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1. Introduction

Abstract. Assessing uncertainty in decision-making is a major challenge for Decision-
Makers (DMs), and the ¢-Rung Orthopair Fuzzy Set (¢-ROFS) as the direct extension
of Intuitionistic Fuzzy Set (IFS) and Pythagorean Fuzzy Set (PFS) play a crucial role
in this aspect. The Complex ¢-Run Orthopair Fuzzy Set (Cq-ROFS) is a strong tool to
deal with imprecision, vagueness, and fuzziness by expanding the scope of Membership
Degree (MD) and Non-Membership Degree (NMD) of ¢-ROFS from real to complex unit
disc. In this paper, we develop some new Cg-ROF Hamacher Aggregation Operators
(AOs), i.e., the Cq-ROF Hamacher Weighted Averaging (Cg-ROFHWA) operator, the Cg-
ROFH Weighted Geometric (C¢g-ROFHWG) operator, the Cg-ROFH Ordered Weighted
Averaging (Cg-ROFHOWA) operator, and the C¢g-ROFH Ordered Weighted Geometric
(Cq-ROFHOWG) operator. Subsequently, we establish a novel Cq-ROF graph framework
based on the Hamacher operator called C¢-ROFH Graphs (C¢-ROFHGs) and evaluate its
energy and Randi¢ energy. In particular, we compute the energy of a splitting C¢-ROFHG
and shadow C¢-ROFHG. Further, we describe the notions of C¢-ROFH digraphs (Cg-
ROFHDGSs). Moreover, an algorithm is given to solve Multiple Attribute Group Decision-
Making (MAGDM) problems and the main steps are discussed clearly. Finally, a numerical
instance related to the Facade Clothing Systems (FCS) selection is presented to show the
effectiveness of the developed concepts in decision-making circumstances. In order to verify
the effectiveness of our proposed scheme, a comparative analysis with previous approaches
is provided.

(© 2023 Sharif University of Technology. All rights reserved.

of alternatives by utilizing the multiple attributes
perspective and then, to rank a series of alternatives

In the real world, being a complex cognitive computing
method, Multiple Attribute Decision-Making (MADM)
intends to make scientific decisions from a finite number
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or pursue the appropriate one through effective infor-
mation aggregation rules and decision analysis tools.
A lot of soft computing methods have been used for
MADM research over the last decades, and most of
them are addressed in the form of generalized Fuzzy
Sets (FSs) [1-5]. Multiple Attribute Group Decision-
Making (MAGDM), an integrative research field that
combines group decision-making with MADM, usually
provides structures for acquiring group preference in-
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formation through individual preference information
and specifically evaluating various alternatives through
different theoretical decision-making templates. For
some MAGDM problems, Decision-Makers (DMs) ex-
perience problems in depicting attribute values of
alternatives by utilizing crisp numbers. To describe
the uncertainties, a novel notion of F'S was initiated
by Zadeh [6] whose element has only Membership
Degree (MD) in [0, 1]. Further, Intuitionistic Fuzzy
Sets (IFSs) [7], Pythagorean Fuzzy Set (PFSs) [8],
and Fermatean FSs (FFSs) [9], whose elements are
pairs of fuzzy numbers, were proposed. Each of them
demonstrates the MD and Non-Membership Degree
(NMD). The restriction of MD and NMD is that
the sum and square sum of both belongs to [0, 1].
Yager revealed that the current frameworks of IFSs
and PFSs are not capable enough to represent human
opinions in a more realistic setting and has invented the
concept of ¢-Rung Orthopair Fuzzy Set (¢-ROFS) [10],
which effectively broadens the scope of information by
developing a new subjective constraint, where the gth
sum of MD and NMD belongs to [0, 1]. If ¢ =3, ¢ = 2,
and ¢ = 1, then the ¢-ROF'S is reduced to the FFS,
PF'S, and IF'S, respectively.

If DMs change the codomain of FSs from [0, 1]
to unit disc, then to tackle certain type of problems,
Ramot et al. [11] designed the idea of Complex Fuzzy
Sets (CFSs) expressed by complex-valued mapping
with codomain as a unit circle in the complex plane.
Moreover, to represent the complex-valued NMD, Alk-
ouri and Salleh [12,13] generalized the idea of CFS to
Complex IFSs (CIFSs) and proposed the concept of
CIF relations and a distance measure in CIF circum-
stances. Further, Garg and Rani set forward the CIF
robust averaging-geometric AOs [14], explored certain
series of distance measures between the two CIFSs [15],
Archimedean t-norm and t-conorm-based generalized
CIF Bonferroni mean AOs [16], exponential, logarith-
mic, and compensative generalized AOs with CIF infor-
mation [17], CIF power AOs [18], and presented their
applications in the field of decision-making. The idea
of ¢-ROFS deals with only one aspect at a time, which
sometimes causes data loss. In real life, however, we
notice complex natural phenomena in which measuring
the second dimension of the expression of the MD and
NMD becomes essential. Complete facts are projected
into a collection by creating the second dimension,
which prevents any loss of information. Liu et al. [19]
put forward an efficient and powerful tool to express
unclear anomalies, called Complex ¢-Rung Orthopair
Fuzzy Set (Cg-ROFSs), and developed the weighted
averaging operator and weighted geometric operator
based on Cq-ROF circumstances. The amplitude term
represents the degree to which an object belongs in
a Cg-ROFS and the phase terms are usually related
to periodicity. The Complex Set (CS) and traditional

¢-ROFS theories are differentiated by certain phase
terms. Garg et al. [20] presented multiple forms of
operators such as power averaging, power weighted
averaging, power hybrid averaging, power geometric,
power weighted geometric, and power hybrid geometric
operator in the context of C¢g-ROFSs. Liu et al. [21]
introduced the concept of Cg-RO Linguistic (C¢g-ROL)
sets and developed operators like the C¢g-ROL Hero-
nian mean, Cg-ROL weighted Heronian mean, Cg-
ROL geometric Heronian mean, and C¢g-ROL weighted
geometric Heronian mean operator. Cg-ROFSs are
incredibly versatile and efficient as compared to many
current F'Ss theories.

Graphs can be used to design numerous types
of relations and methodologies of physical, biological,
social, and information technology and have a massive
variety of valuable applications. Graph theory is
eventually the study of relationships and offers a useful
resource to quantify and simplify several components
of dynamic systems. Studying graphs in a system
offers responses to a broad variety of configurations,
networking, optimization, matching, and operational
issues. Graph properties in relation to the character-
istic polynomial and matrix values associated with the
graph are studied in spectral graph theory, such as its
adjacency matrix, Harmonic matrix, Zagreb matrix,
and geometric-arithmetic matrix. The idea of the graph
energy was set up by Gutman [22] and lower and
upper limits were explored. Vaidya and Popat [23]

proposed the energy of splitting and shadow graphs.
The Randi¢ Matrix (RM)R(G) = (i;) of a graph of
a graph G whose vertex n; has degree d; is defined

1 . . .
by n;; = Jid, if the vertices n; and vy; are adjacent

and n;; = 0, otherwise. The sum of absolute values
of the eigenvalues of R(G) is Randi¢ Energy (RE).
Graph vertices and edges uncertainties are typical in
this context due to a number of factors, such as noise
measurements and conflicting sources of information.
In order to deal with such complexities in objects
and connections, Rosenfeld [24] originated the concept
of Fuzzy Graph (FG) and established its framework.
Anjali and Mathew [25] set forward the energy of
an FG. Akram et al. [26-28] developed several novel
concepts of graphs in generalized fuzzy circumstances.
Thirunavukarasu et al. [29] determined the energy
of Complex FGs (CFGs). Lugman et al. developed
the concepts of complex fuzzy hypergraphs [30] and
complex neutrosophic hypergraphs [31]. Naz et al. put
forward the concepts of Pythagorean Fuzzy Graphs
(PFGs) [32] and complex PFGs [33] as well as their per-
tinent applications in decision-making. Habib et al. [34]
designed a new definition of ¢-ROF Graphs (¢-ROFGs)
and presented its use in the soil ecosystem. Yin et
al. [35] elaborated on some product operations on ¢-
ROFGs. Further, Akram et al. [36] presented g-rung or-
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thopair fuzzy graphs under Hamacher operators. More-
over, Guleria and Bajaj [37] designed the notion of T-
spherical FGs along with the operations. Recently, Naz
et al. [38,39] extended ¢-ROFGs to the dual hesitant ¢-
ROF scenario and proposed several types of energy like
geometric arithmetic energy, atom bond connectivity
energy, Zegrab energy, and harmonic energy.

Information AQO plays a significant role in the
decision-making process, especially in MADM. In 1978,
Hamacher [40] introduced the Hamacher operations
like Hamacher product and Hamacher sum, which
are more and more general and flexible than the
algebraic and FEinstein product and sum. Inspired by
the theory of ¢-ROFGs, it is essential to expand g¢-
ROFG to Complex ¢-ROFG (Cg¢-ROFG), since Cg-
ROFG is a powerful concept for dealing with uncertain
and unpredictable information and is also a general
form of FGs, whose restriction is quite similar to ¢-
ROFG. However, the MD and NMD range are bound
to unit disc in a complex plane rather than [0, 1].
Moreover, Hamacher operators are more flexible and
parameterized. Thus, we define the C¢g-ROF relations
and put forward the innovative concept of C¢-ROFGs
utilizing Hamacher operator. The newly proposed Cg-
ROF Hamacher Graphs (C¢-ROFHGSs) are extremely
versatile and efficient and can coordinate the expert
decision-making opinions in a complex state compared
to many existing F'Ss theories. We also establish the
energy and RE of the developed C¢-ROFHGs and Cg-
ROF Hamacher digraphs (C¢-ROFHDGs) and provide
their pertinent application in MAGDM.

The format of the paper is as follows. Section 2
reviews some fundamental concepts of C¢g-ROFSs. Sec-
tion 3 puts forward some Cg-ROF Hamacher AOs.
Section 4 proposes the innovative idea of C¢-ROFHGs
and C¢-ROFHDGs, and examines their energy. The
concept of splitting C¢g-ROFHG and shadow Cg-
ROFHG with their energies are also discussed in this
section. Section 5 refers to RE of C¢-ROFHGs and
CqROFHDGs. Further, in Section 6, a novel MAGDM
approach is established based on energy and RE of Cg-
ROFHDGs. In Section 7, a case study and an appro-
priate comparative analysis are discussed to illustrate
the usefulness and effectiveness of the established ideas
of C¢-ROFHGs in decision-making. Finally, Section 8
concludes the entire paper and points out several future
research topics. The graphical interpretation of the
paper is given in Figure 1.

2. Preliminaries

In this section, the basic notions like Cq-ROFSs along
the operations and #-norms are reviewed for a better
understanding in the next sections.

Definition 1 [41]. A Cg-ROFS £ is defined as:

£={(s,7£(s),0£(s)) : s € R},

where 7¢,0¢:R— {c: c € C,|c| <1} are the complex-
valued membership and non-membership functions,
respectively, and defined as:

i27rwg;£(4

Tr(s) = pr(s)e

)7 ) —
0 < wi, (5),w%£(s), wi, (s)+ wél(s) < 1. Further,
fe(s)= (1~ (9p(s)+ R%(s)))7 and wx,(s)= (1 —
(wd, (s)+ wu ( )))« are complex hesitancy degree of s

For 51mphc1ty, the pair J = (@, wg), (fﬁ, wg)) is called
the Cg-ROF number (Cg-ROFN), where 0 < &, R, 97+
R <1, and 0 < wg,wy, wg—l—w;{? <1.

Definition 2 [41]. Let £={(s, (9£(s),wp, (s ))( £(8),

Wi, (9)): SERY, £1={(8, ($e,(5), wp,, (5)), (Re, (s),

Wi, (8)): s € B}, and £5={(s, ($.r,(5), wp,, (),

(Re,(s), wy, ())): s € R} be the C¢-ROFSs in R,

then:

(i) £1C£5 if and only if G, (5) < G, (s), Re, (5) >

Re,(s) for amplitude terms and wy, (5)<
W, (5), Wi, (s)> Wiy, (s) for phase terms, for
all s € R;

(i) £1=4L5 if and only if gr (8)= gr,(s), Re, ()=
Re,(s) for amplitude terms and we, (8)=
W, (5), Wik, (s)= Wi, (s) for phase terms, for
all seR;

(i) Z= {(s,(%s
€R}.

Definition 3 [42]. Let: £={(s, (¢£(s)wg, (5)),

(Re(s), wy,(9): 5 € R}, £1={(s,(¢z, (5), wg., (5)),

(Rei(s), wy, (5)): sER}, and £2={(s.(gz, (8).wp,,

(s)), (Re,(s), wi,, (5))): s€R} be the C¢-ROFSs in R,

then:

1. £1®L,= ((1 0%, + 0%, — 0% 0%,

{/qu, +wl —wl Wi

9Ly QLo PLy PLg

W&Q));

2. £1®£2: ((@“£1¢£2,w@£1w¢£2)7

(s), wi,(8), (0e(s), we,(8))): s

Ne——
—
B
]
bt
(5]
[
&
8¢
i

(wegﬁ TR, Y R
(1 q q .
\/w\%il %fz B wiei'l wéﬁi’z ) ) !
3. AE= ((m “A=g0), 1-(1- w;y>,
(R (g, 1)) 4> 0
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Figure 1. Graphical representation of the paper.

(R

(q 1— (1 =R, ¢ 1—(1—w§{£)>‘)>,)\>0.

Example 1. Suppose that a fixed set R has only one
element s,@¢(s) = 0.5, wg.(s) = 0.8, NRg(s) = 0.8,
wy,(5) = 0.9. Then 1={(s,(0.5,0.8),(0.8,0.9))} is a
C5-ROFN, represented as J=((0.5,0.8),(0.8,0.9)) for
simplicity.

Definition 4. The score function F and the accuracy
function $ of a C¢-ROFN I=((pwg), (Rwyz)), are

defined as F(J) = (1 + g2 - RI) + (1 + wi —

wi)), r(d) € [0,1] and $H(I)= (g9 + R+ (Wit o),

9(3)€[0, 1], respectively.

Definition 5. Let J; = ((¢1,w @pl),(fﬁl,wﬁl)) and

1 = ((foz,wm),(fﬁz,w%z)) be two C¢-ROFNs. Then
we have:

1. If F(jl) > F(jg), then J; = Jo;

2. If F(11) = F(32), then
o If 36(ul) > ﬁ(jz), then J; = Jo;
o 1t H(J1) =9, then I =J,.

To extend the existing ¢-norm (TN) and ¢-conorm
(TCN) operations,the Hamacher product and the
Hamacher sum defined by Hamacher [40] are as follows:
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st :
Ti(s,t) = {N+(3—N)(s+t—st> if R >0,
Tt if N=0,
s+t—st—(1—-N)st i R>0
T\ H 5.1) = 1—(1-R)st )
CRNCE {Sﬁf_—jﬂ if X = 0.
Here P(s,t) < =5 < M(s,t) and M*(s,t) <
sH=2st < Pr(s ).

3. Complex g-rung orthopair fuzzy Hamacher
aggregation operators

Some Hamacher operations, that is, the Hamacher
product and the Hamacher sum of two C¢-ROFNs 1y
and Jo, X > 0, are defined as follows:

Definition 6. Let J=((gwg), (Rwi)), i=((¢1.wg,),
(%hwg}l))v and J2:((K§27w@2)7 (§R27w§e2)) be the Cg-
ROFNSs; then, their basic Hamacher operations can
be defined by equations are shown in Box I. Utilizing
the Hamacher operations among the Cg-ROFNs,
in this section, we develop the weighted averag-
ing and geometric Hamacher AOs with Cg-ROFS,
such as C¢-ROFHWA operator, C¢g-ROFH Ordered
Weighted Averaging (C¢-ROFHOWA) operator, Cg-
ROFH Weighted Geometric (C¢-ROFHWG) operator,
and Cg-ROF Hamacher ordered weighted geometric
(C¢-ROFHOWG) operator.

Definition 7. Consider 1,=((¢;, wg,), (R;wy ) =
1,2,...,n) is a collection of C¢g-ROFNs; then, the Cq-
ROFHWA operator is described as:

]

Cq-ROFHW A,(31,1s,..., 1) = @7 (w;];),

where w = (w;, w@s,...,w@,)! can be the jj (j =

1,2,...,n), weight vector and @w; >0, > w; = L.
j=1

Theorem 1. Let I,=((¢;, wﬁj),(fﬁj,w%i)) j =
1,2,...,n) be a collection of C¢-ROFNs, where R > 0.
Then, its aggregated value by utilizing C¢-ROFHWA
operator is also a C¢g-ROFN, and C¢-ROFHWA,, ob-
tained as shown in Box II, when X =1, C¢-ROFHWA
operator reduces to the Cqg-ROF weighted averaging
(Cq-ROFWA) operator as follows:

]

Cq— ROFWA,(11.32,....3)

n

Jj=1

Definition 8. Let jj = ((ﬁj,w@j),(fﬁj,w%_))(j =
1,2,...,m) be a collection of Cg-ROFNs, tjhen the
Cq-ROFHOWA operator is shown in Box III, where
(3(1),3(2),...,3(n)) is a permutation of (1,2,...,n),
such that j:l(j_l) > j:l(j) for every j = 2,...,n, and

w = (wy,@s,...,@,)" is the weight vector such that
n

w; > 0, Zw]':].,N>O.
j=1

When X = 1, C¢-ROFHOWA operator reduces
to the C¢-ROF Ordered Weighted Averaging (Cg-
ROFOWA) operator as follows:

Cq—ROFOWA,(31,35,....3,) =

Definition 9. Let jj = ((95,wg;)s (fﬁj,w%]_)) (j =
1,2,...,m) be a collection of Cq-ROFNs, then the Cg-
ROFHWG operator is formally defined as:

Cq—ROFHWG (11,3, ....3,) = @7— (w;];).

Theorem 2. Let 1= ((¢;wp,), (Rjwy)) (5 =
1,2,...,m) be a collection of C¢-ROFNs, where X > 0.
Then its aggregated value by utilizing C¢-ROFHWG
operator is also a C¢g-ROFN, and C¢-ROFWG obtained
as shown in Box IV, when X = 1, the C¢-ROFHWG
operator is converted into the C¢g-ROF Weighted Geo-
metric (C¢-ROFWG) operator as follows:

Cq—ROFWG ,(31,3,,...,1,) =

n n

@)= Tl ws )= |,

=1 j=1

Definition 10. Let jj = ((ﬁj,w@j),(fﬁj,w%j)) (Jj =
1,2,...,m) be a collection of C¢-ROFNs, and the Cg-
ROFHOWG operator be described as shown in Box V,
when N = 1, C¢g-ROFHOWG operator transforms
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1.
($1)7 4+ (£2)7 — (91)9(92)7 — (1 = N)(01)7($2)7
o ((\/ T (1 M) ()7
V (wi,)7 + (Wis,)? — (5,) 7 (wgs,)7 — (1= N)(Wq(%)q)
L= (1= N)(wg, ) (wg, ) ’
(- )
\/N+ 1= R)((R)7 4+ (R2)7 — (R)I(R)7) /R + (1 =N)((wy, )T + (wg, )T = (Wi, ) (ws,)9)
N> 0;
2.
j1 jg = pvl@vg W W, 7
N (<€/N+(1—N)((@“l)q+(m)q— (p1)2 ) YN+ (1-R wm)q+(w¢2)‘1—(wﬁl)q(wﬁz)q))

</(5?1)(’ + (Ro)7— (R)1(R) = (LR (R)1(R)e [ (@i, )7+ (Wi, )= (Wi, )7 (w5, )T = (1= W) (wip )7 (@, )
L (1=R)(R)2(Re) ’ 1=(1=R)(w, )?(wg, )

N> 0;

A3 = \/ (1+ (0 = D900 = (1= (1)) \/ (1+ (= D)) = (1= ()9
= M=DE)D + R= D= G097 | T R=Dwa) + B= D= ()9 )

( YRR VR(wz)? ))
, N> 0;
(/(1 — (R=1)(1 = (R)7))* + (X = 1)(Ty)7> {/(1 = (R=1)(1 = (wg, ) + (R = D)(wg, )2

0 (( V(1) V(g )
VORGP F R DE0)? IR =D (@)D + R = Dwp)? )

V (14 (R = D)(R)9)* — (1 — (R1)7) \/ (1+ (R = 1wy )0 = (1 = (w5,))* R> 0
(1= R=1)(R))D + (R=1)(1 = (R | (1 = R =1)(wg,))* + (R = 1)(1 = (wg, )9 '

Q

Box I
into the C¢g-ROF Ordered Weighted Geometric (Cg- n =
ROFOWG) operator as: H ( %:(]) ) .
Cq—ROFOWG,, (11, &y, -, 3n) = H(ﬁj(j))wj’ 4. Complex g-Rung Orthopair Fuzzy
=1 Hamacher Graphs (Cq-ROFHGS)

In this section, a new concept of C¢-ROFG based on

H(w@:(_i))wf , | 91— H (1 — (?fﬁ:(j)q) j, Hamacher operator termed as C¢g-ROFHG is formed
J=1 first, and then its energy along with the relevant

n

j=1
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Cq-ROFHW A3, )s,...,3,) = &7y (w,]))

I @0 =)0 = T (1= (5,)0

— a

T (0 = ()0 + (8= 1) T (1= (5,))

properties is determined. Subsequently, inspired by
the theory of splitting energy and shadow energy of a

graph, we determine the energy of splitting Cq-ROFHG
and the energy of shadow C¢-ROFHG.

Definition 11. A C¢-ROFS =Z in R x R is said to be
a Cg-ROF relation (C¢g-ROFR) in R, denoted by:

E={t, (Palst), wpo (1)), (Rz(st), wy_(st))|ste Rx R},

Q
N
=
S
&
Q
=
o
e
e
|
%)
&- B
)
s
g

( URTT -1 (Ra))™
/T (1 (R = 1)(1 = (Ragy) )= + (R = DT, (Rag))=

Wnyzl(w?k:m)wi
I+ (R0~ (g )™ + (8- DI (e, 1= ) )

j=1

Box III
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Cq— ROFHWG(31, 3, ...,30)

R (5)=

o L+ (8= 1)1~ ()= + (8= 1)

\ll/& ljl (ij,j )wj

Jlill (1 + (R 1)(%])(])?% B ]:1 (1 - (iej)q)wj

Jri[l (1 =1)@)7) 7+ (x— 1)]1’j1 (=)
]ljl (1 T ®- 1)(@;7)‘1)13] - jl_:I1 (1 B (wﬁfj)q)wj

]1':[1 1+ (R - 1)(%,)‘?)@] + (R = 1)j1i[1 (1 _ (w%j)q)w_;

Box IV

where @g, R, W=y wi_t R X R — [0,1] indicate
the membership and non-membership function of Z,
respectively, such that 0 < pZ(st)+ fﬁ%(ﬁt) < 1 and
0 < wga (st) + wya (st) < 1for all st € R x R.

We define the Cg-ROF preference relations (Cq-
ROFPRs) as follows.

Definition 12. A C¢-ROFPR on the set R is given by

a matrix:
Z =i )nxns dis = (03, g, ), (Mg, wip, )
(,j=1,2,...

),

where (©;;, wg,; ) and (fﬁij, W;k,-]-) represent the complex
MD and complex NMD, and

Tij = ﬂ‘/(l -y R+ (A -wi, - wgm-

indicates the hesitation degree, subject to the following
conditions:

Gij = Ryi i = Ris = 0.5,

W, = Wa 0.5,

forall¢,7=1,2,...,n.
Definition 13. A C¢-ROFHG on a non-empty set R

is an ordered pair ® = (£,Z), where £ is a C¢-ROFS
on R and = is a C¢-ROFR on R such that:

- Pr(s)e(t)
V) S BT 520~ 65
(o) < Re®) + Re() — 2Re(o)Re(t)

1—Re(s)Re(t)

for amplitude terms,

"y wWo (5)W£U£ (t)
g=(st) < we, (8) +wg, (t) — wm(ﬁ)wm(f)’
wy_(st) < wy, (8) +wg (1) — 2wy (s)wg, (1)
Rz = 7

1-— W, (E)Lugvh (t)

for phase terms, where 0 < ¢L(st) + RL(st) < 1 and

0 < wi_(st) + wge (st) <1 for all s,t € R. We call £
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Cg—ROFHWG (11 Do, J)=a"_ (35 ;)" = - i= 7
. 1_[1(1+(N =1 = (9a;))))= +(X = 1) Hl(ﬁzl( )T
1= J=
\q/& Hl(ws5:(j))wj
]:

. .ﬂl(l + (N = D1 = (wpz,)))) ™ + (R =1) ﬁlw‘(“)qw

1T (1+®=1)(Ra0)7) =TT (1= (Ra))7)
a Jj=1 g=1
11 (14 (= 1)(R3)7) ~ + (R =1) 11 (1= (Ragp))r)
Jj= Jj=
jgl (1 (- 1)(w§?:(]_))’1) _ ]El (1 - (wﬁ:m)q)
Jl;ll (1 + (N B 1)(w§?3<1))q> * (N B 1)11;[1 (1 B (wieil(y))q)
Box V
a Cg-ROFS of vertices and = a C¢g-ROFS of edges in =:((08,0.7), (0:5,0.8))
&. Here, we consider = a symmetric Cq—RQFR on £.
In case of no symmetryic on £, ® = (£, Z) is called .
Cg¢-ROF Hamacher Digraph (C¢-ROFHDG). S N
& Q{Q\Q@
Example 2. Consider a graph G = (V,E), where S
V:{517527 53,54,55, 56} and E:{51 52,6153, 5154,51
65,5156 } are the vertex and edge set gf G, respectively.
Let & = (£,Z) be a C3-ROFHG on V| as presented in
Figure 2, defined by:
56((0.8,0.6), (0.7,0.7))
£ = ( 51 52 55((0.9,0.6), (0.5,0.9))
((0.9,0.7),(0.6,0.8))" ((0.7,0.9), (0.7,0.5))’ Figure 2. C3-ROFHG.
53 7 5S4 , 5154
((0.8,0.7),(0.5,0.8))" ((0.8,0.5), (0.6,0.9)) ((0.71,0.40), (0.70,0.90))’
S5 56 ) 5155
((0.9,0.6), (0.5,0.9))" ((0.8,0.6), (0.7,0.7)) ) ° ((0.80,0.45), (0.71,0.91))’
- _ 51562 o156 ) .
Definition 14. The Adjacency Matrix (AM) A(&)=
o183 ) , (A((s:55), wom (i 7)), ARz (si5) 05, (5: ) of a
((0.72,0.52), (0.66,0.88) Cg-ROFHG & = (£, E) is a square matrix A(&)=[a4;],
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ai;=((Pz(s: 5)wp= (8i5;)), (Ra(sis;), wy_(si5;))),

where (pug(ﬁi ﬁj),W@E(Ei 5]‘)) and (?)U%E(Si 5]‘), W Z )@7 wy, | = (070)
(8;5;)) indicate the strength of relationship and non- =1 =
relationship between s; and s, respectively, in complex X;j€3  wy,; €3
scenario. (i)
Definition 15. The spectrum of AM of a C¢-ROFHG
A(®) is characterized as (2),3), where 2) and 3 repre- v ==
4 > Ib ) Wy = 2
sent the sets of eigenvalues of A(gs (s; 5;), we (8 55)) J P;
. . = j=1 i=1
and A(Rz (s, s;), Wi (s: 5;)), respectively. ) wy, €D
Definition 16. The energy of a C¢-ROFHG & =
(£,2) is defined as: G2(s8;), Z W2 (si85) |
E(8) =(E(pz(sis;), we=(8i57))(8), tsissn Isissn
E(R=(s:55), wy_(5i5;))(8)) n n
Z 58?7 w;ﬁ =2
j=1 j=1
)‘63 3 WXJES
|w1Z’j ’
e @ Z 8?EQE (sis;), W%E (sis;)
1<i<j<n 1<i<j<n
n n Proof.
DG D ey,
J=1 J=1 (i) Obvious

>v<j:€3 wy; €3
Theorem 3. Let & = (£, Z) be a C¢-ROFHG and let (ii) Since

A(®) beits AM. If by > tho > ... > b, and Y1 > X2 > tr(A2(P=(5:8)) wps (5:87))(B))
. > Xn are the eigenvalues of A(p“g (8:5;), wp=(8: 55)) =

and A(iﬁg(siﬁj),w%g (s;5;)), respectively, then:

n

g D]

=1
1/)16@ V€Y
Z 0, Z 5 | =1(0,0), where matrix obtained as shown in Box VI.

m 6@ em Hence:

tr (A%(G=(si8;), we= (8:55))(8)) =(0+ (9&(s152), w3 (5182)) + .. + (92 (5150),wE_(515,)))

+ ((§E(s251), Wi (s261)) + 0 + ... + (FF(5280), Wi (5250)))
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Z@DZ

«me@ wy, €D

—2[ Y R Y @i
1<i<j<n 1<i<j<n
Analogously,

ZXJ’ZW

x]€3 wX] 63

=2 D Ri(ss)),

1<i<j<n

Z w%g (ﬁiﬁj ) . O

1<i<j<n

Example 3. Let & = (£,Z) be a C4-ROFHG on
V= {s1,59, 53,64, 55, 5¢, 67} and E= {6189, 8263, 5354,
535575356753577525675153}7 as giVGIl in Figure 3.

The A(®), Spec(®), and E(&) of a C4-ROFHG
given in Figure 3 are shown in Box VII. Now, E(gg
(5; 8;), weo (5; 5;))= (4.3475,2.9555) and E(é}éa (s
5;), wy_ (8: 85))= (5.5563,6.0622). Therefore, E(&)=
((4.3475,2.9555), (5.5563,6.0622)).

Theorem 4. Let &= (£,Z) be a C¢-ROFHG on n
vertices and A(®)= (A(gz (si 5;), weo (5i 55)), A(Rz
(i 5;), wi_ (si85))) be the AM of &. Then, obtained
inqualities are shown in Box VIII.

Now we determine the energy of a splitting Cqg-
ROFHG and a shadow Cq-ROFHG.

Definition 17. The splitting C¢-ROFHG S(&) of a

55((0.9,0.7),(0.7,0.8))

54((0.8,0.6), (0.7,0.8))

1(0.33,0.52), (0.92, 0.90))

Cq-ROFHG & is attained by adding to each vertex s
another vertex s , such that s is adjacent to each vertex
that is adjacent to s in &, and MD and NMD remain
unchanged.

Theorem 5. Let S (®) be a splitting C¢-ROFHG of a
C¢-ROFHG &. Then E(S(8))= V5E(&

Proof. Consider a Cqg-ROFHG with a set of vertices
{s1, $2,...,8,}. Then its AM is A(®)= (A(pz (s:
s;), wps (5 85)) (8), A(p= (si 5;), wy. (s 55)) (6)),
where obtained as shown in Box IX. To obtain S (pz
(5:85), we= (5:5;)) (8),let 5], 85, ..., 8, be the vertices
corresponding to sy, S9,...,6,, which are included in
&, such that, N (s;)=N (s), 7 = 1,2,...,n. At that
point we can represent A(gs (s §;), wg= (5: 8;)) (S
(®)) as a block matrix as shown in Box X, i.e.,

A(pz(5i5)), we=(5:5;))(S(8)) = [ 1 (1) }

Since Y3 and (ui,w&)7 i =172...
1 1
1 0

—

eigenvalues of {

respectively. So,

and A(p=(sis;),w
B(g=(os;)wpnlss,)(S6) =Y (1 if) (6. %i)]
2(”f V5 1>(|wz||w¢ )

= \/BZ(hZ@l’ |w1/u)7|)

51((0.5,0.6), (0.9,0.9))

55((0.5,0.8), (0.8,0.6))

Figure 3. C4-ROFHG.
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[ (0,0) ((0.33,0.52), (0.92,0.90))  (0.46,0.31), (0.90,0.92))
(0.33,0.52), (0.92,0.90)) (0,0) (0.45,0.35), (0.81,0.81))
(0.46,0.31), (0.90,0.92))  (0.45,0.35), (0.81,0.81)) (0,0)
A(B) = (0,0) (0,0) (0.72,0.32), (0.70,0.88))
(0,0) (0,0) (0.81,0.33), (0.72,0.87))
(0,0) (0.45,0.58), (0.84,0.77))  (0.80,0.33), (0.72,0.60))
i (0,0) (0,0) (0.81,0.35), (0.50, 0.86))
(0,0) (0,0) (0,0) (0,0) ‘
(0,0) (0,0) (0.45,0.58), (0.84,0.77)) (0,0)
(0.72,0.32), (0.70,0.88))  (0.81,0.33), (0.72,0.87)) (0.80,0.33), (0.72,0.60)) (0.81,0.35), (0.50,0.86))
(0,0) (0,0) (0,0) (0,0)
(0,0) (0,0) (0,0) (0,0)
(0,0) (0,0) (0,0) (0,0)
(0,0) (0,0) (0,0) (0,0) |
Spec(9z(8:8;), we (5:8;)) ={(—1.6444, —0.8067), (—0.5294, —0.6710), (—0.0000, —0.0000),
(0.0000, 0.0000), (0.0000, 0.0000), (0.3639,0.3246), (1.8099, 1.1532) }.
Spec(R(sis;), wi_ (s:55)) ={(~1.6131, ~1.8712), (~1.1651, —1.1599), (—0.0000, —0.0000),
(0.0000, —0.0000), (0.0000, —0.0000), (0.4480, 0.6122), (2.3302, 2.4189)}.

Box VII

2( > Gisisy), >
1<i<j<n

1<i<j<n

wés (Eiﬁj)) + Tl(’fl -1

"

)ldet(A(g=(sis;) wee (5:8;)))]*

< E(p=(si8)), wy=(5:5;)) < [2n

Yo PEsisy),

1<i<k<n

> wh(sis))

1<i<j<n

Z w;%:(ﬁiﬁj) +n(n—1)|det(A(3u%E(5i5j)awﬁh(ﬁiﬁj)))

n

Box VIII

Similarly, we can show that E(Rz (s, sj), Wy, (8 55))
(S(®) =53 (il wy ])-

Hence, E(S(&))= V5E(®) 0.
Definition 18. The shadow C¢-ROFHG SH(®) of a

connected C¢g-ROFHG & is designed by taking two
duplicates of &, say &’ and &"”. Connect each vertex
s’ in &' to the neighbors of the corresponding vertex
s’ in &" with the same MD and NMD.

Theorem 6. Let SH(®) be a shadow C¢-ROFHG of
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A(p=(si8)), we= (5i5;))(6)

0 (9=(5152), wex(5152)) (9=(5150),wp=(5150))
_ (P=(5251), we=(5251)) 0 (9=(525n), We= (5250))
(92(5081). 5o (8081))  ($=(6052), Wi (5,52)) 0
Box IX
A(g=(5:5)), 05 (5:5,)) (S(8))
[ 0 (p=(s152), wg-(5152)) (9=(515n), we=(515n))
(@5(5251)7“1@5(5251)) 0 (@E(ﬁzﬁn)wﬁs(ﬁzﬁn))
((5081), 0o (5051))  ($2(562), Wi (5052)) 0
0 (6=(6}52), wo (552)) (92(5}5,), Wi (5}5,))
($=(5351), i (5551)) 0 (9=(sh5m), e (5h50))
(9(51), wpn (581)) (5 (51,82), Wi (51,52)) 0
0 (9=(515)), woe (5151)) (9=(515,),wpe(515))) ]
(52528} ), woe (525))) 0 ($=(5251,), - (525, ))
(9=(508}), Wi (5051))  ($=(5,84), ws (505)) 0
0 0 0
0 0 0
0 0 0 ]
Box X

a C¢-ROFHG ®. Then E(SH(®))= 2E(&).

Proof. Consider a Cq-ROFHG with set of vertices
{v1,v2,...,v,}. Then its AM is shown in Box XI.
To obtain SH(@E (51'5]'), We= (ﬁiﬁj)) (6), let 5’1, 5/2,
...,8 5 be the vertices corresponding to s1, $3,..., 5y,
which are added in &, such that, N (s;)= N (s';),
i = 1,2,...,n. Then we can represent A(pz(s:5;),
Wez(sis;)) (SH(B)) as a block matrix obtained as shown
in Box XII. Since 0,2 and (@ZZ, wy },i=1,2,...,n, are

%

the eigenvalues of [ i 1 } and A(p= (s; 55), wee (8
s;)) (®), respectively. So,

E(9z(8i8)), we=(5:57))(SH(&))

= pWwy)| =2 (sz 3, ) -
=1 =1 =1
Analogously,
E(Rz(s:8;) wy_ (5:8;)) (SH(®)) =
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A(p=(si8)), we= (5i55))(8)
0 (9=(s152), we=(5152)) (9=(5150), W= (515,))
_ (9=(85261), We= (5251)) 0 (9=(525n), W= (525,))
($=(5081)s wpm(6051))  (§2(5082): i (5052) 0
Box XI
A(p=(85:85), we=(5i5;)) (SH(B))
I 0 (9=(5152),we=(5152)) (p=(s15n), wp=(5150))
(p=(5251),we= (5251)) 0 (9=(s25n), W= (525n))
| Gsnm)ions) (Bloper) walons) 0
N ) 0 ) (p=(s152), Wo= (5152)) ... (= (5/1511)7 Wo= (5115n))
($2(5551), wes (5551)) 0 (9=(828n), We= (8257))
| (o) won(s,51)) (P2(s,82),00m(5,82)) 0
0 , ($=(5182), We (5155)) (55(515;),w¢5(515’; |
(KVJE(5251) W@E(ﬁgﬁl)) 0 (¢5(525n 7wﬁ5(52ﬁn
($92(508)), W (5487)) (@“5(575;) Wi (8052)) o
. 0 . (9=(5155), W= (5152) (¢5(5}5F)7W@5(5/15;1))
(9=(8,81 ), we= (5281)) 0 (92(825,,), wp=(525,,))
(62(5,51), W= (5,81))  (P=(8,5), woe(5,5,)) - 0 l
ie.,
. _ | Alp=(si5)), we=(5:5,))(®)  A(Pz(sis;), we=(si57))(®)
Alp(si87). wps (519,)) (SH(®)) = [ A58, )0 (5:5))(8) (518, ) (5:57))(S)

Box XII

Example 4. Let &= (£,Z) be a C2-ROFHG on
V:{El, $92, 53, 54} and F= {51 $2, 61 S3, §1 54}, as
in Figure 4, defined by:

£ = 51 59
B <((0.9,0.6), (0.3,0.7))" ((0.6,0.8), (0.7,0.5))

53 54
((0.5,0.6), (0.7,0.8))" ((0.4,0.9), (0.8, 0.4))>

[1]

. 5152
N (((0.54, 0.50), (0.71,0.76))’

5153 51964
((0.45,0.43), (0.72,0.85)) ((0.38,0.55), (0.81,0.73)) )

The A(®) and E(&) of a C2-ROFHG, given in Figure 4
are shown in Box XIII.

The splitting C2-ROFHG of the C2-ROFHG
shown in Figure 4, is presented in Figure 5.
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A(®) =
(0,0) (0.54,0.50), (0.71,0.76)  (0.45,0.43),(0.72,0.85) (0.38,0.55),(0.81,0.73)
wad (0.54,0.50),(0.71,0.76) (0,0) (0,0) (0,0)
4 (0.45,0.43),(0.72,0.85) (0,0) (0,0) (0,0)
(0.38,0.55), (0.81,0.73) (0,0) (0,0) (0,0)
E(®) = ((1.5981,1.7174),(2.5912,2.7078)).
Box XIII
N
cb%(.\\ \f\\\ @070
A o %,
\@' 52(0.6,0.8),(0.7,0.5)) \&“"" (0.54,0.50), (0.71,0.76)) 'z,
QY N
Q - : (054, - 2,
& (0.54,0.50), (0.71,0.76)) 7| ;ﬁ’* 071,05, rl}_o_gm_@m.om
&> 3 o 5
B N
§ ?;/ \@99'“ (0.54,0.50), (0.71,0.76)) 2(0.6,0.5) (0'7’0'5))
= 2 Y 2 2,
é'% ;c% \Q e @’2) N
S s ) @v“@
?3\\ 09 54(0.4,0.9), (0.8,0.4)) o
A % N
® @ - S J
54(0.4,0.9), (0.8,0.4)) N %,
i) ) D
@6.3“ ‘/,/03 51((0.4,0.9), (0.8,0.4)) Q,.\p»
PR "90& Q.Q‘\\
Figure 4. C2-ROFHG. 7 W
N - Figure 6. Shadow C2-ROFHG.
\Q‘bp. \‘/0'{5‘}0
N 2,
,®9~°'\) d)'ro,f\ Definition 19 The energy of a C¢-ROFHDG D=(£,
» % =\
©31.05, © ) %, =) is defined as:
~ 071 76‘)) S 5“3\\0'“‘“'
= nyQ'\ \0'5&‘ ‘
g I~ E@z(E o= (5;5:), ws_ (86
g’i @9.\\@’\ (0.54,0.50), (0.71,0.76)) e 52(0.6_0.8),(0.7,0.5)) ( ) (p;( ' j)’ pc( j))
NV E N\, B(Rez (si5,). v, , (5:5,))
% g @)‘3’0.)
=\ |2 ) &
2 § '@/D n . n
f.b B 0‘9@/ A_Q%\\ = Z |Re(¢l)|7 Z |wRe(wz)| )
A | » o i=1 i=1
‘Q” 54(0.4,0.9), (0.8,0.4)) & P €Y P €Y
S
53(0.4,0.9), (0.8,0.4)) \\3,9’@ Z |R6 | Z |w
PN ) . Re Xz )
e

Figure 5. Splitting C2-ROFHG. X;GZ

The A(S(®)) and the E(S(6)) of a splitting C2- where Y and Z represent the sets of eigenvalues
ROFHG, given in Figure 5, are shown in Box XIV. of A(pggsisj)’wﬁi’("”ﬁf)) and A(%E(Eﬁj)’wﬁi(ﬁiﬁj))’
and Re(7);) and Re(X;) represent the real parts of the

The A(SH(®)) and the E(SH(®)) of a shadow C2- A
ROFHG, given in Figure 6, calculated in Box XV. eigenvalues 1; and x;, respectively.
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A(S(9))

(0,0) (0.54,0.50), (0.71,0.76)  (0.45,0.43), (0.72,0.85) (0.38,0.55),(0.81,0.73)
(0.54,0.50), (0.71, 0.76) (0,0) (0,0) (0,0)
(0.45,0.43), (0.72, 0.85) (0,0) (0,0) (0,0)

| (0.38,0.55),(0.81,0.73) (0,0) (0,0) (0,0)

- (0,0) (0.54,0.50), (0.71,0.76) (0.45,0.43), (0.72,0.85) (0.38,0.55), (0.81,0.73)
(0.54,0.50), (0.71, 0.76) (0,0) (0,0) (0,0)
(0.45,0.43), (0.72, 0.85) (0,0) (0,0) (0,0)

| (0.38,0.55),(0.81,0.73) (0,0) (0,0) (0,0)

(0,0) (0.54,0.50), (0.71,0.76)  (0.45,0.43),(0.72,0.85) (0.38,0.55),(0.81,0.73) ]
(0.54,0.50), (0.71,0.76) (0,0) (0,0) (0,0)
(0.45,0.43), (0.72,0.85) (0,0) (0,0) (0,0)
(0.38,0.55), (0.81,0.73) (0,0) (0,0) (0,0)

(0,0) (0,0) (0,0) (0,0)

(0,0) (0,0) (0,0) (0,0)

(0,0) (0,0) (0,0) (0,0)

(0,0) (0,0) (0,0) (0,0)

E(S(®)) = ((3.5735,3.8403), (5.7941, 6.0548))

=/5((1.5981,1.7174), (2.5912, 2.7078)) = V5E(&).
Box XIV

A(SH(®))

(0,0) (0.54,0.50), (0.71,0.76)  (0.45,0.43), (0.72,0.85) (0.38,0.55), (0.81,0.73)
(0.54,0.50), (0.71, 0.76) (0,0) (0,0) (0,0)
(0.45,0.43), (0.72,0.85) (0,0) (0,0) (0,0)

| (0.38,0.55),(0.81,0.73) (0,0) (0,0) (0,0)

- (0,0) (0.54,0.50), (0.71,0.76) (0.45,0.43), (0.72,0.85) (0.38,0.55), (0.81,0.73)
(0.54,0.50), (0.71, 0.76) (0,0) (0,0) (0,0)
(0.45,0.43), (0.72,0.85) (0,0) (0,0) (0,0)

| (0.38,0.55),(0.81,0.73) (0,0) (0,0) (0,0)

(0,0) (0.54,0.50), (0.71,0.76)  (0.45,0.43),(0.72,0.85) (0.38,0.55),(0.81,0.73) ]
(0.54,0.50), (0.71,0.76) (0,0) (0,0) (0,0)
(0.45,0.43), (0.72,0.85) (0,0) (0,0) (0,0)
(0.38,0.55), (0.81,0.73) (0,0) (0,0) (0,0)

(0,0) (0.54,0.50), (0.71,0.76)  (0.45,0.43), (0.72,0.85) (0.38,0.55),(0.81,0.73)
(0.54,0.50), (0.71,0.76) (0,0) (0,0) (0,0)
(0.45,0.43), (0.72,0.85) (0,0) (0,0) (0,0)
(0.38,0.55), (0.81,0.73) (0,0) (0,0) (0,0)

E(SH(®)) = ((3.1962, 3.4349), (5.1824, 5.4155))

= 2((1.5981.1.7174), (2.5912,2.7078)) =

2E(®).

Box XV
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5. RE of Cq-ROFHGs

In this section, the novel concept of the RE of a Cg-
ROFHG is introduced and its relevant properties are
discussed in detail.

Definition 20. Let & = (£,ZE) be a C¢-ROFHG on n

vertices. The RM, R( )=(R(¢ (5 5;), w(s: 8;)),R(R
(51-5]-),%(515])))—[ il of & is
0 if i =7,

1

————— if the nodes s; and s; of the
de(si)de(s5)

I Cq—ROFHG & are adjacent,

a ;; =
! 0 if the nodes s; and s; of the
Cq¢—ROFHG &

are non-adjacent.

Definition 21. The RE of a C¢-ROFHG &=(£,Z) is
defined as:

RE(®)= (RE($(s:5,),wp(5:5,)) RE(R(s:5,), w5 (5:5,)

n n
= E |6j|a E WS] ;
j=1 Jj=1
€D R ws, €D R
n n
E , |77j|7 E , Wiy, )
Jj= j=1
JE3R wi; €3R

where P r and 3p are the sets of Bandié eigenvalues of
R((s.5,). wp(5:5,))(®) and R(R(ss;). wy(s:5;))(®).
respectively.

First, we establish the trace of the RMs R(®),
R%(®), R3(®), and RY(®), i.e., tr(R(®)), tr(R*(&)),
tr(R3(®)), and tr(R*(®)). Further, utilizing these
equalities, the upper and lower bounds for RE are
derived.

Lemma 1. Let &=(£,Z) be a C¢-ROFHG on n
vertices and R(®)= (R(g= (s; 5;), wg (i 5;)), R(R=
(51' 5j>, wg?s (51' 5j>)) be the RM of &. Then:

tr(R(®)) =
2. tr(R2(® = 22 ErERrmEnt

3. tr(R*(®)) =2 Z W (Z du(% )

~J

n

4. tr(R*(®)) = Z(Zm>2

1=1 i~yg

+Zd (51 d@ Zd@

1#]
Proof.

1. Obvious.
2. For matrix R?(¢(s:5;),wy(5:5;))(8). If i = 5

Z R($(s:85),
wp(5i5;)) (B)R(0(5;8:), ws(5;5:))(6)
= Z

= ZR

lN]

_Zd

~]

Whereas if ¢ # j:

R?(¢(s:5:), wg(8i8))

6(8i85), wp(8i5;)))°(®)

5:5;),wy(8:5;))° ()

)d pwg)(gj)

R*(p(s:55 ) (5:5,))(®) = Y R($(s:58),

w(8i51))(B)R(©(5155), we(5x8;))(B)
R(5(5:8:), wi(5i5:))(G) R(9(8i55), W (5:55))
(&) + R(9(si55), wy(i5;))(G) R(9(s55;),

wp(s;5,))(B) + > R(g(sise),

kvt ~g

w(8i81)) () R(P(5x5; ), wis(8455)) ()

1 Z 1
\/d(@“’@) (ﬁi)d(@%) (5]) kNl(dp“,wp)(ﬁlc)

k~j

Therefore, we have:

-y

1=1 1~g

tr(R*($(si5;), we(5:57))

1
=2
d(puvw@)( )d(p “"s) 5] ;d (P W )(5-7)

Similarly, we can show that: tr(R? (R (s; 5;), wg

(s 5,)) (8) = 2 & s Hence

i~]

(@) =2 ¥ ey
inj

(‘yk""ié)(ﬁj)
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Now, we determine the matrix R*($ (s; 5;), wg (s

55))) (&)

R3(§(5i5:), wg(sisi)

ZR ©(s:8;),

we(5i5;))(B)R* (555 ), (s 51)) (6)

1

- ; \/d(@w@)<5i)d(r3,wgs)(5j)

1
w@(515]))(®) - Z; d((f;,g,;@)(Ei)d(ﬁ,w@)(ﬁj)

R*(¢(s:85),

S
= d( 5w, (5n)
k~g

Therefore:
tr(R*(9(sis), wg(5i55)))(®)

1
_sz )(5J) kz: 5w, (5k)

1=1li~vg

_22

’L~]

Z d(@ ws)(8k)

P “’«a)< )d(p wg) 5]

Similarly, we can show that:
tr(R*(R(s:5;), wi (:55))) (®)

1 1
tr(R*(®)) = 22 do(5:)do (5;) kzN: de (sg)

kg

We now calculate tr(R*($(s:5,), wg(5:5;)))(&). Be-
cause:

tr(R*(9(sis;), wp (s:5,)))(®)

= [IR*(5(si85), w (5:5;))(S)] |7,
where ||R?((3(s:5;), wg(5i5;))(®)||F  denotes the
Frobenius norm of R?(((s:8:),ws(5:5;))(8), we
obtain:

tr(RA(p(sis7), w(5:57)))(®)
= 3 |R($(sis,),wa(5:5,))(®)

1,7=1

(5:8;), wi(8:8,))(®)[?

—Z|R2
+ ) |R (o

1£]

=1

(5:85), wis(si8;))(®)[?

2
Z d(p “"«J)(ﬁl)d(P W )(5]))

7/\/]

; d(g, m(ﬁz)d w) (85)
2

DI o

ke~
k~g

Similarly, we can show that:

tr(R*(R(s:s;), wi(s:5;)))(®)

1
X (Z M)@»d(mﬁ)(%))

2
1 1
+>

i#j d(?f? w% ( )d u7w%)(5j) /];:; (?fﬂw%)(s/v)

Hence
2
" 1
4 6 —
) ; ; de (s:)de ()

2

Z d@ ol O
le

Z dQ«; 51 d@

1#]

Theorem 7. Let & = (£,
vertices. Then, we have:

\/2"Z do (s dm)

~]

Z) be a C¢-ROFHG on n

Furthermore, RE(®) = [2n ) m if and
i i J

only if & is a C¢-ROFHG with only end vertices, or
isolated vertices.

Proof. The variance of the numbers |4;, wg|= %

n n n o n 2
<;|5i|27 ;lw& 2) — (i <;|§i|7 ;|w55|>> > 0,
1=1,2,...,n. Now,
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n n
(ZW,Z
=1 1=1

1=1 1=1

tr(B*(568;), wis6:5;))(®).

Therefore:
(R (si5,). w(s15;)))(®)
1 2
- (SrEGs ) wsln @) 20

— %mm@(w,wmsj)))(@)

. (iRE(msj),w¢<aisj>><®>)

<= RE(p(sis5), wg(5i55))(®)

<a/ntr(R2(9(s:5;), we(5:8;))(B))

= RE((5:5,), wp(5:5,))(®) <

2nzd

1~

(p wp)(ﬁa)

If & is a C¢-ROFHG with only isolated vertices,
i.e., without edges, then (61,w6 ) = (0,0) for all i =
1, 2 .n, and therefore RE((s; s;), wp(s 5]))(6) =0.
Slnce no vertices are adjacent, Z oo

*’t)d(s I
0. If & is a Cq-ROFHG w1th pnly end vertices, i.e.,
incident with one edge, then (6;,w; ) = d(s,)(5i);

therefore, the variance of (|d;], lwg [)=0,i=1,2,....,n
Thus:

RE(9(sis5),wg(5i55))(®)

2nZ

i~g

(g ,0,) 5z>d<p,wgs)(5j) '
Analogously, we can show that:

= RE(R(s:5;), wy(5:5;))(®)

ZnZ 1

ieg 5)?; wg) (5z)d(§e,w%) (s5)

Hence:

1
®) < \/211; PRERTRPaL

Theorem 8. Let & = (£,Z) be a C¢-ROFHG on n
vertices and at least one edge. Then, we have:

1
RE(®) 2 22 de(si)de(s;)

i~

1
212 de(si)de (s;5)

5~

2
1
Z (Z dqs(m)do 55) ) Z de (s des(»;) kzN:idas(ﬁk)
g

=1 \i~vj

Proof. According to the Holder inequality, we have:

S (S (£)

which holds for any realv n}lmbers !i,mi > 0,
1,2,...,n. Setting 1;=(]4]5, =(|

§) y T4
)p—Q,andq—S weobtam

ol ”

.

ils,

S

ws,

i

(Z |5i|27 Z |(USL |2)
=1 =1
) (161 hos, 1)

( ) (z |ai|4,z|wgi|4)
=1 =1 =1

If the C¢-ROFHG & has at least one edge,
then all (6;,w; )’s are not equal to zero. Then

(Z 16:]%, 32 |ws, |4> # 0 and we obtained inequalities
i=1 =1

are shown in Box XVI.

Theorem 9. Let & = (£,Z) be a C¢-ROFHG on n
vertices. If & is regular of degree ((p,w,), (r,w,)) where
p,r > 0, then:

3

ol

6

M :
z.a\w

o

IA

1
((p,wp), (r,wr))
Proof. Assume that & is a regular C¢g-ROFHG of
degree ((p,wp), (r, wr)) and p,7 > 0, i.e., digo;)(51) =
d(guws)(82) = ... = d(@w)(ﬁn) = (p,wp). Then all
non zero entrles of R(p(si8:), wg(s:8:))(®) are equal
to (p,w],)’ implying that R(p(s:8,),ws(5:8:))(B) =

s AlB(si1), wg (5:5:))(®).

320,

RE(®) = E(®).

Therefore, for all i =

1
(pivai,)

Similarly, we can show that:

C

RE(GEs;)ws(s8,)®) = EH6is)), wp6:55) ().
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n o n 3 n o n 3
" (EBeSil)  [(£8 S )
RE(p(si5;), wg(8:5;))(6) = <Z|5i|72|w5i|> > . = —
= (EhShtt) ] (S8 Sws)
i=1 =1 i=1 =1
_ (R ($(sis;), ws(5:5;))(8))°
tr(R*(p(s:55), wp(8i8;))(8))
y tr(R(p(si5,), w(8:5))())°
RE(p(5:57), wg(s:5;))(&) > -
(Ploies)wp(o:2;))(®) \/ (B (5555, ), (505,)) (6))
1
1 22;]- A(grw) (50)d(.0 5)(55)
=2 ,
= Ao (8)dpws(85) | 1 2 1 1 ’
1; 1;] d(K wﬂ)(ﬁ)d(ﬁ,w@)(f’j) + 1; d(w wp)(ﬁ)d(ﬁ,w@)(f’j) kgi d(xﬁ,wgs)(f’k)
J -
similarly,
o 1
E(R(sis;), wsn(si5;))(&) >2
i) W5 (88 ; d(ﬁw%)(si)d(%’%)(sj)
1
21;]. (%, “’SR)( )d(@,wﬁ)(f’j)
2 27
. 1 1
Z; (1;] d”?w >("‘)d( W) (5‘")> +1§j d(ﬁ.wﬁe)(f’i)d(ﬁe,w%)(f’j) Ic;i d(@,ww(sk)
ke
Hence, wehave :
1
1 2 WZ] de(si)de(s))
RE(®) > 2 = |
2 dale)dels) |, : :
12 (Zgj de(si)de (s;) ) + Z de(s;) d@( 5) ZZ de(si)
k~j

Box XVI

E(R(si55), wi(5i57))(B)

1

(7’1‘, wT,- )

E(R(si5;), wy(5:5,))(6).
Hence, we have:

1
B ((pivai,)v (Tivwri))
Example 5. Let & = (£,Z) be a C5-ROFHG on V=

{51552753554755756} and F = {51 §9,62 63,63 64,54 65,55
66,56 61,8256, 5385 }, as in Figure 7, calculated as shown

RE(®) E(®).

5((0.9,0.8),(0.8,0.8))

56((0.7,0.8), (0.9,0.6)) 55((0.8,0.9), (0.5,0.8))

((0-63,0.65), (0.92,0.83))

= N
& >
S &
o S

& i

S N

= N

2 55

< N

o

g

S

((0.50,0.58), (0.90,0.91))

((0-57,0.71), (0.90,0.83))

%

@

(=]

%\\\ 8

qx‘g e

N =

) =

Q- S

) !
$ S

((0.54,0.65), (0.91,0.75))

52((0.8,0.7), (0.7,0.9))

Figure 7. C5-ROFHG.

53((0.6,0.8), (0.9,0.7))

54((0.9,0.8), (0.5, 0.6))
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in Box XVII. The A(&), R(®), spectrum, and RE(®)
of the C5-ROFHG, shown in Figure 7 are shown in
Box XVIII. Now we will define the RM and RE of Cg-
ROFHDG. _

Definition 22. Let ® = (£,Z) be a Cg¢-
ROFHDG on n vertices. The RM, R(D)= (R(pz (s
55), we= (8 85)), R(Rz (si85), wy_ (si 85)))= [s55];
of ® is a n x n matrix defined as:

0 if i =j,

if the nodes s; and s;

of the C¢-ROFHDG
Sij = = are adjacent,

0 if the nodes s; and s;
of the C¢-ROFHDG
= are non adjacent.

—
=
=

Definition 23. The RE of a C¢-ROFHDG ® = (£,
is defined as:

RE(D) = (RE(@“

)

(5:8;), wo= (8i85)),

m]

= > Re()ls Y lwre(@)] |
=1 i=1
8, €EVR s;€eVr

Z | Re (1)1, Z lwre (77:)] )

L= 1=
MLEZR NEZR

where Vg, Zr are the sets of Randi¢ eigenvalues of
R(pz (i 5)), wpz (8i85)) (D) and R(Rz (si 55), wyy_

v

(5;55)) (D), whereas Re(;) and Re(7);) express the real

[%

parts of the eigenvalues §; and 7;, respectively.

6. Novel MAGDM method based on proposed
concepts of energy and RE of Cq-ROFGs

This section proposes a new MAGDM approach based
on C¢g-ROFDG to solve MAGDM problems where there
are relationships between attributes. First of all, we
present this kind of problem. We will then develop the
procedure of the proposed method in depth.

The strategy is outlined in the given Algorithm 1.
Figure 8 shows the flowchart of MAGDM based on Cg-
ROFHWA operator (R = 1).

7. Numerical example

The prior section presents a new MAGDM process.
In order to further explain the methodology of the
suggested decision-making approach, we are applying
it to a real decision-making problem.

Suppose a group of DMs compare alternatives
FCSs for the surface clothing of building compliant
with their practical properties. The gathering interacts
with four experts; e; = architect, e; =structural
designer, e3 = constructor, and ¢4, = adviser, indepen-
dently. The experts analyze four choices frameworks
which are:

e Tli: “Natural stone clothing”;
e Tly: “Plastic painting”;
e 3: “Compact laminate clothing”;

e Ty “Wood clothing”.

The experts compare each pair of attributes 7; and
T, (i, = 1,2,3,4), and provide C¢g-ROFNs ij =
((9h.wE,), (R, wh ) (k= 1,2,3,4). composed of
the complex MD (¢, w% ) to which 7; is preferable

Qij
to 7; and the complex NMD (R}, ) t o which T; is

177
not preferable to 7;, and then develop the C¢-ROFPRs
Ry = (jf‘].)4x4 (k=1,2,3,4) as follows:

51 52
£ =

53 54

55 56
((0.8,0.9), (0.5,0.8))" ((0.7,0.8), (0.9,0.6))> ’

(((0.9,0.8), (0.8,0.8))" ((0.8,0.7),(0.7,0.9))" ((0.6,0.8),(0.9,0.7))" ((0.9,0.8),(0.5,0.6))

5354 5455

[1]

_ ( 5152 5253

5556 5651

((0.72,0.59), (0.82,0.92)) " ((0.50, 0.58), (0.90,0.91)) " ((0.54,0.65), (0.91,0.75))" ((0.72,0.70), (0.65,0.83))

((0.57,0.71), (0.90,0.83))" ((0.63,0.65), (0.92,0.83))" ((0.59,0.60), (0.91,0.91))" ((0.51,0.72), (0.91,0.81))

5256 5355 )

Box XVII
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(0,0) ((0.72,0.59), (0.82,0.92)) (0,0)
((0.72,0.59), (0.82,0.92)) (0,0) ((0.50,0.58), (0.90,0.91))
A(®) = (0,0) ((0.50,0.58), (0.90,0.91)) (0,0)
- (0,0) (0,0) ((0.54,0.65), (0.91,0.75))
(0,0) (0,0) ((0.51,0.72), (0.91,0.81))
((0.63,0.65), (0.92,0.83)) ((0.59,0.60),(0.91,0.91)) (0,0)
(0,0) (0,0) ((0.63,0.65), (0.92,0.83))
(0,0) (0,0) ((0.59,0.60), (0.91,0.91))
((0.54,0.65),(0.91,0.75)) ((0.51,0.72),(0.91,0.81)) (0,0)
(0,0) ((0.72,0.70), (0.65,0.83)) (0,0) ’
((0.72,0.70), (0.65,0.83)) (0,0) ((0.57,0.71), (0.90,0.83))
(0,0) ((0.57,0.71),(0.90,0.83)) (0,0)
(0,0) ((0.64,0.67),(0.47,0.46)) (0,0)
((0.64,0.67),(0.47,0.46)) (0,0) ((0.60,0.54), (0.37,0.38))
R(®) = (0,0) ((0.60,0.54), (0.37,0.38)) (0,0)
(0,0) (0,0) ((0.72,0.62), (0.49,0.51))
(0,0) (0,0) ((0.60,0.49), (0.39,0.40))
((0.64,0.64),(0.46,0.47)) ((0.56,0.54),(0.37,0.38)) (0,0)
(0,0) (0,0) ((0.64,0.64), (0.46,0.47))
(0,0) (0,0) ((0.56,0.54), (0.37,0.38))
((0.72,0.62),(0.49,0.51)) ((0.60,0.49), (0.39,0.40)) (0,0)
(0,0) ((0.66,0.59), (0.51,0.51)) (0,0) ’
((0.66,0.59), (0.51,0.51)) (0,0) ((0.56,0.49), (0.39, 0.40))
(0,0) ((0.56,0.49), (0.39,0.40)) (0,0)
Spec(R(&)) ={((—1.1650,—1.0379), (—0.7617, —0.7811)), ((—0.9383, —0.8853), (—0.6825, —0.6910)),
((—0.5228, —0.5125), (—0.3994, —0.3995) ), ((0.0000, 0.0000), (0.0001, 0.0000)),
((0.9378,0.8872), (0.6806, 0.6867)), ((1.6883,1.5485), (1.1630,1.1849)) }.
Therefore,
RE(®) = ((5.2522,4.8715), (3.6873, 3.7434)).
Box XVIII
Step 1. The Cg-ROFDGs 2, according to Cg- Step 5. Compute a collective C¢g-ROFE bt (i =
ROFPRs in Tables 1-4, are shown in Figure 9; 1,2,3,4) of the FCS T, over all the other
) ) FCSs based on the C¢g-ROFHWA operator
Step 2. The energy of each C3-ROFDG is determined with X = 1 (Table 8);
in Table 5; N o
Step 6. Determine the score functions F(J;) of 3;(¢ =
Step 3. Utilizing Eq. (6.1), each expert’s weight (see, 1,2,3,4), utilizing Defenition 4.
Table 6) can be calculated as; 5 5
“(k F(J1) =0.5549, F(J2) =0.5393,
Step 4. Compute the averaged C¢-ROFE JE ) of the
FCS T; overall the other FCSs for the experts F(J5) =0.5285, F(J,) = 0.5649.
ex(k = 1,2,3,4) by the C¢-ROF Hamacher
averaging (Cg-ROFHA) operator with X = 1 Step 7. Rank all the FCSs T;(i = 1,2, 3,4) according

is shown in Box XIX. The final results are
shown in Table 7.

to the values of F(3;)(i = 1,2,3,4).
=T = Ty > s

Then,
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INPUT: A discrete set of FCSs (alternatives) X = {71, Ta,..., I}, a set of specialists e = {e, ¢s,...,¢s} and
construction of Cg-ROFPR %, = (i(f))nxn (2,j =1,2,...,n) for each specialist.

OUTPUT: The most advantageous FCS selection.

Step 1. Determine the F(Dy) and RE(Dy) (k=1,2,...,s) of each C¢-ROFDG.
Step 2. On the basis of E(D) and RE(Dy), calculate the wight vector of experts.

o= E(@p)r)  _E((Dwp)r) E(@p)r)  BE(Duwy)) 6.1)
ZE(@s)) 2 E(@wp)) ZE(@)0) 2 B(Duy)0)
and
o RE(®g)r) _BE(Dwy)r) RE(@n)r) _RE((Dwg)r) ) (6.2)

S RE(®:)) ¥ RE(@.0)) | | £ RE(®3) % RE(®.,))

Step 3. Aggregate all jg?(z, j =1,2,...,n) corresponding to the FCS T;, and get the Cg-ROF element (Cg-
ROFE) 55’“’ of the FCSs T; over all the other FCSs for the specialistic ¢; by using the Cq-ROFA operator.

Step 4. Aggregate all jgk)(k: =1,2,...,s) into a fused C¢g-ROFN J; for the FCS 7; using the C¢-ROFWA
operator.

Step 5. Determine the score functions £ (J;) of J;(i = 1,2, ..., n), utilizing Def. 2.4.
Step 6. Rank all the FCSs T; according to F (3:)(i = 1,2,...,7).
Step 7. Output the best FCS.

Algorithm 1. The algorithm for the optimal Facade Clothing System (FCS) selection.

Compute energy and
NF fgf;l:‘t;lmé;?s-i%gg};%; Randic’energy of each
Cq-ROFDG

Aggregate all Cq-
ROFNs into collective
Cq-ROFNs

Determine the score
function

Rank the given . .
alternatives based on Sisllesi i appiinmmel .

alternative
score values

Figure 8. Flow chart of MAGDM based on Cq-ROFHWA operator X = 1).

Table 1. C¢g-ROFPRs of the architect.

Kz T T2 s Ta

T ((0.5,0.5),(0.5,0.5))  ((0.6,0.8),(0.8,0.7)) ((0.8,0.6),(0.4,0.9)) ((0.7,0.9),(0.7,0.5))
T ((0.8,0.7),(0.6,0.8))  ((0.5,0.5),(0.5,0.5)) ((0.7,0.7),(0.8,0.6)) ((0.6,0.7),(0.6,0.8))
Ts ((0.4,0.9),(0.8,0.6)) ((0.8,0.6),(0.7,0.7)) ((0.5,0.5),(0.5,0.5)) ((0.9,0.6),(0.6,0.8))

T, ((0.7,0.5),(0.7,0.9))  ((0.6,0.8),(0.6,0.7)) ((0.6,0.8),(0.9,0.6)) ((0.5,0.5),(0.5,0.5))
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Table 2. C¢q-ROFPRs of the structural designer.

(0.7,0.7), (0.5, 0.6))

(T

(08,0.6), (07, 0.7))

8.05),(05,09))
Dy

Figure 9. C3-ROFDG.

K2 T > s Ta

Ty ((0.5,0.5),(0.5,0.5))  ((0.6,0.6),(0.7,0.8))  ((0.7,0.9),(0.8,0.3)) ((0.5,0.9),(0.9,0.6))
T, ((0.7,0.8),(0.6,0.6)) ((0.5,0.5),(0.5,0.5)) ((0.8,0.6),(0.6,0.8)) ((0.7,0.8),(0.7,0.7))
TJs ((0.8,0.3),(0.7,0.9)) ((0.6,0.8),(0.8,0.6)) ((0.5,0.5),(0.5,0.5)) ((0.5,0.6), (0.7,0.6))
T, ((0.9,0.6),(0.5,0.9)) ((0.7,0.7),(0.7,0.8))  ((0.7,0.6),(0.5,0.6))  ((0.5,0.5),(0.5,0.5))

Table 3. C¢q-ROFPRs of the constructor.

R3 ih T2 s Ta

T ((0.5,0.5),(0.5,0.5)) ((0.7,0.8),(0.5,0.4)) ((0.8,0.5),(0.6,0.9)) ((0.5,0.6), (0.8,0.7))
T, ((0.5,0.4),(0.7,0.8)) ((0.5,0.5),(0.5,0.5)) ((0.9,0.6),(0.4,0.8)) ((0.7,0.7),(0.8,0.7))
TJs ((0.6,0.9),(0.8,0.5)) ((0.4,0.8),(0.9,0.6)) ((0.5,0.5),(0.5,0.5)) ((0.6,0.9), (0.8,0.6))
T, ((0.8,0.7),(0.5,0.6)) ((0.8,0.7),(0.7,0.7)) ((0.8,0.6),(0.6,0.9)) ((0.5,0.5),(0.5,0.5))

Table 4. Cq-ROFPRs of the adviser.

2 T T T s

T ((0.5,0.5),(0.5,0.5)) ((0.6,0.6),(0.9,0.8)) ((0.7,0.8),(0.8,0.6)) ((0.5,0.9),(0.8,0.5))
T ((0.9,0.8),(0.6,0.6)) ((0.5,0.5),(0.5,0.5)) ((0.8,0.6),(0.7,0.8)) ((0.5,0.4),(0.6,0.7))
TJs ((0.8,0.6),(0.7,0.8))  ((0.7,0.8),(0.8,0.6)) ((0.5,0.5),(0.5,0.5))  ((0.5,0.6), (0.9,0.9))
T, ((0.8,0.5),(0.5,0.9)) ((0.6,0.7),(0.5,0.4)) ((0.9,0.9),(0.5,0.6)) ((0.5,0.5),(0.5,0.5))

19 = cqgROFHAGIM 3B .. 50
1/n 1/n 1/n 1/n
= H(l_ ) N H (1_ (wﬁu)q) ) H%U ) ng?ij
j=1 j=1 =1 J=1
Box XIX
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Table 5. Energy of each C3-ROFDG. Step 2. Utilizing Eq. (6.2.), each expert’s weight can
Energy & wg R ws be calculated in Table 14.
E(®1) 4.0943 4.3907 4.0943  4.3907 Step 3. Now, we will utilize above calculated weights

and determine a collective C¢g-ROFE b (i =
1,2,3,4) of the FCS T; over all the other FCSs
based on the C¢-ROFHWA operator with N =

(D2) 4.0586 4.1770 4.0586  4.1770
E(D3) 3.9962  4.1055  3.9962  4.1055
(D4)

E(D4) 4.0969 4.2162 4.0969 4.2162 1 (Table 15):
Table 6. Weight of each (3-ROFDG. 3i = C¢-ROFHWA (I 32 3",
Weight 5 5 R ” y
aers 0 2@520 0 :gOO 09590 0 ;’;)0 Step 4. Determine the score functions F (J;) of the Cg-
“ : : : ' ROFE J,(i = 1,2, 3,4), utilizing Defenition 4.
w3 0.2498 0.2473 0.2498  0.2473
ws 0.2460 0.2431 0.2460  0.2431 . 5 5
wy 0.2522  0.2496 0.2522  0.2496. F(31) = 0.5556, F(d2) = 0.5395, F(d) =

0.5292. £(3,) = 0.5651.
Step 8. Thus, the optimal FCS is Ty. » F(4)

Step 5. Rank all the FCSs T;(1 = 1,2,3,4) according
to the values of F(3;)(1 = 1,2,3,4). Then,
-|4>_i1>—|2>-|3.

Step 6. Thus, the optimal FCS is T, among the four
Step 1. The Randi¢ energy of each C¢g-ROFDG is given FCSs.

calculated in Table 13:

Now, the RMs of the C¢-ROFDGs R(Dy) =
ZP (K =1,2,3,4), (Figure 9) are shown in Tables 9-12.
We describe our method in the following algorithm.

Table 7. The fused results of the experts ¢, (k =1,2,3,4).

Experts The fused results of the experts
e b ((0.6805,0.7670), (0.5785, 0.6300))
3 ((0.6805,0.6651), (0.6160, 0.6620))
IS ((0.7526,0.7257), (0.6402, 0.6402))
b ((0.6118,0.7024), (0.6593,0.6593))
e i ((0.5921,0.8073), (0.7085, 0.5180))
3@ ((0.7012,0.7142), (0.5958, 0.6402))
I ((0.6418,0.6253), (0.6654,0.6344))
b ((0.7573, 0.6118),(0.5439, 0.6817))
es 3 ((0.6665, 0.6418), (0.5886, 0.5958))
IS ((0.7321,0.5790), (0.5785, 0.6880))
3 ((0.5402,0.8336), (0.7326,0.5477))
3 ((0.7579,0.6401), (0.5692, 0.6593))
e b ((0.5921,0.7670), (0.7326, 0.5886))
hiSe ((0.7582,0.6315), (0.5958, 0.6402))
b ((0.6665,0.6575), (0.7085, 0.6817))
3 ((0.7670,0.7321), (0.5000, 0.5733))

Table 8. Aggregated C3-ROFN.

Aggregated values @ wg R wg
1 0.6367 0.7558 0.6487 0.5822
1 0.7203 0.6537 0.5965 0.6572
13 0.6646 0.7284 0.6855 0.6247

1, 0.7327 0.6779 0.5652 0.6420
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Table 9. RM of the C¢g-ROFDG ©;.

L%F’f% T T2 s Ta
T ((0.50, 0.50), (0.50, 0.50 ((0.48,0.46), ( ) ((0.48,0.46), (0.50,0.48))  ((0.50,0.46), (0.49,0.47))
o ((0.51,0.47), (0.48,0.46 ((0.50,0.50), ( ) ((0.48,0.48),(0.49,0.47))  ((0.49,0.48),(0.48,0.45))
s ((0.50,0.48), (0.48,0.46 ((0.49,0.47), ( ) ((0.50,0.50), (0.50,0.50))  ((0.50,0.48),(0.47,0.47))
T ((0.49,0.47), (0.50, 0.46 ((0.48,0.45), ( ) ((0.47,0.47), (0.50,0.48))  ((0.50,0.50), (0.50,0.50))
Table 10. RM of the C¢-ROFDG ©5.
3/7? T T2 s Ta
T ((0.50, 0.50), (0.50, 0.50 ((0.50,0.44), ( ) ((0.54,0.50), (0.44,0.53))  ((0.49,0.47), (0.50,0.51))
o ((0.47,0.53), (0.50, 0.44 ((0.50,0.50), ( ) ((0.49,0.52), (0.49,0.48))  ((0.44,0.49), (0.56,0.46))
s ((0.44,0.53), (0.54,0.50 ((0.49,0.48), ( ) ((0.50,0.50), (0.50,0.50))  ((0.48,0.56), (0.52,0.46))
T ((0.50,0.51), (0.49,0.47 ((0.56,0.46), ( ) ((0.52,0.46), (0.48,0.56))  ((0.50,0.50), (0.50,0.50))
Table 11. RM of the C¢-ROFDG ©3.
fé:t T T2 s Ta
it ((0.50,0.50), (0.50,0.50))  ((0.49,0.56), (0.53,0.47))  ((0.56,0.45),(0.46,0.54))  ((0.46,0.51), (0.54,0.48))
T2 ((0.53,0.47), (0.49,0.56))  ((0.50,0.50), (0.50,0.50))  ((0.55,0.48),(0.46,0.51))  ((0.45,0.54), (0.54,0.44))
T3 ((0.46,0.54),(0.56,0.45))  ((0.46,0.51), (0.55,0.48))  ((0.50,0.50), (0.50,0.50))  ((0.51,0.44), (0.47,0.52))
Ta ((0.54,0.48),(0.46,0.51))  ((0.54,0.44),(0.45,0.54))  ((0.47,0.52),(0.51,0.44))  ((0.50,0.50), (0.50,0.50)))
Table 12. RM of the C¢-ROFDG 9.
%f T T2 s Ta
T ((0.50, 0.50), (0.50, 0.50 ((0.50,0.49), (0.46,0.50) ((0.53,0.47),(0.41,0.48))  ((0.49,0.46), (0.52,0.53))
T2 ((0.46,0.50), (0.50, 0.49 ((0.50,0.50), (0.50, 0.50) ((0.48,0.53), (0.47,0.46))  ((0.44,0.51),(0.59,0.50))
s ((0.41,0.48), (0.53,0.47 ((0.47,0.46), (0.48,0.53) ((0.50,0.50), (0.50,0.50))  ((0.47,0.49), (0.53,0.48))
T ((0.52,0.53), (0.49, 0.46 ((0.59,0.50), (0.44,0.51) ((0.53,0.48), (0.47,0.49))  ((0.50,0.50), (0.50,0.50))

Table 13. Randié¢ energy of each C3-ROFDG.

9

RE(®D;) [s) wg R W
RE(®1) 29345 28147 29345 2.8147
RE(®2) 29547 29713 2.9547 2.9713
RE(D3) 3.0075 2.9699 3.0075 2.9699
RE(®4) 29368 29489 2.9368 2.9489
Table 14. Weight of each expert.
Weights @ wg R W
w1 0.2507 0.2405 0.2507 0.2405
ws 0.2497 0.2539  0.2497  0.2539
w3 0.2542  0.2537 0.2542  0.2537
T4 0.2482  0.2519 0.2482 0.2519

7.1. Comparison analysis

To examine the consequences of the technique utilized,
we will compare our results with previous findings in

the literature:

Table 15. Aggregated C3-ROFN.

9

Aggregated values @ wg R W

i 0.6376 0.7551 0.6471 0.5810
1 0.7208 0.6532 0.5955 0.6573
b 0.6642 0.7293 0.6851 0.6237
14 0.7334 0.6768 0.5645 0.6419

We compare our approach with the Cg-ROF
weighted averaging (Cq-ROFWA) operator, by tak-
ing parameters X = 1 and ¢ = 3. The ranking
results which obtained from Cg-ROFWA operator
are listed as: 4 > TI; > Ta > TI3. We get the same
ranking outcomes as in literature. Nevertheless,
the methodology of graph adopted based on the
Hamacher TN and TCN, and by taking parameter
N = 1, Hamacher TNs and TCNs are converted
into the algebraic TNs and TCNs. As the algebraic
TNs and TCNs are special instance of the Hamacher
TNs and TCNs. So, the scheme described in this
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article is more comprehensive than the methodology
proposed by Liu et al. [41];

e Compare with the C¢-ROF FEinstein weighted av-
eraging (C¢-ROFEWA) operator by taking param-
eters X = 2, and ¢ = 3. The ranking outcomes
by utilizing C¢-ROFEWA operator are obtained as:
T4 > T > o > T3 >. But, the approach proposed
in this article based on the Hamacher TN and TCN,
and the Einstein TN and TCN are just a special case
of the Hamacher TN and TCN when we take the
parameter X = 2. Hence, the proposed approach is
more effective than the C¢-ROFEWA operator;

¢ We compare our proposed approach with the CIF
Hamacher Weighted Averaging (CIFHWA) operator
by taking ¢ = 1. Utilizing CIFHWA operator, the
ranking outcomes are acquired as: 1y > i >
Ty > TI3. The CIFHWA operator just aggregates
the CIFNs, and the CIFN must meet the conditions
that 0 < ﬁ+§f% <1and 0 <wg+wg < 1. Clearly,
most of the assessment values do not follow the limit
of condition described as: 0 < ¢ + R < 1 and
0 < wg +wz < 1, so, this example, shows that
the CIFHWA operator is not reasonable in described
instance;

e Further, we compare our developed strategy
with the CPF Hamacher Weighted Averaging
(CPFHWA) operator (i.e., taking ¢ = 2). The
CPFHWA operator gives the ranking results as:
T4 > T > o > 3. The CPFHWA operator just
aggregates the CPFNs and has wider range than
CIFHWA operator, and the CPEN should satisfy
the limit of condition described as: 0 < ¢% + R2 < 1
and 0 < wé + w2 < 1. Clearly, most of the
assessment values do not follow the limit of condition
described as: 0 < ¢?+R2 < 1land 0< wé+w§% <1
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in this example. Hence, the CPFHWA operator is
not appropriate for that described example;

e Now developed approach will be compared with
the Complex Fermatean Fuzzy Hamacher Weighted
Averaging (CFFHWA) operator by taking ¢ = 3.
According to CFFHWA operator, we get the ranking
results as: Iy > 4 > o > TI3. The CFFHWA
operator satisfies the conditional limit of 0 < &% +
3 < 1and 0 < wz +w? < 1. However, the space
of application of the CFFHWA operator is broader
than the CPFHWA operator but limited than the
Cq-ROF Hamacher weighted averaging operator
discussed in our proposed scheme. Clearly, the
assessment values in this decision-making problem
meet the limit of conditions 0 < 9 + fa <1 and
0< w;—l—w% < 1. So, in this example, the CFFHWA
operator cannot completely deal the decision making
problem.

Detailed evaluation results gained by using different
MAGDM approaches are given in Tables 16, 17, and
Figures 10, 11.

The ¢-ROFG deals with one-dimensional informa-
tion at a time, which often results data loss. But the
Cq-ROFG is a strong way of dealing with ambiguous
information compared to the ¢-ROFG, since it incorpo-
rates two-dimensional information in a single element.
Thus, the loss of data can be avoided by adding the
second dimension of MD and NMD. If we consider the
phase term of MD and NMD to be zero, then the Cqg-
ROFG is transformed to ¢-ROFG, and if we take ¢ = 1
and ¢ = 2 then the ¢-ROFG is converted to IFG and
PFG, respectively. The comparison of C¢-ROFG with
existing FG theories are shown in Table 18.

The merits of our approach are summarized in the
following points:

Table 16. Comparison of decision results by utilizing different approaches (Energy).

Approaches Parameter F (1) r(J2) F@s) Fds)  Order relation

Cg-ROFWA operator R =1,¢=3 0.5549 0.5393 0.5285 0.5649 T4 > T > T2 > T3
Cg-ROFWE operator N =2,¢=3 0.5532 0.5386 0.5257 0.5633 Ta>"T1>T2> T3
CIFHWA operator ¢g=1,"=3 05379 0.5288 0.5161 0.5482 N4> T > T2> T3
CPFHWA operator g=2,8=3 0.5511 0.5381 0.5223 0.5630 Ta4>T1 > T2>"s
CFFHWA operator g=3,N=3 0.5524 0.5382 0.5240 0.5625 N4> T >Te> "3

Table 17. Comparison of decision results by utilizing different approaches (Randié energy).

Approaches Parameter f(jl) r(jz) f(js) r(j4) Order relation

Cg-ROFWA operator N =1,4=3 0.5558 0.5398 0.5299 0.5654 T4 >3 > T2> T3
Cg-ROFWE operator RN =2,¢=3 0.5543 0.5394 0.5271 0.5641 T4 > Ty > T2 > T3
CIFHWA operator ¢g=1,X"=3 05392 0.5299 0.5175 0.5492 Ta>T1 > Te> T3
CPFHWA operator ¢g=2,8=3 05524 0.5392 0.5239 0.5640 T4 > T3 > T2 >3
CFFHWA operator g=3,XN=3 0.5535 0.5391 0.5256 0.5633 14> T > T2 >3
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Figure 11. Comparison with some existing approaches

(RE).

1. Our proposed scheme estimate that the sum of
qth power of MD and NMD closed in complex
plane of unit disc. The CIFS and CPFS loses
their ability, when they tend to deal with such
kind of information ((0.8,0.7),(0.9,0.8)), provided
by decision-making experts. Here, the C¢g-ROF'S
proves their ability, due to its flexibility of qth
power of MD and NMD in complex plane of unit
disc;

2. Our proposed scheme is more broad than CIFS
and CPFS. The notions of CIFS and CPFS can
be originated from Cq¢-ROFS with the specific qth
powers, such as ¢ = 1 and ¢ = 2. So, the proposed
scheme is more preferable than CIFS and CPFS;

3. The new framework is evidently apparent and in
the MAGDM environment, the C¢g-ROF approach

Table 18. Comparison of Cg-ROFG model with extant
models in literature.

Represents
Model ¢ R % Periodicity two dimensional

information

FG v X
IFG v
PFG v
FFG v
¢-ROFG v
CFG v
CIFG v
CPFG v
Cq¢-ROFG v

LA A X S A A A X
N N NI N N

NN N8 X X X ox X
NN S S X X X X

can be utilized effectively with the key role of minor
data loss;

4. Usage of graph theory is one of the crucial aspect
of proposed scheme, which shows its superiority on
other existing methods;

5. For depicting information in realistic decision-
making problem, the C¢g-ROFSs approach can be
implemented effectively;

6. Under Cqg-ROF domain, to address the MAGDM
problems, the Hamacher operator is a more power-
ful tool.

8. Conclusions

The Complex g-Rung Orthopair Fuzzy Set (Cg-ROFS)
is an effective way to portray ambiguous data and is
better than the Complex IFSs (CIFSs) and the CPFSs.
Its prominent feature is that the total of the gth power
of the amplitude term (similar to the phase term)
of the complex-valued Membership Degree (MD) and
the gth power of the amplitude term (similar to the
phase term) of the complex-valued Non-Membership
Degree (NMD) is equal to or less than 1. In this
article, some new C¢-ROF Hamacher operations and
Cq-ROF Hamacher aggregation operators, such as
Cqg-ROFHWA operator, C¢-ROFHOWA operator, Cg-
ROFH Weighted Geometric (C¢-ROFHWG) operator
and C¢-ROFHOWG operator have been developed for
aggregating Cq-ROFNs. Subsequently, the novel idea
of C¢-ROFGs utilizing Hamacher operator called Cg-
ROFHGSs is set forward and its energy and Randié
energy is computed. In particular, the energy of a
splitting C¢-ROFHG and shadow C¢-ROFHG has been
developed. Finally, a quantitative example relating to
the selection of Facade Clothing Systems (FCSs) has
been provided to show the credibility of the concepts
set out in the decision-making process. A C¢g-ROFHG
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can well depict the network fuzziness. In future, our
research work will be extended to:

1.

2.
3.
4

Linguistic Cg-ROFGs;
2-Tuple linguistic Cqg-ROFGs;
Complex spherical fuzzy graphs;

2-Tuple linguistic complex spherical fuzzy graphs.
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