = 0 for
the symmetrical laminate, by substituting Eq. (4) and
de�nitions of Eq. (6) into Eq. (3), the compatibility
equation deforms as obtained by Eq. (7):
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In the case of the out-of-plane displacement (w), the
Airy function is derived by solving the partial Eq. (7),
and the buckling load (Nx) is calculated through the
derivation of function F using Eq. (6).

3. Semi-energy formulation

A shape function for out-of-plane displacement is set
based on the boundary conditions, and in-plane dis-
placements are derived from the means of Airy func-
tions. These functions satisfy the in-plane boundary
condition and compatibility equation.

The plate is clamped at both ends (i.e., at ends
x = 0 and L in Figure 1) and loaded to a uniform
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Figure 1. Description of the boundary conditions of a
perforated plate subjected to a prescribed uniform
end-shortening.

end shortening �u at end x = L only. The boundary
conditions for the plate including a circular cut-out are
summarized as follows:8>><>>:

w = @w
@x = 0 at x = 0; L

u =
�

0
��u

at x = 0
at x = L

(8)

According to the boundary conditions of Eq. (8), the
out-of-plane displacement �eld is proposed in Eq. (9),
where w1 is the maximum de
ection of plate which will
be determined later.

w = w1 cos (nx) ; n =
2m�
L

: (9)

The compatibility equation is satis�ed by substituting
the out-of-plane displacement of Eq. (9) into Eq. (7),
as shown in the following:
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The suitable Airy function F can be assumed as follows:

F (x; y) = F0(y) + Fn(y) cos(nx): (11)

By substituting Eq. (11) into Eq. (10), two fourth-order
ordinary di�erential equations are derived as follows:
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The solution of the �rst equation is a third-order poly-
nomial equation. The solution of the second equation

depends on the sign of Delta (� = (2A�12 +A�33)2 �
4A�11A�22) [8]. If the sign of Delta is positive, the
solution form will be:
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The unknown coe�cients C1 to C4 will be later ex-
pressed based on the in-plane displacements. To �nd
the axial displacement, the �rst row of Eq. (1) is written
again in Eq. (14). The Eqs. (4), (9), and (11) are then
substituted into the new form of Eq. (1) as shown in
the following:
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The axial displacement Eq. (15) is obtained by integrat-
ing Eq. (14) with the boundary conditions of Figure 1:
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Eqs. (4), (9), and (11) should be substituted into the
new form of the second row of Eq. (1) to �nd the
transverse displacement.
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Eq. (17) for the transverse displacement is derived from
integrating Eq. (16) by means of the value of sentence�
n2A�22Fn

�
with the compatibility Eq. (12).
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The unknown coe�cients C1 to C4 are determined by
Eq. (18):

fujy=0 = u1; fujy=b = u2;

fvjy=0 = v1; fvjy=b = v2; (18)

where (u1; v1) and (u2; v2) are the displacement vectors
of the plate edges at y = 0 and y = b, respectively,
which will be determined later by solving the non-
linear equilibrium equations derived from minimizing
the potential energy. The potential energy of the
symmetric composite plate is given in Eq. (19):
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where 
 is the area with a cut-out in the plate. In case
the perforated plate is divided by nodes, as shown in
Figure 2, the integral in Eq. (19) should be replaced
by summation in Eq. (20).

Figure 2. The node con�gurations of summation
potential energy shown on the plate including a circular
cut-out with the radius R, while the distances between the
nodes are (a) R=2, (b) R=3, (c) R=6, and (d) R=12.
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where 
ij = dx�dy is the area around the node at the
position (i; j).

The non-linear equilibrium equations are obtained
from minimizing the potential energy. The governing
equilibrium equations are solved using the Newton-
Raphson technique:

K (dk) �dk = �R (dk) ;

dk+1 = �dk + dk; (21)

where:
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By integrating the axial force upon the perforated plate
surface, the total mean force imposed on the composite
plate with a cut-out can be obtained as follows:
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The 
owchart of PSE method for the buckling and
post-buckling analyses of the composite plate with a
cutout is presented in Figure 3.

4. Finite Element Method (FEM)

Based on the plate con�guration in Figure 1, FEM
is proposed in Figure 4(a). In addition, linear and
nonlinear analyses were employed to determine the
buckling and post-buckling behaviors of the plate,
respectively. In this modeling, the plate element shown
in Figure 4(b) was used which itself was taken from
the ANSYS software instructions. The element has
eight nodes (I, J, K, L, M, N, O, and P), each with
six degrees of freedom (three degrees of displacement
and three degrees of rotation). A triangular-shaped
element was then formed by de�ning the same node
number for nodes K, L, and O.

5. Results and discussion

The cut-out was accurately shaped by decreasing the
distance gap between the nodes, according to Figure 2.
While the circular cut-out is like a square in Figure 2(a)
and (b), it is like a circle in Figure 2(d). The con-
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Figure 3. The 
owchart of Particle Semi-Energy (PSE) for buckling analysis of composite plate with a cut-out as given
in [1].
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Figure 4. (a) The con�guration of the Finite Element Method (FEM) elements shown on a plate with a circular cut-out
and a radius of R. (b) The plate element (shell 281) with eight nodes and six degrees of freedom per node.

Figure 5. Buckling load convergence of the perforated
composite plate with the boundary condition of Figure 1.
The plate is [0:90=0:90]s woven E/glass-epoxy composite
with R = 6 mm, and L = b = 60 mm.

vergence study of buckling load with a consideration
of the distance among the integration nodes on the
perforated plate was performed, the results of which
are presented in Figure 5. According to the �ndings,
the buckling loads of all node arrangements were close
to each other. In addition, the post-buckling behavior
of the plate decreased by decreasing the distance gap
among the nodes and converges at R=3 gap distance.

The post-buckling behavior of a [0:90=0:90]s wo-
ven E/glass-epoxy composite plate was studied using
PSE and FEM. The plate had a circular cut-out, and
the boundary conditions given in Figure 1 were used in
this study. The results obtained from the modelling
were compared with the experimental ones [1], as
presented in Figure 6, in case the radius of cut-out
was 9 mm. The thickness of the plate was 0.8 mm,
and the normal elastic modules, shear elastic modules,
and Poison's ratio were Ex = 14:5 (GPa), Gs = 5:57
(GPa), and vxy = 0:11 [1], respectively.

The post-buckling behavior of an eight-layered
[0=90]4 woven roving glass/epoxy composite plate was

Figure 6. Buckling load of [0:90=0:90]s woven
E/glass-epoxy composite plate with a circular cut-out
with the radii of cut-out being 9 mm, and thickness of the
plate 0.8 mm.

studied using PSE and FEM. To this end, it was
assumed that the plate did not have a circular cut-out
and the boundary conditions of Figure 1 were taken
into account. The results of these modeling cases were
compared with the experimental ones [23], as presented
in Figure 7. The plate thickness was 3 mm, and
the normal elastic modules, shear elastic modules, and
Poison's ratio were Ex = 7:4 (GPa), Gs = 2:18 (GPa),
and vxy = 0:17 [23], respectively.

According to Figures 6 and 7, the buckling load of
PSE was in agreement with the experimental results.
In the linear parts of the diagrams, the result of FEM
solution was better than others. The nonlinear analysis
of FEM is based on the buckling mode which was
obtained using a linear Eigen-value buckling analysis.
Figure 8 shows the displacements of the plate in
the buckling mode using FEM. As observed, the in-
plane displacement was zero in the buckling mode.
Disregarding the transverse displacement of the plate
would intensify the axial force of FEM result presented
in Figures 6 and 7. In contrast to FEM, PSE �nds the
in-plane and out-of-plane displacements by minimizing
the potential energy at the same time before and after



M. Dehghani/Scientia Iranica, Transactions B: Mechanical Engineering 28 (2021) 2176{2186 2183

Figure 7. Buckling load of an eight-layered [0=90]4 woven
roving glass/epoxy composite plate.

Figure 8. Plate displacements in the buckling mode
shape using Finite Element Method (FEM).

the buckling. Therefore, the accuracy of PSE was
found higher than that of FEM.

An interesting subject here is the variation of
the post-buckling behavior of the composite plate
caused by increasing the radius of cut-out. Another
comparison was made between the results of FEM and
PSE, the results of which are investigated in Figure 9 to
evaluate their performance in estimating the buckling
force of plates with di�erent cut-outs. Axial forces on
the composite plates containing circular cut-outs with
diameters of 6 and 9 mm are shown in Figure 9. As
expected, the buckling load decreased by increasing the
radius of the cut-out. However, the same behavioral
pattern was not observed in the FEM results.

Figure 10 shows a composite plate with an ellipti-
cal cut-out with �ab area at the centre of the plate. The
ellipse rotates � degree along its centre. The dimensions
of the plate and cut-outs are L = 60, a = L=6, and
b = L=12. In addition, the values for � are 0�, 30�,

Figure 9. Buckling load of [0:90=0:90]s woven
E/glass-epoxy composite plate with a circular cut-out
with the radii of the cut-out being 6 and 9 mm and the
thickness of the plate being 0.88 mm.

Figure 10. Variation in the post-buckling load of the
composite plate including the elliptical cut-out loaded by
the end-shortening 0.2 mm and applying Particle
Semi-Energy (PSE) method.

45�, 60�, and 90�. The boundary conditions are given
in Figure 1. The post-buckling behaviors of this plate
were investigated using PSE method with di�erent cut-
out dimensions and orientations. The buckling load of
plates with di�erent elliptical cut-outs was obtained,
while end-shortening loading was 0.2 mm. All these
results were normalized by the buckling load of the
plate with an elliptical cut-out at � = 0�. According
to this �gure, upon increasing �, the post-buckling
load decreased; however, based on Ref. [6], the post-
buckling load increased. Di�erent boundary conditions
were the main reasons behind these opposite results.
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Figure 11. Variation of post-buckling load when an
elliptical cut-out is replaced with two circular cut-outs by
applying Particle Semi-Energy (PSE) method.

The same phenomenon was observed at the natural
frequency of the plate with an elliptical cut-out [24].
In other words, the natural frequency decreased by
increasing �. Based on Figure 10, the total mean force
imposed on the composite plate with a big cut-out was
the lowest, while the variation for this perforated plate
by rotation was the highest. As observed in [25], the
natural frequency would decrease by increasing the cut-
out size. In addition, upon increasing the cut-out size,
the amplitude and period of oscillation of the time-
dependent transverse de
ection of the laminated plate
increased [26].

As shown in Figure 11, an elliptical cut-out was
replaced with two circular cut-outs. The areas of the
new cut-outs were equal to those of the old one. The
distances between these two circles were 1.5D, 2D,
and 2.5D, where D is the diameter of the circle. The
boundary conditions are given in Figure 1 with the end-
shortening capacity being 0.2 mm. The post-buckling
load of di�erent arrangements of circles was obtained
and normalized by the buckling load of the base plate
with an elliptical cut-out. The buckling load of the
plate with two horizontal cut-outs was higher than
that of the base plate and it increased by widening the

gap distance between cut-outs. Increasing the post-
buckling load can be seen in a vertical direction while
the gap distance is 2D. The buckling load of the plate
with two vertical cut-outs was lower than that of the
base plate while the gap distances were 1.5D and 2.5D.

6. Conclusion

The present study aimed to investigate a new technique
to calculate the potential energy and buckling load of a
composite plate including a circular/elliptical cut-out
under end-shortening loading. The stress and strain
�elds were determined using semi-energy method. The
potential energy integrations were replaced by the
summations of all nodes on the perforated plate.
Moreover, equilibrium equations were obtained using
the minimizing potential energy, and unknown dis-
placements were calculated by solving these equations
through Newton-Raphson method. The convergence of
the new technique, i.e., Particle Semi-Energy (PSE),
was studied through di�erent node arrangements. The
post-buckling behavior of the perforated composite
plate derived from this method was in agreement with
the experimental result. In the case of modeling the
post-buckling behavior of the plate with the cut-out,
the accuracy of PSE was higher than that of Finite
Element Method (FEM).

The post-buckling behavior of the plate contain-
ing the elliptical cut-out aligned along the direction
with � degree to the axial end-shortening with a
boundary condition described in Figure 1 was also
analyzed. As observed, the buckling load decreased
upon increasing the � and extending the area of the
ellipse. In addition, replacing the axial elliptical cut-
out with two circular cut-outs in the same area sum-
mation would increase the post-buckling load. Further,
increasing the gap distance between two circular cut-
outs in the transverse direction does not necessarily
lead to increase in the axial load.

Nomenclature

SE� FSM Semi-Energy Finite Strip Method
PSE Particle Semi-Energy method
FEM Finite Element Method
" Strain vector
"x Normal strain along x direction
"y Normal strain along y direction
"xy Shear strain along y direction

"L Linear part of strain vector

"NL Non-linear part of strain vector
� Curvature of the neutral plane of

composite element
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A In-plane sti�ness matrix of the
composite material

B Coupling matrix of the forces in- and
out-of-plane moments

D Sti�ness matrix of moments and
curvatures of the element

F Airy force function
L Axial length of the plate
M Moments per unit length acting on the

element component
N Forces per unit length acting on the

element component
�u End shortening
U Potential energy
u Displacement along x direction
v Displacement along y direction
w Displacement along z direction
Ex Normal elastic modules
Gs Shear elastic modules
vxy Poisson's ratio
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