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Abstract. Automatic Voltage Regulator (AVR) is employed to stabilize the output
voltage of generators at electric power plants. However, reliable performance of AVR
depends on professional tuning of its PID controller parameters. Therefore, di�erent
optimization algorithms are used to determine those parameters. The objective of the
optimization is de�ned as minimizing the characteristics of transient step response such as
settling time, rise time, overshoot, and steady state error. Then, to verify the optimization
results, a simulator is built experimentally for AVR and PID system which can also be
used for other studies on AVR systems. Experimental results are compared with those of
MATLAB and Pspice software. Close agreement between the simulation and experimental
results con�rms the success of the optimization.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Automatic Voltage Regulator (AVR) is essential equip-
ment used in power systems. The main role of the
AVR system is to control the output voltage of a
synchronous generator at power plants by applying fast
and transient changes to its exciter. However, the
generator's responses to these changes are usually slow
because it has high inductance and also its load varies
quickly [1]. In order to increase the AVR e�ciency and
improve its dynamic behavior, a Proportional-Integral-
Derivative (PID) controller is added to the AVR system
due to its easy implementation, robust performance,
and simple physical principle [2].

To achieve an appropriate closed-loop perfor-
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mance of the whole system, three parameters of the
PID controller (Kp, Ki, and Kd) must be accurately
tuned. Tuning methods of PID controller include trial-
and-error as well as traditional and arti�cial methods.
Trial-and-error and traditional approaches such as
Zigeler and Nichols are not appropriate for tuning PID
parameters due to their high overshoot and long-term
oscillation in the step response [3]. Moreover, �nding
the best PID parameters using the two approaches is
a time-consuming process due to massive calculations
and the results are not always optimal [2]. To over-
come the mentioned drawbacks, Arti�cial Intelligence
(AI) methods are proposed. The objective function
of this optimization process is usually de�ned as a
combination of step response characteristics including
minimizing the overshoot, rise time, settling time, and
steady state error [4].

There are various AI methods for optimizing PID
parameters in an AVR system and each one has its own
merits and demerits [5]. Neural network, fuzzy system,
and neural-fuzzy logic were three famous AI techniques
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[6{8]. These methods su�er from the problems of
convergence time, training process, and tuning the
membership function [9]. Therefore, heuristic methods
are welcomed to achieve higher performance. Among
di�erent heuristic algorithms, Genetic Algorithm (GA)
[10] and Particle Swarm Optimization (PSO) [11] are
widely used for tuning the parameters of PID con-
troller. However, they su�er from signi�cant computa-
tional burden [12], especially when there is a correlation
among optimization parameters [13]. Therefore, many
authors have attempted to modify these algorithms
or combine them with other algorithms to improve
their e�ciency and obtain minimum step response
characteristics (including overshoot, rise time, settling
time, and steady state error) and convergence time. For
example, authors in [14] combined Taguchi with PSO
and revealed that this new algorithm could tune PID
parameters faster and better than PSO and Taguchi
combined with GA in order to achieve the best AVR
step response. Furthermore, a new Modi�ed PSO
(MPSO) algorithm was developed in [15] for a PID
controller, leading to a better AVR step response
than conventional PSO algorithms in terms of im-
proving computational e�ciency and time complexity.
In addition, multi-objective non-dominated shorting
genetic algorithm [16,17], MPSO algorithms so-called
Velocity Update Relaxation Particle Swarm Optimiza-
tion (VURPSO), and Craziness based Particle Swarm
Optimization (CRPSO) [18], combined Taguchi with
GA [19], Chaotic Particle Swarm Optimization (CPSO)
[20], Particle Swarm Optimization with the Gravita-
tional Search Algorithm (PSOGSA) [21], simpli�ed
Particle Swarm Optimization (PSO) also called Many
Optimizing Liaisons (MOL) algorithm [22], and Adap-
tive PSO (APSO) [23] are other suggestions having
faster and more e�cient optimized AVR step responses
than conventional optimization algorithms.

Some other researchers have proposed using newly
developed heuristic optimization methods to overcome
the above-mentioned limitations of conventional meth-
ods. They claimed to have found a more optimum
response by comparing the step response characteristics
with those of GA and PSO in faster optimization.
Those algorithms include Monarch Buttery Optimiza-
tion Algorithm (MBO) [24], Taguchi method [25], Slap
Swarm Algorithm (SSA) [26], Arti�cial Bee Colony
(ABC) [27], Bacterial Foraging Technique (BFT) [28],
Memetic Algorithm (MA) [29], Firey Optimization
Technique (FOT) [30], Shu�ed Frog Leaping (SFL)
[31], Continuous Action Reinforcement Learning Au-
tomata (CARLA) [32], Di�erential Evolution (DE)
and Teaching-Learning-Based Optimization (TLBO)
algorithms [33,34], Pattern Search Algorithm (PSA)
[35], Simulated Annealing (SA) [36], �nite gradient
[37], Global Neighborhood Algorithm (GNA) [38],
Imperialist Competitive Algorithm (ICA) [39], grav-

itational search algorithm [40], Vector-Based Swarm
Optimization (VBSO) [41], Continuous Human Learn-
ing Optimizer (CHLO) [42], Arti�cial Electric Field
(AEF) [43], Whale Optimization Algorithm (WOA)
[44], Cuckoo Search (CS) [45,46], Jaya Optimiza-
tion Algorithm (JOA) [45], Ant Colony Optimization
(ACO) [21], Chaotic Ant Swarm (CAS) algorithm [47],
chaotic optimization algorithm [48], and Grey Wolf
Optimizer (GWO) [49].

Although there are a large number of research
studies on the application of di�erent optimization
methods for tuning parameters of PID controller for
AVR system, it remains to be seen which of the
proposed algorithms has the best performance consid-
ering the fast convergence time and the best tuning
of PID parameters for AVR step response. Also,
based on our literature review, there are few article
papers that have compared a number of optimization
algorithms to each other. They have only chosen one
or two algorithms and made a comparison with one
conventional method. However, in this paper, eight
of the best population-based optimization methods
are competing to establish the superiority of one over
others. The studied optimization algorithms are Whale
Optimization Algorithm (WOA), Ant Lion Optimizer
(ALO), Slap Swarm Algorithm (SSA), and Dragon-
y Algorithm (DA), and the results are compared
with four conventional algorithms including Genetic
Algorithm (GA), Particle Swarm Optimization (PSO),
Simulated Annealing (SA), and Arti�cial Bee Colony
(ABC) which are used to improve the quality of the
step response of the AVR system. Furthermore, in this
paper, an electronic dual simulator is built for AVR
system which has not been done before. The prototype
AVR simulator can be regarded as preliminary linear
modeling to analyze the dynamic behavior of a real
AVR system. Finally, the electronic model of the PID
controller is also built and the optimum parameters are
experimentally tuned. The experimental test results
verify the success of the employed optimizations.

2. System description

There are various AVR mathematical models and the
latest developed nonlinear models are more accurate
than linear models. However, given that this paper
attempts to take preliminary steps towards dual elec-
trical modeling of the AVR, the basic linear model
is considered. Figure 1 shows the AVR system with
its PID controller. As can be seen, the AVR system
has four main components including ampli�er, exciter,
generator, and sensor. All components are modeled
linearly with a gain of K and a time constant of � .
The ampli�er is modeled with a gain of KA = 10 and a
time constant of �A = 0:1 sec. The linear model of the
exciter includes a gain of KE = 1 and a time constant
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Figure 1. Block diagram of an AVR system with a PID controller.

Figure 2. The AVR step response without a PID
controller.

�E = 0:4 sec. The generator gain can be changed from
0.7 to 1 and its time constant varies between 1 and 2
seconds. In this paper, KG = 0:7 and �G = 1 sec. The
last component of the AVR is sensor. The gain of the
sensor model (KR) is equal to 1 and its time constant
(�R) is assumed to be 0.01 seconds [2].

The step response of the mentioned AVR system
is given in Figure 2. According to Figure 2, it has
large amplitude oscillations with high overshoot. Such
a response is not suitable for AVR's step response. The
characteristics of the studied step response indicate
that the performance of AVR system is not suitable. It
means that the amplitude of the overshoot is 50.46%,
the rise time is 0.3174 seconds, the settling time is 4.90
seconds, and the steady state value is 0.873. Therefore,
a PID controller must be added to improve the dynamic
response of the AVR and decrease its steady state error.
The model of PID controller can be de�ned as follows:

GPID (s) = Kp +
Ki

s
+Kds; (1)

where Kp, Ki, and Kd denote the coe�cients for the
proportional, integral, and derivative terms, respec-
tively, and must be tuned simultaneously to improve
both transient and steady state response.

3. Optimization

In this section, the objective function of the opti-
mization, the studied optimization techniques, and the
optimization results are discussed.

3.1. Problem formulation
Kp, Ki, and Kd are three parameters of PID controller
that need to be tuned. Moreover, an ideal step

response has no overshoot, no steady state error, fast
rise time, and fast settling time. Therefore, the
proposed objective function should include rise time,
settling time, overshoot, and steady state error and the
variables of the optimization are the parameters of the
PID controller.

Integrated Absolute Error (IAE), Integral of
Squared-Error (ISE), or Integrated of Time-weighted-
Squared-Error (ITSE) are the usual forms of the ob-
jective function for tuning the PID parameters. How-
ever, they are time-consuming and inaccurate in the
improvement of settling time and rise time. Therefore,
a multi-objective optimization problem is de�ned as
[50]:

Fobj =
�
1� e���� (Mp + ESS) + e�� � (ts � tr) ;

(2)

where ESS is steady-state error, Mp amplitude of over-
shoot, ts settling time, tr rise time, and � a weighting
factor that reects the optimization performance. In
case � is chosen to be higher than 0.7, overshoot and
steady state error are reduced. However, when � is set
under 0.7, one can reduce the rise time and settling
time. Thus, according to the results achieved by the
reference paper [50], the range of � is between 0.8 and
1.5. Since the objective function of Eq. (2) is able
to consider all the required factors of the ideal step
response, it is recommended for optimization in this
paper.

3.2. Optimization methods
As mentioned earlier, eight di�erent optimization
methods are competing in this paper to minimize the
objective function of Eq. (2). The studied optimization
algorithms are Whale Optimization Algorithm (WOA)
[51], Ant Lion Optimizer (ALO) [52], Slap Swarm
Algorithm (SSA) [53,54], Dragony Algorithm (DA)
[55], Genetic Algorithm (GA) [56], Particle Swarm
Optimization (PSO) [11,57], Simulated Annealing (SA)
[36], and Arti�cial Bee Colony (ABC) [27,58]. It is
worth mentioning that the optimization variables are
the parameters of PID controller (Kp, Ki, and Kd).

3.3. Optimization results
Figure 3 shows the variation of objective function ver-
sus di�erent iterations using the studied optimization
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Figure 3. The optimization trend of population-based
optimization algorithms.

algorithms. The maximum iteration is set to 200 for all
algorithms except GA and SA. GA termination crite-
rion varied from other algorithms based on MATLAB
Optimtool and it could achieve its optimum response
at maximum 60 iterations. Moreover, SA could not
optimize the objective function in less than four digits
after the decimal point after 457 iterations, but we
set the maximum iterations at 2000 to evaluate its
behavior. Among the studied algorithms, PSO and
WOA are faster than other algorithms in getting the
�nal optimum point. However, ALO has the lowest
value of objective function (Fobj = 0:0806) by tuning
Kp, Ki, and Kd equal to 0.8593, 0.6076, and 0.2919,
respectively, and it is regarded as the best response for
tuning PID controller parameters. Although ALO has
the optimum value of objective function, the shortest
amount of settling time, 0.4962 sec, lies in ABC and
the shortest amount of rise time, 0.3113 sec, is devoted
to the results of GA optimization method.

The optimal value of PID parameters, optimal
value of objective function, and characteristics of the
step response are presented in Table 1 for di�erent
optimization methods. According to Table 1, GA
and PSO are the worst optimization techniques with
the highest value of the objective function. It is
implied that the recent population-based optimization
algorithms are more e�cient than conventional ones.

Furthermore, Table 1 shows that all algorithms
can remove maximum overshoot from the step response

Figure 4. The step response of the AVR with optimum
parameters of PID controller based on the results of ALO
algorithm.

of the AVR system. It is implied that the competition
for the best results includes such elements as achieving
the shortest rise time and settling time and fast
convergence of the method.

The step response of the AVR system with tuned
parameters of PID controller based on ALO results is
shown in Figure 4.

3.4. Experimental evaluation
Experimental measurement is always the best veri�-
cation method. However, the AVR system of power
plants is not easily available for such measurements.
Therefore, a simulator is developed in this section for
AVR and its PID controller. The proposed simulator is
designed and simulated using ORCAD family software
and then, is built experimentally.

3.5. Developing a simulator
In order to develop a simulator for AVR system and its
PID controller, it is required to �nd the best electronic
circuit of them. Regarding the transfer function of the
AVR system in Figure 1, it is obvious that this func-
tion is the product of multiplying several �rst-degree
Resistor-Capacitor (RC) circuits. The product of RCs
represents time constant (�) for each component and
all gains can be produced by a multiplier comprising
an operational ampli�er (OP AMP).

The proposed electronic model of the AVR with
PID controller is given in Figure 5. The employed OP

Table 1. PID parameters and step response characteristic for the AVR system using di�erent optimization techniques.

GA SA ABC PSO WOA SSA ALO DA

Kp 0.8679 0.8254 0.8611 0.8648 0.8258 0.8403 0.8593 0.7787
Ki 0.6055 0.5715 0.6014 0.6026 0.6325 0.5539 0.6076 0.5219
Kd 0.3050 0.2685 0.2916 0.2924 0.2811 0.2714 0.2919 0.2398
Objective function 0.3669 0.0869 0.0811 0.2206 0.0807 0.0871 0.0806 0.0963
Percentage overshoot (%) 0 0 0 0 0 0 0 0
Rise time (sec) 0.3113 0.3415 0.3119 0.3254 0.3326 0.3366 0.3193 0.3740
Settling time (sec) 1.1283 0.5330 0.4962 0.5095 0.5201 0.5236 0.4965 0.5863
Required iteration 55 457 79 26 136 166 151 142
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Figure 5. Proposed electronic model of the AVR with the
PID controller.

AMP is LM324, which is easy to access in the electronic
market.

The transfer function of PID controller, as the
ratio of its output voltage to input voltage, is de�ned
as follows:
Vo (s)
Vi (s)

=
R2

R1

(R1C1s+ 1) (R2C2s+ 1)
R2C2s

; (3)

where Vo (s) is the output voltage of the PID con-
troller, Vi (s) the input voltage of the PID controller,
R1=C1 the resistor/capacitor of the derivative term,
and R2=C2 the resistor/capacitor of the integral term.
Since the transfer function of PID controller includes
a derivative operator, an integral operator and a sign
inverter, Kp, Ki, and Kd, could be derived from Eq. (3)
as follows:

Kp =
R2

R1

�
R1C1

R2C2
+ 1
�
; (4)

Ki =
1

R1C2
; (5)

Kd = R2C1: (6)

Substituting the optimal values of Kp, Ki, and Kd from
Table 1 into Eqs. (4)-(6) and supposing C1 = 10 �F,
R2 is determined equal to 29.19 k
. Then, considering
the known parameters and the fact that � = K2

p �
4�Ki �Kd must be positive to get real numbers, R1
and C2 can be determined. It should be mentioned
that there are two acceptable values for R1 and C2
because they are the result of solving a second-degree
equation, which has two valid answers. Considering
R1 = 84:71 k
, C2 will be calculated equal to 19.42 �F
and for R1 = 56:71 k
, C2 = 29:02 �F.

The PSpice step response of the proposed AVR
system with and without PID controller is presented in
Figures 6 and 7, respectively.

Figure 6. Step response of the AVR electronic model in
PSpice.

Figure 7. Step response of the AVR with the PID
electronic model in PSpice.

3.6. Experimental implementation of
simulator

The developed simulator is experimentally built, as
shown in Figure 8. A digital oscilloscope is used to
capture and save the step response of the simulator.
Considering a step DC input voltage of 1 V, the
measured step response of the simulator without and
with PID controller is given in Figures 9 and 10,
respectively.

Table 2 shows a comparison of step response
characteristics of the experimental results with those
of PSpice and MATLAB. According to Table 2, the
developed simulator is a suitable representative for an
AVR with PID controller at power plants. Before
using a PID controller, the maximum peak/steady
state value of the step response is measured equal to
1.32 V/0.8 V equal to the predictions of simulation
results. After adding the PID controller, the rise time
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Table 2. Comparing the step response of the AVR and PID controller among experiment, MATLAB, and PSpice.

Performance characteristics Experimental
test

Simulation results using
MATLAB PSpice

A
V

R
w

it
ho

ut
P

ID
First peak voltage (V) 1.32 1.32 1.32
First peak time (sec) 0.84 0.877 0.926
First valley voltage (V) 0.64 0.638 0.644
First valley time (sec) 1.56 1.64 1.62
Steady state voltage (V) 0.89 0.875 0.880

A
V

R
w

it
h

P
ID

Rise time (sec) 0.36 0.3193 0.46
Settling time (sec) 0.69 0.4965 1.5
Steady state value (V) 1 1 1

Figure 8. The experimentally built simulator of the AVR
system and its PID controller.

Figure 9. The measured step response of the AVR
system's simulator without PID controller.

and the settling time of the measured response are
in agreement with simulation results. The di�erence
between the results of PSpice and those of experimental
test and MATLAB lies in the tolerance of the employed
capacitors and resistance.

Figure 10. The measured step response of the AVR
system's simulator with PID controller.

4. Conclusion

In this paper, parameters of Proportional Integral
Derivative (PID) controller for an Automatic Voltage
Regulator (AVR) were optimally tuned. The objective
function of the optimization was de�ned such that all
the performance characteristics of the step response
were considered to ensure minimum rise and settling
time, minimum overshoot amplitude, and steady state
error along with fast convergence time. The abilities
of well-known optimization methods including Genetic
Algorithm (GA) and Particle Swarm Optimization
(PSO) were compared with those of newly proposed
evolutionary algorithms including Whale Optimization
Algorithm (WOA), Ant Lion Optimizer (ALO), Slap
Swarm Algorithm (SSA), Dragony Algorithm (DA),
Simulated Annealing (SA), and Arti�cial Bee Colony
(ABC). Then, to experimentally evaluate the success
of the best optimization results, a simulator was devel-
oped and experimentally built for the AVR system and
its PID controller. Comparison of the experimental
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results with those of simulation by MATLAB and
ORCAD family software con�rmed the success of the
proposed optimization and developed simulator.
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