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KEYWORDS Abstract. 1In recent times, energy demand forecasting has become an important
area of research due to its significant impact on Greenhouse Gas (GHG) emissions
and global warming. Long-term historical dependence, complexity, and nonlinearity are
all characteristics of load prediction problems. Numerous methodologies, ranging from
statistical to computational intelligence techniques, have been used up to this point in
this research field. According to the literature, deep learning can handle these properties
better than other approaches. However, the recent state-of-the-art deep network models
are not robust against various historical dependencies. In this study, we propose a graph
framework based on parallel DeepNet branches to tackle this challenge. This framework
consists of multi-parallel branches in which different kinds of networks can be integrated.
Parallel branches individually represent the historical dependency of determinants and
improve performance when different historical dependencies exist in the data. In this case
study, the performance of the proposed model is examined through a comparative study
with state-of-the-art deep network models. According to the comparison, the proposed
framework can improve load forecasting by a significant margin on average.

Load forecasting;
Deep neural networks;
Parallel deep
networks;

Residential load
demand.

(© 2023 Sharif University of Technology. All rights reserved.

1. Introduction load forecasting a complex research area with rare
] ) features and important consequences.
The core of energy management is the forecasting of Studies suggest that households are major con-
energy demand, which enables the suppliers to manage tributors to total global energy demand [1,2]. There-
numerous routine operatlpnal decisions. H9wever, fore, residual load forecasting is central to this research
there are some problems with accurate forecasting due area, both from an academic and a practical point of
to its complicated and uncgrtain nature. In sh.ort— view. Different forecasting approaches, from statistical
term energy demand forecasting, dependence on time, to computational intelligence have been applied in the
consumer choice, and external weather conditions make past [3,4]. The related literature is typically divided
into two main categories based on the number of
o J X techniques used: stand-alone and hybrid methods, each
orresponding author. . s . .
E-mail addresses: neshat@meybod.ac.ir (N. Neshat); involving one O.r more t?Chnlques' Depending on the
sardari@meybod.ac.ir (M. Sardari Zarchi); type of underlying technique, stand-alone methods are
hmahlooji@sharif.edu (H. Mahlooji) further divided into three categories: statistical, casual,
and computational intelligence methods.
doi: 10.24200/sci.2021.56343.4673 The following statistical techniques simulate the
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dynamic relationship between lagged determinant val-
ues and the forecast load demand based on his-
torical data: Autoregressive (AR) and Double Sea-
sonal Holt-Winter (DSHW) models [5], Autoregres-
sive models with exogenous inputs (ARX) [6], ARX
threshold models (TRX) [7], models based on Gen-
eralized Autoregressive Conditional Heteroscedasticity
(GARCH) [8-10] Autoregressive Integrated Moving
Average (ARIMA) models [8,12], semi/nonparametric
models [13,6] or Dynamic Regression (DR), Seasonal
Autoregressive Integrated Moving Average (SARIMA)
[14,15], Transfer Function (TF) models [16] and Grey
models [17-20]. The hybrid version of the mentioned
methods has also been proposed, e.g., Wavelet-based
models [12,21,22].

Casual methods focus on formulating dynamic
relationships between causal variables (determinants)
and forecasted load demand. Causal models utilize
the least-square fitting method to extract forecasted
load demand in terms of its determinants, such as
temperature, humidity, and lagged data [23]. Different
casual methods such as Linear Regression (LR) [24],
Nonlinear Regression (NLR) [25-29], and logistic or
logit regression (LoR) [30] have been widely used in
the literature.

Real-world problems, like load forecasting, are
typically nonlinear in nature, but they also tend to be
linear models, which means they may not work well
with data that exhibits strong historical dependency
patterns. In other words, they only can only handle
a low data rate such as weekly patterns, and the
nonlinear behavior of load demand can become too
complex to predict [31]. Also, they are only used
for short to medium-term forecasts. However, their
internal logic is obvious, and they are called “White-
box” methods.

Computational intelligence methods such as Ar-
tificial Neural Network (ANN) and Support Vector
Machine (SVM) are widely used in this research field
given their ability to process hidden data features and
nonlinear modeling [32-38]. In addition, they are
preferred for all time forecast intervals. However, they
are unable to process data that shows a strong pattern
of historical dependence [39].

Ekonomou used ANN to forecast the load for a
country. Weather conditions, historical demand data,
Gross Domestic Production (GDP), and load capacity
are the four factors that can be used to forecast
load demand using the Multi-Layer Perceptron (MLP)
model [40]. The comparison results obtained from the
data of the years 2012 and 2016 showed that the MLP
model outperforms the LR and SVM models. In the
year 2014, Kialashaki et al. estimated energy demand
for industrial sectors in terms of various determinants,
such as the price of energy carriers and GDP using
ANN and LR. The experimental results showed the

superiority of the ANN model over LR based on
the accuracy and reliability indicators [41]. Abedinia
and Amjadi combined a radial neural network with a
stochastic search to forecast short-term load demand.
The prediction results were validated by comparing
them to the results of the MLP network, the echo state
network, and the wavelet transform [42]. Gajowniczek
and Zabkowski [43] came to similar conclusions.

In the context of load forecasting, He proposed
a DeepNet model to forecast short-term load demand.
The Convolutional Neural Network (CNN) was used
to extract the features from historical patterns, which
continues to form the basis of load forecasting [44].

Shi et al. have proposed a deep-learning approach
to estimate short-term electrical load. To estimate
demand at two different levels, deep Recurrent Neural
Networks (RNNs) were used. both at the regional
aggregate level and at the household disaggregate level.
Based on the experimental results, the authors found
that the deep RNN performs better than the shallow
neural network [45]. Additionally, Rahman et al. pre-
sented an RNN-based approach to predict electricity
demand for residential and commercial buildings [46].
Kong et al. developed a DeepNet-based framework to
forecast short-term load demand by considering the
device consumption patterns. The results obtained
imply that load demand is strongly dependent on
residential behavior [47].

Recently, Bedi and Toshniwal developed the
DeepNet, the RNN and the SVM models using load
demand data from the Union Territory of Chandigarh,
India [48]. Cluster analysis was carried out on the
data to take into account the dynamics of the load
demand determinants. The comparison revealed the
superiority of the DeepNet framework for short-term
load forecasting over RNN and SVM. Future research
was recommended in this study to investigate trends in
load demand patterns by examining various nonlinear
exogenous determinants, such as climate conditions
and economic variables. It should be noted that clus-
tering the data based on seasonal, daily, and interval
data has resulted in several DeepNet models. In fact,
different periodic data histories required clustering and
led to multiple load forecasting models.

According to the suggestions of the state-of-the-
art studies [48] and to solve the mentioned problem, a
graph framework based on parallel DeepNet branches
is proposed, which has the following characteristics:

e Due to the high generalization ability of compu-
tational intelligence models, it is able to capture
nonlinearities in data and model complex nonlinear
forecasting problems;

e Due to its many deep hidden layers, it can handle
long-term data dependency models, unlike conven-
tional ANN models;
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e It is robust to different exogenous variables with
different historical data in the case of forecast-
ing problems thanks to the inclusion of dummy
variables. Previous studies required the data to
be clustered by determinant to prevent the model
from being over-parameterized, such as time of
day. Dummy variables have been utilized in the
proposed modeling framework to incorporate the
daily, monthly, and yearly seasonality into the model
and;

e The most important feature is its robustness to
different exogenous variables with different histor-
ical dependencies when using multi-input parallel
branches.

To address the above features, we propose a graphical
framework built on parallel DeepNet branches. The
paper is organized as follows: Section 2 introduces the
research preliminary findings and cutting-edge method-
ology. The proposed DeepNet modeling framework is
then described in Section 3. By taking the case study
into account, Section 4 assesses the proposed model
as well as the base forecasters (which are taken from
the literature and used as the benchmark). Section 5
includes the numerical results. The paper is finally
concluded in Section 6, which also summarizes the key
findings.

2. Preliminary

2.1. Load forecasting

Short-term load demand depends on weather condi-
tions, customers daily and monthly demand patterns,
and the effects of changing conditions on these pat-
terns. Previous studies have focused on meteorological
elements, i.e., temperature, solar radiation, humidity,
and wind speed as exogenous variables [49]. Load
demand forecasting typically consists of examining his-
torical load data along with information about the past,
current, and predicted futures of exogenous variables.

2.2. Deep Neural Networks (DNN)

The term deep learning generally refers to the Deep
Neural Network (DNN). A DNN is a complex neural
network with more than two hidden layers. DNN can
have different structures and topologies from which

@

Dense Neural Network, RNN, and CNN can be used as
prediction tools [50]. Dense or fully connected networks
have a feed-forward structure in which each neuron is
connected to all neurons in the next layer. Although
dense networks can be used to build a nonlinear model,
they are not suitable for models that rely on historical
data [44]. To build a historical-based model, RNNs
are widely used. The RNN takes into account the
dependencies between the data nodes leading to the
recording of the historical dependency pattern in the
data. Dependencies are supported by maintaining ac-
cumulated knowledge of subsequent timestamps using
network or feedback loops. A time-domain unrolled
RNN is shown in Figure 1. In this figure, I; denotes
the input value at timestamp ¢, S; denotes the state at
timestamp ¢, and O; denotes the output at timestamp
t. The current state S; is calculated in terms of the
current input I; and the previous hidden state S; ;.
Mathematically it can be given as:

St - fg(UIt + WSt—l) Ot - fa(VSt) (1)
RNNs are capable of dealing with short-term depen-
dencies, but they fail to handle long-term dependencies
due to the vanishing gradient event (He, 2017 [44]). To
solve the above problem, a deep learning framework
has been developed. The two state-of-the-art deep
learning models are Long-Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU) networks. CNNs
with 2D filters were first introduced in computer vision
applications. However, CNNs with 1D filter are more
recently used for time series or history-based model.
Figure 2 schematically shows how the 1D filter can
be used. Compared to RNNs, CNNs are faster and
require fewer computational resources, but RNNs such
as LSTMs have the ability to build a model based on
history.

2.3. Performance metrics

Root Mean Squared Error (RMSE), and Mean Abso-
lute Percentage Error (MAPE) are the measures used
to evaluate model fit. These performance metrics were
chosen because they are commonly used in the relevant
literature and because they are also considered the
primary measures of fitness strength. The MAPE
approach is often used in the forecasting literature.
Though mathematically straightforward, it has some

-
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Figure 1. Architecture of an RNN network [51].



806 N. Neshat et al./Scientia Iranica, Transactions E: Industrial Engineering 30 (2023) 803-813

Window of
size 5
|
Input
Ingrut I features
| >
v Time
Extracted
patch

¢ Dot product
with weights

Output
features
Figure 2. Performing 1D convolution filter [52].

drawbacks. The MAPE approach cannot handle actual
data with a zero value. The impact of this limitation
depends on the percentage of the actual dataset that is
zero. It can be expressed mathematically as Eq. (2):

100
MAPE = — > , (2)

lyi — ?Ji\

Yi
where y; represents the actual load demand and y;
represents the predicted load demand and n represents
the number of values.

RMSE is another common metric used in evalu-
ating the accuracy of the fitness. RMSE provides a
way to evaluate the mean error taking into account the
load demand. The accuracy of the output load demand,
which is the primary goal of fitness, can be captured by
methods like MAPE, so this metric is crucial because
it can offer good accuracy. Mathematically, it can be
presented as Eq. (3):

RMSE = \/%Z(yi —4i)% (3)

3. DNN framework

We proposed a novel DNN framework based on Parallel
DeepNet branches to forecast day-ahead load demand.
Therefore, we called our model ParDeeB. Each branch
of ParDeeB is a subnet where different types of deep
networks like RNN, CNN, or Dense networks can be
used. These branches are concatenated in an acyclic
graph to form the final structure. The ParDeeB
framework consists of three main phases: (i) data
preparation, (ii) multi-input RNN branches, and (iii)
non-history-based determinants.

3.1. Data preparation

To robustly forecast load demand, several aspects of
the input data must be considered. Let D = X =
[X1, X0, . X0], Y = [y1,y2,- - ,yn] be the n input

cym)
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Figure 3. An overview of X4, a 3D timestamp data
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Figure 4. Overview of X,., with different timestamp
lengths.

data samples, where X; = xf,22,--- .z includes m
determinants and y; is the target value (actual load
value). To adequately represent a periodic pattern,
historical and non-historical determinants must be
considered in the load forecast. Deep RNN can be used
to incorporate the historical determinants. Therefore,
in the first step of the proposed {ramework, k previous
timestamps of the determinant x; are formed as the
sequential vector S} = x] ,;x]_;;x{, where k is
the size of the lookback (lagged data). If the size
of the lookbacks is assumed to be the same for all
determinants, the sequential input variable X, ., =
[S1,S59,--,5,] obtained from X is a 3D tensor (ma-
trix) where S, = [S}, S?,- -+, S7"]. Figure 3 shows X,
when the lookback size of all determinants is the same.

Depending on the importance of the history of the
variable and its periodic type, previous timestamps can
be sampled at time step d. So the sequential vector is
defined as S} = x]_, ,,%]_,,,z]. For example, instead
of considering the previous timestamp for each hour,
we can only sample one value every 6 hours, which
means that d is set to 6. Since each variable has a
different periodic history, we have prepared a sequence
vector of each variable with its individual time step (d)
and lookback (k). So the sequence lengths of Sgeq are
different and therefore X,., is not a 3D tensor. Figure 4
shows the overview of X,., when we have different steps
and lookback for the determinants. Note that the d and
k are hyperparameters and are set experimentally.

3.2. Multi-input RNN branches
When the input to the neural network is in the form
of a tensor, the design of the structure of the DNN is
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Figure 6. A simple model with three parallel branches
consisting of an individual determinant timestamp vector.

simple. In this case, the network can be implemented
sequentially with a linear stacking of layers, as shown in
Figure 5. Although the sequential model is so common,
it is inflexible when the input data does not come under
the form of a tensor, e.g., Figure 4. Additionally in
a forecasting model, each determinant could require
a different type of neural networks such as CNNs,
LSTMs, or GRUs. To overcome this challenge, we
innovatively proposed parallel deep branching in our
framework to represent the history of each determinant
individually. Parallel branches process their deter-
minants using RNNs and dense networks. Then the
branches are merged together through concatenated
and dense layers. Concatenated layer brings all the
output from the previous branches and integrates them
into the next layer. In fact, the concatenated layer only
linked the output of different branches into one layer.
For example, Figure 6 shows a simple model with three
branches that are merged with a concatenated layer.

3.3. Non-historical determinants

Some input determinants are not historical-based data.
However, these determinants can have a causal effect
on load demand. These casual determinants are
usually modeled by fully connected or dense layers.
In this research, we add a dense DNN branch to our

framework to benefit from the casual determinants.
In order to ensemble all RNN and dense branches, a
directed acyclic graph topology is employed. In this
framework called ParDeeB, the input is processed by
several parallel branches. Then the branch outputs are
concatenated into a connected layer. Figure 7 shows
the overview of the ParDeeB framework. Note that
each branch consists of a dense layer and an RNN layer.

4. Experiment

In this section, we conduct the empirical study to
evaluate the ParDeeB framework and to analyze the
forecasting accuracy of the different basic models,
i.e., GRU, CNN, Dense, LSTM, and the proposed
model.

4.1. Case study

To evaluate the proposed DL framework and to eval-
uate the forecasting accuracy of the different baseline
models, we use the data of peak load and meteorologi-
cal conditions (e.g., temperature and wind speed) from
Shahrekord, Iran during the period from 03/03/2015 to
03/03/2018 which belong to [51]. Detailed statistical
information on the exogenous variables is provided in
Table 1. According to the data and the literature,
customer demand patterns vary by hour, day, and
month because the load value behaves differently under
different holiday states; times of night/day; day of
the week; and season. Figure 8 demonstrates the
periodic pattern of load demand over the yearly time
horizon in terms of daily intervals. Therefore, dummy
variables were defined to model the daily, weekly, and
monthly periodic effects. A dummy variable with three
classes-low, medium, and high load type-was used to
model the 24 hours of the day and seven days of
the week, each of which seven classes was assigned.
Similar to how the seven days of the week were
modeled with seven classes, the 24 hours of the day
were modeled by a dummy variable with three classes
labeled as low, medium, and high load types. Seasonal
information was accounted for by incorporating two
dummy variables representing the number of months
and the day of the month. The main purpose of the
interval/daily characterization is to allow the proposed
model to forecast the load for all seasons, days, and
user-specified time intervals of the day. Similarly, the
intraday patterns of public holidays differ from those
of typical days; Therefore, the binary dummy variable
of Holiday was considered in the model. In summary,
6 dummy variables were added to model their impact
on the load demand pattern. Table 1 contains the
statistical information of the data used (such as the
maximum, average, minimum, and peak load demand
of the days). In the model development phase, we
divided the data into training, validation, and testing
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Figure 7. The overview of the proposed framework (ParDeeB).

Table 1. Daily statistics of the model inputs (exogenous and lagged data) and the related outputs.

Input Min value Max value Mean value
Min temp -18.40 21.80 3.6
Max temp —2.00 37.40 22.27
Min humidity -1.70 99.00 19.23
Max humidity 4.00 100.00 64.19
Mean humidity 5.00 95.00 41.47
Rainfall 0.00 42.60 0.62
Snow 0.00 34.80 0.13
Total rainfall 0.00 42.60 0.75
Snow height 0.00 11.30 0.05
Wind direction (03) 0.00 360.00 206.20
Wind speed (03) 0.00 13.00 1.81
Wind direction (09) 0.00 360.00 184.43
Wind speed (09) 0.00 16.00 4.02
Wind direction (15) 0.00 3210.00 207.14
Wind speed (15) 0.00 18.00 4.00
Max wind direction 4.00 390.00 205.86
Max wind speed 1.00 35.00 10.40
Load demand 84.00 355.89 212.81
Peak load 161.64 355.89 262.60

sets. The first percent of the samples (i.e., the 1st,
2nd, and 3rd year samples) were used to train and
validate the various models, and the remainder (the 4th
year samples) were used to test the performance of the
model used. This study includes 30768 samples with 23

determinants and one target which are recorded every
hour. With 24 energy consumption values per day,
the training and validation dataset consists of 23076
data points. The test dataset also includes 7692 data
points.
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Figure 8. Periodicity of peak load demand versus daily
intervals.

4.2. Framework tmplementation

To evaluate the ParDeeB framework, we implemented
and evaluated it in a case study. Python 3.7 is
used in the ParDeeB implementation. This imple-
mentation was tested on a desktop computer with a
Geforce 1060 GTX GPU, an i3-6100 CPU, 12 GB
RAM, and a Ubuntu Linux operating system. The
model uses Keras 2.2 with TensorFlow 1.10 as the
backend for deep learning algorithms. Additionally,
other Python packages such as Scikit-lean, NumPy,
Openpyxl, and Matplotlib are used for pre-processing
and post-processing algorithms on the input data. The
determinant values of the dataset have different scale
variations, which can make the training algorithm
less efficient. The data set is therefore statistically
standardized. Data normalization for each sample X
is performed as Eq. (4):

X—p
Xnew: ) 4
. 0

where . and o are the mean and the standard devia-
tion, respectively.

5. Results and discussion

As we mentioned in Section 3, the ParDeeB framework
can have as many parallel branches as needed. Based
on the nature of our case study, we considered three
parallel branches. The first and second branches are
responsible for historical data, while the third branch
presents non-historical data. The input to the first
branch is a sequence of previous load demand values.
The second branch contains 19 determinant sequences.
For example, the sequences of previous temperature,
wind, etc. The third branch accepts six dummy
determinants, including the value of the year, the
month, etc. Different network types, time steps, and
lookbacks are investigated to determine the best model
configuration for our case study. Table 2 shows the top
five configurations of the tested configurations. Based
on the experimental result, the best configuration can
be obtained using LSTM for the first branch, GRU for
the second branch, and Dense for the third branch.
From this configuration, we can conclude that LSTM
can perfectly model long-term historical data instead
of GRU and CNN. Therefore, for the first branch
where the previous load demand is to be modeled,
using LSTM with a long period (lookback = 168) and
sampling all data (d = 1) is the best configuration.
Furthermore, we can see that other historical determi-
nants need simpler models. Therefore, for the second
branch, GRU can work correctly when the determinant
sequences have a time-step d = 24 hours (means daily
sampling) and lookback = 7. The optimal choice for
the third branch is a dense pattern without recurring
layers. This branch accepts only dummy determinants
without considering previous values. These three layers
are merged into one by a concatenated layer and finally

Table 2. The results of different configurations, where the symbols n, d, and [ denote the number of neurons, time step,

and lookback values, respectively.

No. of Branch 1 Branch 2 Branch 3 MAPE
Conf. test error
1 LSTM with n = 64, GRU with n = 128, Dense with 6.54
d=1,1=168 d=24,1=7 n = 64
2 LSTM with n = 64, LSTM with n =64, Dense with 6.71
d=1,1=168 d=24,1=17 n =128
3 LSTM with n =128,  CNN with n =32, Dense with 7.02
d=1,1=168 d=24,1=14 n = 256
4 GRU with n = 256, LSTM with n =64, Dense with 7.12
d=1,1=84 d=24,1=7 n =128
5 LSTM with n = 64, GRU with n = 64, Dense with 7.14

d=2,1=336

d=24,1=14

n = 64
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result in the last dense layer of 256 neurons. Figure 9
shows an overview of the optimal configuration of the
ParDeeB model for our case study. According to
the experimental result, the best configuration can be
obtained by using LSTM for the first branch, GRU
for the second branch, and Dense for the third branch.
From this configuration, we can conclude that LSTM is
better at modeling long-term historical data than GRU
and CNN. For the first branch, where the previous
load demand needs to be modeled, using LSTM with
a long sequence (lookback = 168) and sampling all
data (d = 1) is the best configuration. Furthermore,
we can see that other historical determinants require
simpler models. Therefore, GRU can perform well for
the second branch which has determinant sequences

N. Neshat et al./Scientia Iranica, Transactions E: Industrial Engineering 30 (2023) 803-813

time step d = 24 hours (means daily sampling) and
lookback = 7. The optimal choice for the third branch
is a Dense model with no recurrent layers. This branch
only accepts dummy determinants without taking into
account the preceding values. These three layers are
merged by a concatenated layer and finally, are led to
last dense layer with 256 neurons. Figure 9 shows an
overview of the optimal configuration of the ParDeeB
model for our case study.

Note that each branch has hyperparameters
whose optimal values are determined experimentally.
The main hyperparameters are the Activation function,
Regularization function, Dropout value, and Recurrent
dropout value. The optimal value of these hyperparam-
eters for the ParDeeB model implemented according
to Figure 9 is presented in Table 3. Dropout is used
to overcome the overfitting problem in the training
phase of the neural network. In the dropout procedure,
some weights between layer connections are randomly
selected and temporarily set to zero. However, for
recurrent neurons like LSTM, it is also recommended to
randomly ignore some recurrent values at each epoch.
In Table 3, the dropout value refers to the dropout
between layers and recurrent dropout refers to the
dropout value of the LSTM and GRU neurons used
in the model.

After explaining the selection of experimental
configuration and obtaining the topology of the optimal
model, it is necessary to compare the accuracy of the
models. To validate our forecasting model, Pardeeb
has been compared with four well-known species of
the DNN, including: (i) Gru, (ii) LSTM, (iii) Dense,
and CNN. These four neural network models were
developed in standard configuration. Table 4 shows
the performance of the four deep networks and the
ParDeeB model based on MAPE and RMSE for the
training and test data. The accuracy results in Table 4
show that ParDeeB makes more reliable and accurate
forecasting than other developed models.

Table 3. The optimal value of these hyperparameters for the ParDeeB model.

Branch Activation function Regularization Dropout Recurrent dropout
LSTM Tanh L2 0.1 0.4

GRU Tanh L2 0.05 0.05

Dense ReLU No 0.2 0

Table 4. Comparison of accuracy of developed models based on performance metrics.

Model MAPE train MAPE test RMSE train RMSE test
error error error error
CNN 16.78 16.99 21.90 21.72
GRU 6.55 7.42 9.68 11.34
Dense 6.31 7.31 9.51 11.59
LSTM 6.15 7.22 9.24 11.26
ParDeeB 5.52 6.54 8.95 10.88
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Figure 10. The result of the Pardeeb and other models for 100 samples compared to the actual values.

In addition, the models were schematically ana-
lyzed for forecasting accuracy according to Figure 10.
This figure shows the diagram of the actual value and
the predicted values for the first 100 test data. The
number of test data and peak load demand, both
expressed in megawatts, are represented by the x and
y axes in Figure 10. The red line marked by the star
represents the actual values, while the other colors
represent the forecasts of the developed models. As
these results show, the ParDeeB model can outperform
other developed networks.

6. Conclusion

Significant progress has been made in the develop-
ment of efficient and accurate load forecasting models
through the emerging intelligent computing approach.
In this study, a new graphical framework for load
forecasting based on DeepNet parallel branches was
proposed and compared to the state-of-art models in
the field. This framework excels in handling long-term
data dependency patterns, capturing data nonlinearity,
and robustness to various exogenous variables with
different historical data dependencies using multiple-
input parallel branches. From the results and observa-
tions presented in the previous section, we can conclude
that the proposed model is the best alternative for fore-
casting day-ahead load demand among the developed
models. It can significantly improve the accuracy of
load forecasting by an average of 3.09%. In detail, the
proposed model outperforms the Convolutional Neural
Network (CNN) model with an improvement of 10.84%
because it is able to handle long-term data dependency
patterns with more hidden layers. The CNN model has
a shallower structure than the one proposed, which can
be explained by the fact that the proposed model has
a deep structure. A 0.72% improvement in accuracy
can result from the proposed model over the Dense
model by incorporating the recursive mechanism. The
recurrent parallel structure of the proposed model leads
to an improvement of 0.46% compared to the Long
Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU) models. These parallel recurrent branches
represent the history of each determinant individually

when there are different periodic histories in the data.
In summary, deep learning models are generally well
suited to the load forecasting problem. However,
certain contributions in their configurations such as
parallel branches make them more accurate and robust.
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