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Abstract. The current study proposes a mathematical model for joint planning of
maintenance policies and inventory control in a deteriorating production system. In
this regard, a safety stock is maintained to meet the demands during the conduction
of maintenance actions and avoid shortages. The optimal planning of maintenance and
inventory considerably improves the productivity of the manufacturing system. In a
deteriorating production system, the process has two operational states, i.e., in-control
and out-of-control states, as well as a non-operational state or failure mode. The time
for the transition from one state to another follows a general continuous distribution. In
addition, the time duration of maintenance actions is considered a random variable. The
main objective of this study is to optimize the safety stock level and time to conduct
maintenance actions in order to minimize the expected total cost per time unit. To verify
the e�ciency of the proposed model, some numerical examples are solved using a genetic
algorithm and the solutions are veri�ed. Finally, sensitivity analyses are carried out on the
critical parameters.

© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

In [1], maintenance planning, production/inventory
control, and quality control were regarded the main
operational policies a�ecting the performance of man-
ufacturing systems. Joint consideration of these factors
can lead to ideal and optimal planning of production
processes and improvement of productivity in manufac-
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turing systems. As stated in [2], the role, conditions,
and availability of machines were important factors
in production and inventory control. Considering the
relationship among machinery maintenance, inventory
level, and product quality, some authors have focused
on the joint planning of maintenance, inventory, and
quality control as the important actions to take on the
management of manufacturing systems [3]. For years,
these actions have been taken separately; however,
some integrated models have been recently developed
for their joint planning. Of note, there are interactions
and interrelationships among maintenance planning,
production/inventory control, and quality control that
form the basis of integrated models [4].

Maintenance planning can reduce the downtime of
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the machines and increase their availability. There are
di�erent methods to restore and maintain production
processes in an optimal condition. E�ective mainte-
nance reduces the overall cost of the company because
production capacity is available when needed. Mainte-
nance planning involves identi�cation of the necessary
parts and tools for the job. While taking maintenance
actions on the machines, the production process is
interrupted and production is stopped. Therefore, a
safety stock is required to meet the demand and avoid
possible stock-out during the maintenance operation.

Classical Economic Manufacturing Quantity
(EMQ) models generally ignore deterioration in pro-
duction processes, assuming that machines do not
break down [5]. In real-world situations, however,
the production process in most manufacturing systems
is imperfect. To be speci�c, production of defective
items results from the deterioration of the processes
and failure of the machines [1]. Deteriorating produc-
tion processes have generally two operational states,
called in-control and out-of-control states, and a non-
operational state called the failure mode. While the
products are produced with high quality in the in-
control state, quality, the quality of the produced
items in the out-of-control state may be reduced, hence
production of defective items. This happens mainly
because the machines are held responsible for the
production, but an assignable cause pushes the process
to deterioration. In the failure state, the machine that
breaks down cannot produce items, thus interrupting
the production process. In such systems, the process
is initially under control; however, as time goes by, the
machines deteriorate and the process state is shifted to
an out-of-control state.

Di�erent policies can be implemented to control
the quality of products and number of detected de-
fective items. Sometimes, defective items cannot be
detected unless the consumers use them. In the current
study, a warranty policy is taken into consideration to
detect these products. In other words, all products are
sold with a warranty period. If an item is found to be
defective within this period, it will be repaired.

The impact of deterioration on the production
planning in manufacturing systems has been exam-
ined in di�erent studies. For instance, Porteus [6]
and Rosenblatt and Lee [7] were the �rst researchers
to have studied the impact of deterioration on the
manufacturing systems. They considered a production
process with two operational states where the process
state transition followed an exponential distribution.
Groenevelt et al. [8] presented an EMQ model consid-
ering the deterioration. They also took into account an
exponential distribution for the process state transition
and ignored the repair time. Goyal and Barron [9]
studied an imperfect production system and presented
an EMQ model with the objective of minimizing the

total cost. Chakraborty et al. [10] developed some
integrated models for process deterioration, inspection,
and maintenance.

The interrelations of production/inventory con-
trol, maintenance planning, and quality control have
been studied and analyzed based on di�erent poli-
cies speci�c to production control and quality con-
trol. Sana [11] presented a model for an imperfect
manufacturing system. He evaluated the impact of
deterioration on a process with the possibility of a
shift from an in-control state to an out-of-control state.
He also assumed that defective products were likely to
be produced in the out-of-control state and that they
could be detected by inspection and restored in high
quality by reworking. In this study, it was also assumed
that the probability of the production of defective items
in the out-of-control state depended on the production
rate and runtime. The model primarily aimed to
determine the optimal production lot size to minimize
the total cost. Chakraborty and Giri [5] developed
an EMQ model for a deteriorating process. In their
study, the process state could be shifted from an in-
control state to an out-of-control state or from an out-
of-control state to a failure mode. They considered
a general distribution for the time duration of the
maintenance actions. Their proposed model aimed to
jointly plan maintenance and determine an optimal
safety stock level to minimize the total cost. They also
proposed a computational algorithm to optimize the
model. Sarkar [12] established an inventory model for
imperfect production processes considering the e�ect
of in
ation. The process could shift from an in-control
state to an out-of-control state. They assumed that the
defective products were produced in the out-of-control
state; hence, they could be detected by inspection and
reworked. The main purpose of their model was to
determine the optimal production lot size to minimize
the total cost.

Horenbeek et al. [13] reviewed the models for
integrated optimization of maintenance and inventory.
Sarkara et al. [14] developed an Economic Produc-
tion Quantity (EPQ) model for imperfect production
systems. Assuming that the defective products could
be reworked, they developed three di�erent inventory
models for three di�erent distribution functions for the
time of the state transition in a production process.
Sett et al. [15] studied the joint planning of mainte-
nance, quality, and inventory control. According to
their assumptions, a safety stock should be maintained
to avoid shortage. The process was likely to transit
from an in-control state to an out-of-control state at
any random time, and the shift time followed a gen-
eral distribution. Defective items could be produced
in both in-control and out-of-control states. They
considered a free repair warranty for non-inspected
sold items. Salmasnia et al. [2] studied the joint
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planning of EMQ, quality, and maintenance. They
considered the deterioration in a production process
with two operational states and conducted Preventive
Maintenance (PM) and Corrective Maintenance (CM)
actions for maintenance. The time duration of the
maintenance actions was considered constant. In this
study, an X-bar control chart was used for process
monitoring. In addition, Particle Swarm Optimization
(PSO) algorithm was used for optimization. Lopes [1]
developed a mathematical model to simultaneously
plan the quality control, maintenance, and production
for an imperfect manufacturing system. He referred
to the PM as the maintenance policy and the PM
time duration as a random variable. In this study, it
was assumed that a safety stock should be maintained
to avoid shortage during the performance of the PM
action. The produced items were inspected and all
products were sold with a free minimal repair warranty.
Du�uaa et al. [16] presented a model to simultaneously
plan production, maintenance, and quality. In this
regard, they �rst optimized a PM schedule. Then, they
did production scheduling and inventory control. They
identi�ed three states for the process where the time
of transition among the states followed an exponential
distribution. An X-bar control chart was applied to
monitor the process and control the quality. The
duration of the maintenance actions was considered
constant.

Nourelfath et al. [17] presented a model to plan
production, maintenance, and quality in an imper-
fect manufacturing system considering a multi-period
multi-product system. They assumed that the process
contained two operational states and the process shift
would follow a general distribution. The products were
inspected during the production cycle to control their
quality. The model primarily aimed to determine the
optimal safety sock level and production run length to
minimize the total cost. Fakher et al. [18] presented
a model to plan maintenance, quality, and production
in a capacitated manufacturing system and performed
some computational experiments to analyze their in-
terrelationship. The process contained three states,
and the transition time among the states followed
the Weibull distribution. The produced items were
inspected to control their quality. The duration of
the maintenance actions was constant. The purpose
of the model was to determine the production lot size
and maximize the pro�t. Cheng et al. [19] presented
a mathematical model to plan production, quality
inspection, and maintenance with deterioration taken
into account. The process had three states, and the
transition time among the states followed a gamma
stochastic trend. The duration of the maintenance
actions was considered a random variable. A safety
stock was maintained to avoid any possible stock-
out against uncertainties. In this study, a 100%

inspection was done as part of the quality control
policy and the production lot size was determined
based on the maintenance planning and quality control
policy. Finally, a simulation technique was employed
for optimization.

Sha�ee-Gol et al. [20] developed an EPQ model
for imperfect production processes and studied the
pricing and production decisions in multi-product
single-machine manufacturing systems. Their study
included the inspection of all the produced items and
reworking of the defective ones. Ha�di et al. [21]
presented an integrated model of production, mainte-
nance, and quality control in deterioration manufac-
turing systems. They developed a multi-item capaci-
tated lot-sizing problem and considered subcontracting
strategies in the integrated model. They used a genetic
algorithm for optimization. Gomez et al. [22] proposed
an integrated model of production, maintenance, and
quality control for a continuous production system
with quality deterioration. They presented a dynamic
sampling strategy for inspection and quality control
and analyzed the interactions among the sampling,
production, and maintenance strategies. The purpose
of the research was to determine an optimal production
policy, schedule PM, and implement a quality control
policy to minimize the expected total cost of the
system. Salmasnia et al. [23] presented an integrated
model of production cycle length, maintenance policy,
and quality control. They also took into consideration
the time value of money and stochastic shift size.
The main objective of the model was to determine
the production cycle length, maintenance policy, and
economic-statistical design of a control chart. Wang et
al. [24] developed an integrated model of production,
maintenance, and quality control for a serial production
system with stochastic deterioration. To produce each
production lot, an inspection was conducted on the
process. In order to determine the situation of the
machines, a predictive maintenance policy was prac-
ticed based on the predictive failure probability of each
machine. Their proposed model aimed to minimize the
total cost of the system. A simulation-based approach
was used for optimization. For comparison purposes,
Table 1 summarizes the main features of the most
important studies mentioned above.

Chakraborty and Giri [5] devised a mathematical
model to jointly plan the inventory control and main-
tenance. They adopted a warranty period policy to
detect the defective sold products.

In our study, a mathematical model is presented
for the joint planning of maintenance and inven-
tory. For this purpose, the impact of deterioration
on the process is taken into account. The process
has three states including an in-control state, out-of-
control state, and failure mode. The transitions of
the process among these states are based on general
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Table 1. Comparison of di�erent studies on integrated models.

Process state transition

Refs.
Number

of process
states

In-
control
to out

-of-
control

Out-
of-

control to
failure

In-
control

to
failure

Failure
mechanism

Quality control
policy

Repair
time

Production/
inventory
control
policy

Inventory
shortage

consideration

[1] 2
p Random variable with

general distribution

Product inspection

and warranty period

Random

variable

Determination of

safety stock

p

[2] 2
p Random variable with

Weibull distribution
X-bar control chart Constant EPQ

[5] 3
p p Random variable with

general distribution
Warranty period

Random

variable

Determination of

safety stock

and production

run length

p

[11] 2
p Random variable with

exponential distribution
Product inspection -

Determination of

production lot

siz

[12] 2
p Random variable with

general distribution
Product inspection -

Determination of

production lot

size

[15] 2
p Random variable with

general distribution

Product inspection and

warranty period

Random

variable

Determination of

bu�er inventory

p

[16] 3
p p Random variable with

exponential distribution
X-bar control chart Constant Production scheduling

[17] 2
p Random variable with

general distribution
Product inspection Constant

Determination of

safety stock and

production run length

p

[18] 3
p p Random variable with

Weibull distribution
Product inspection Constant

Determination of

production lot

size

p

[19] 3
p p Random variable with

gamma distribution
100% inspection

Random

variable

Determination of

production lot

size

p

[20] - 100% inspection -
Determination of

production lot

size

[21] 2
p Random variable with

general distribution
Periodic inspection Constant

Determination of

production lot

size

p

[22] - Number of repairs Sampling plan
Random

variable

Determination of

production lot

size

p

[23] 2
p Random variable with

Weibull distribution
X-bar control chart Constant

Determination of

production run

length and

inventory level

[24] 2
p Random variable with

gamma distribution
Periodic inspection Constant

Determination of

production run

length and

inventory level

p

This
paper

3
p p p Random variable with

general distribution
Warranty period

Random

variable

Determination of

safety stock

and production

run length

p
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continuous random variables. The repair duration is
also considered a random variable. The objective of
the proposed model was to determine an optimal safety
stock level and a time to conduct maintenance actions
and consequently minimize the expected total cost of
the process.

The structure of this study is as follows. The
statement of the problem is presented in Section 2.
Di�erent scenarios during a production cycle are ex-
plained in Section 3. The proposed integrated model
is developed in Section 4. Numerical studies and
sensitivity analysis are elaborated in Section 5. The
concluding remarks of the this research are given in
Section 6.

2. Problem description

Notations

The following notations were considered in developing
the integrated model:
X1 The time of transition from the

in-control state to the out-of-control
state (continuous random variable)

f1(x1) Probability density function (p.d.f) of
X1

F1(x1) Cumulative distribution function
(c.d.f) of X1

�F1(x1) The survivor function, 1� F1

X2 The time of transition from the
out-of-control state to the failure mode
(continuous random variable)

f2(x2) p.d.f of X2

F2(x2) c.d.f of X2

�F2(x2) The survivor function, 1� F2

X3 The time of transition from the
in-control state to the failure mode
(continuous random variable)

f3(x3) p.d.f of X3

F3(x3) c.d.f of X3

�F3(x3) The survivor function, 1� F3

Z1 Time duration required for conducting
CM action (random variable)

g1(z1) p.d.f of Z1

G1(z1) c.d.f of Z1

Z2 Time duration required for conducting
PM action (random variable)

g2(z2) p.d.f of Z2

G2(z2) c.d.f of Z2

S Safety stock level (decision variable)

T Production runtime during a cycle
before the conduction of maintenance
actions (decision variable)

q1 Known and constant rate of the
production which is equal to the
demand rate

q2(q2�q1) Maximum production rate of the
machine

P (0<P <1) The probability of producing defective
products when the process is in the
out-of-control state

Ch The unit cost of inventory holding
Cs The unit cost of shortage
CCM The unit cost of CM action
CPM
(CPM <CCM ) The unit cost of PM action
Csetup The average setup cost
w A known constant free repair warranty

period
Cw The unit cost of minimal repair during

the period w
N The number of defective products in a

cycle
h(k) Hazard rate function for a defective

item for k � 0

Consider a process where a type of product is
produced at a given constant rate equal to the demand
rate. The process has two operational states, including
an in-control state and an out-of-control state, and
a non-operational state, i.e., a failure mode. In this
study, the in-control state, out-of-control state, and
failure mode are assigned 0, 1, and F , respectively.
Each production cycle starts in state 0 to satisfy the
demand q1 per a time unit. The process state may
transit from state 0 to state 1 at any random time
during a production run. In addition, the process state
may transit from state 0 to the failure mode without
transition to state 1 or from state 1 to the failure mode.
Figure 1 illustrates the transitions among the states of
the process.

The items produced in state 1 may be defective
with a certain probability, while those produced in
state 0 are all conforming.

Figure 1. Transition among the process states.



S.M. Hadian et al./Scientia Iranica, Transactions E: Industrial Engineering 30 (2023) 318{335 323

If a machine breaks down during the production
run, a CM action is conducted on the process. Other-
wise, PM is conducted on the process after T unit of
time regardless of the process state. The time durations
of the CM and PM actions are considered random vari-
ables. The production process is interrupted during the
maintenance actions, and the demand is satis�ed from
the safety stock S to avoid any shortage. Therefore,
the safety stock level reduces at the demand rate q1.
The PM and CM actions are perfect, indicating that
after the maintenance actions, the machine returns to
an as-good-as-new condition and then, the production
continues at the maximum rate q2 until the stock level
reaches S again. Next, the production rate is set at the
normal level q1(q1 < q2). The production cycle in this
case is the time duration from the start of the process
until the safety stock level reaches S again.

If the maintenance action is completed before S
q1 ,

no shortage will occur. Followed by the maintenance
action, the process continues at the maximum rate
q2 until the stock level becomes S again. If the
maintenance action is completed after S

q1 , shortage is
likely to occur. When this shortage occurs after the
completion of the maintenance action, the machine
starts to produce the products and the safety stock
level becomes S again within the time duration of
S

q2�q1 . The demands that are not met during the
maintenance actions are lost. It is assumed that the
defective products in this study cannot be detected
unless the consumers use them. Therefore, to detect
the defective items, all products are sold with a free
minimal repair warranty within the warranty period
w. Under this policy, if a sold product fails within
the period w, it is given a minimal repair at the cost
Cw to return it to the same condition as it used to
be in. The procedure described for modeling can be
put into practice in the real-world situations such as
automobile industry. Car manufacturers and dealers
use warranties to win and retain customers. Some
non-conforming items in cars are operational, but they
cannot be detected unless the consumers use them.
Changing a 
at tire on a car, rectifying an ignition or
wiring system, changing a broken fan below an engine,
or any repair of the engine that does not change the
overall performance of the car are some examples of
minimal repair.

The main objective of the proposed model is
to plan the maintenance and the inventory control
simultaneously to optimize the safety stock level (S)
and time of performing the PM action (T ) to minimize
the expected total cost of the process per unit of time.

3. Possible scenarios during a production cycle

Four scenarios may occur for the process completion
during each production cycle:

Figure 2. Evolution of the process corresponding to
Scenario 1: (a) Without shortage and (b) with shortage.

Scenario 1: In this scenario, the process remains in
State 0 up to the time point T . In other words, the
process state transits neither to state 1 nor to the fail-
ure state. Therefore, at time T , the process is stopped
and PM is conducted. Figure 2 illustrates the evolution
of the process under this scenario. Figure 2(a) corre-
sponds to the case where the duration of the PM action
is shorter than S

q1 , hence no shortage occurrence. On
the contrary, as observed in Figure 2(b), the duration
of the PM action is longer than S

q1 , hence shortage
occurrence. Followed by completion of the PM action,
the production starts at the rate q2 (q2 > q1) until
the safety stock reaches S again. Then, the production
continues at a normal rate, q1. This scenario occurs
with the probability in Eq. (1):

P (S1) = F 1(T )F 3(T ): (1)

Scenario 2: The production process initially operates
in state 0 and transits to state 1 after a random time
interval as x1 from the start of the cycle. The process
operates under state 1 until T , when the PM action
is implemented. Figure 3 illustrates the process under
this scenario. According to Figure 3(a), the duration
of the PM action is shorter than S

q1 , hence no shortage
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Figure 3. Evolution of the process corresponding to
Scenario 2: (a) Without shortage and (b) with shortage.

occurrence. On the contrary, Figure 3(b) corresponds
to the case where a shortage occurs as the duration of
the PM action is longer than S

q1 . This scenario occurs
at a probability measured in Eq. (2):

P (S2) =
Z T

0
f1(x)F 3(x)

F 2(T )
F 2(x)

dx: (2)

Scenario 3: With the passage of a random time
duration x3 from the beginning of the cycle, the
process directly shifts from state 0 to the failure mode
without transition to state 1. Once the process state
transits to the failure mode, CM is conducted. Figure
4 illustrates the evolution of the process under this
scenario. Figure 4(a) indicates that the duration of
the CM action is shorter than S

q1 , hence no shortage
occurrence. Figure 4(b), however, indicates that a
shortage occurs when the duration of the CM action
is longer than S

q1 . This scenario occurs at a probability
measured in Eq. (3):

P (S3) =
Z T

0
f3(x)F 1(x)dx: (3)

Scenario 4: After a random time duration x1 from

Figure 4. Evolution of the process corresponding to
Scenario 3: (a) Without shortage and (b) with shortage.

the beginning of the cycle, the process shifts to state 1.
Then, the process at random time x2 (x1 < x2 < T )
shifts to the failure state. Once the failure state starts,
CM is conducted. After the completion of the CM
action, the production starts at the maximum rate (q2).
Production at rate q2 continues until the safety stock
becomes S again. Then, the production rate is set at
q1. Figure 5 illustrates the evolution of the process
under this scenario. Figure 5(a) corresponds to the case
where the duration of the CM action is shorter than S

q1 ,
hence no shortage occurrence. Contrarily, Figure 5(b)
corresponds to the case where a shortage occurs when
the duration of the CM action is longer than S

q1 . This
scenario occurs at a probability calculated in Eq. (4):

P (S4) =
Z T

0

Z x2

0
f1(x1)F 3(x1)

f2(x2)
F 2(x1)

dx1dx2: (4)

4. Development of the integrated model

The described system consists of stochastic and in-
dependent identical cycles. The integrated model
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Figure 5. Evolution of the process corresponding to
Scenario 4: (a) Without shortage and (b) with shortage.

is presented based on renewal reward process and
recursive equations. The expected total cost of the
system per unit of time is obtained through Eq. (5):

ECT =
E[TC]
E[CL]

; (5)

where E[TC] is the expected total cost for each
cycle and E[CL] is the expected time length of that
cycle. In addition, E[TC] is the sum of the expected
costs of maintenance (E[MC]), expected holding cost
(E[HC]), expected shortage cost (E[SH]), expected
warranty cost (E[WR]), and setup cost and it is
calculated using Eq. (6):

E[TC] = E[MC] + E[HC] + E[SH] + E[WR]

+Csetup: (6)

According to the law of total expectation, Eq. (7) is
derived to calculate E[CL] as follows:

E[CL] = P (S1)E[CLjS1] + P (S2)E[CLjS2]

+P (S3)E[CLjS3] + P (S4)E[CLjS4]; (7)

when the ith scenario occurs at probability P (Si) and
i is equal to 1, 2, 3, 4. In addition, E[CLjSi] is the
average time duration of the cycle.

In Scenario 1, E[CLjS1] is calculated through
Eq. (8):

E[CLjS1] =

F 1(T )F 3(T )
R s
q1

0 (T + z2 + q1z2
q2�q1 )g2(z2)dz2

P (S1)

+
F 1(T )F 3(T )

R1
s
q1

(T + z2 + s
q2�q1 )g2(z2)dz2

P (S1)
: (8)

In the �rst term of this equation, the average duration
of a cycle is calculated while no shortage occurs.
However, in the second term, the average time duration
of a cycle is calculated where a shortage occurs.

In Scenario 2, E[CLjS2] is obtained through
Eq. (9):

E[CLjS2] =R T
0

R s
q1

0 (T + z2 + q1z2
q2�q1 )g2(z2)f1(x)F 3(x)F 2(T )

F 2(x)
dz2dx

P (S2)

+

R T
0

R1
s
q1

(T + z2+ s
q2�q1 )g2(z2)f1(x)F 3(x)F 2(T )

F 2(x)
dz2dx

P (S2)
:

(9)

In the �rst term of this equation, the average time
duration of a cycle is calculated while no shortage
occurs. The second term calculates the average time
duration of a cycle where a shortage occurs.

Under Scenario 3, E[CLjS3] is obtained through
Eq. (10):

E[CLjS3] =R T
0

R s
q1

0 (x+ z1 + q1z1
q2�q1 )g1(z1)f3(x)F 1(x)dz1dx
P (S3)

+

R T
0

R1
s
q1

(x+ z1 + s
q2�q1 )g1(z1)f3(x)F 1(x)dz1dx

P (S3)
:
(10)

In the �rst term of this equation, the average time
duration of a cycle is calculated with no shortage to
occur. The second term calculates the average time
duration of a cycle where a shortage occurs.

Under Scenario 4, E[CLjS4] is obtained through
Eq. (11) as shown in Box I. In the �rst term of
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E[CLjS4] =

R T
0

R x2

0

R s
q1

0 (x2 + z1 + q1z1
q2�q1 )g1(z1)f1(x1)F 3(x1) f2(x2)

F 2(x1)
dz1dx1dx2

P (S4)

+

R T
0

R x2

0

R1
s
q1

(x2 + z1 + s
q2�q1 )g1(z1)f1(x1)F 3(x1) f2(x2)

F 2(x1)
dz1dx1dx2

P (S4)
: (11)

Box I

this equation, the average time duration of a cycle
is calculated while no shortage occurs. The second
term calculates the average duration of a cycle with
a shortage to occur.

4.1. Average cost of the maintenance action in
each cycle

The expected maintenance cost (E[MC]) is the sum of
the expected costs of the PM implementation (E[PM ])
and CM implementation (E[CM ]). Once the PM
action is conducted, if Scenario S1 or S2 occurs and
the CM action is conducted while Scenario S3 or S4
occurs, Eqs. (12) and (13) are derived as follows:

E[PM ] = [P (S1) + P (S2)� P (S1):(S2)]

�CPM
Z 1

0
z2g2(z2)dz2 = [P (S1) + P (S2)

�P (S1):(S2)]� CPME[z2]; (12)

E[CM ] = [P (S3) + P (S4)� P (S3):(S4)]

�CCM
Z 1

0
z1g1(z1)dz1 = [P (S3)

+P (S4)� P (S3):(S4)]� CCME[z1]: (13)

4.2. Average inventory holding cost in each
cycle

The average holding cost in each cycle is obtained
through Eq. (14):

E[HC] = P (S1)E[HCjS1]

+P (S2)E[HCjS2]

+P (S3)E[HCjS3]+P (S4)E[HCjS4]; (14)

where E[HCjSi]; (i = 1; 2; 3; 4) denotes the average
holding costs if the ith scenario is implemented.

In Scenario 1, E[HCjS1] is obtained using
Eq. (15) as shown in Box II. This equation consists
of two terms. The �rst term calculates the average
holding cost in case of no shortage, while the second
term calculates it in case of a shortage.

In Scenario 2, E[HCjS2] is obtained through
Eq. (16) as shown in Box III. This equation consists
of two terms. The �rst term calculates the average
holding cost when there is no shortage, while the second
term calculates it in case of a shortage.

Under Scenario 3, E[HCjS3] is obtained through
Eq. (17) as shown in Box IV. This equation consists of
two terms. While the �rst term calculates the average
holding cost in case of no shortage, the second term
calculates it in case of a shortage.

Under scenario 4, E[HCjS4] is obtained by
Eq. (18) as shown in Box V. This equation is composed
of two terms: the �rst term calculates the average
holding cost when there is no shortage, while the second
term calculates the average holding cost when there is
a shortage.

4.3. Average shortage cost in each cycle
The average shortage cost in each cycle is obtained
through Eq. (19):

E[HCjS1] =
Ch[F 1(T )F 3(T )

R S
q1

0 fsT + (z2 + q1z2
q2�q1 )s� 1

2 (z2+ q1z2
q2�q1 )q1z2gg2(z2)dz2]

P (S1)

+
Ch[fsT + s2

2q1 + s2
2(q2�q1)gG2( sq1 )F 1(T )F 3(T )]

P (S1)
: (15)

Box II
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E[HCjS2] =
Ch[
R T

0

R S
q1

0 fsT + (z2 + q1z2
q2�q1 )s� 1

2 (z2+ q1z2
q2�q1 )q1z2gf1(x)F 3(x)F 2(T )

F 2(x)
g2(z2)dz2dx]

P (S2)

+
Ch[
R T

0 fsT + s2
2q1 + s2

2(q2�q1)gG2( sq1 )f1(x)F 3(x)F 2(T )
F 2(x)

dx]

P (S2)
: (16)

Box III

E[HCjS3] =
Ch[
R T

0

R S
q1

0 fsx+ (z1 + q1z1
q2�q1 )s� 1

2 (z1+ q1z1
q2�q1 )q1z1gf3(x)F 1(x)g1(z1)dz1dx]

P (S3)

+
Ch[
R T

0 fsx+ s2
2q1 + s2

2(q2�q1)gG1( sq1 )f3(x)F 1(x)dx]
P (S3)

: (17)

Box IV

E[SH] = P (S1)E[SHjS1] + P (S2)E[SHjS2]

+P (S3)E[SHjS3] + P (S4)E[SHjS4]; (19)

where E[SHjSi], (i = 1; 2; 3; 4), denotes the average
shortage costs in case the ith scenario is implemented.

In Scenario 1, E[SHjS1] can be obtained using
Eq. (20):

E[SHjS1]=
Cs[F 1(T )F 3(T )

R1
S
q1

(q1z2 � s)g2(z2)dz2]

P (S1)
:

(20)

In Scenario 2, E[SHjS2] is obtained using Eq. (21):

E[SHjS2] =

Cs[
R T

0

R1
S
q1

(q1z2 � s)g2(z2)f1(x)F 3(x)F 2(T )
F 2(x)

dz2dx]

P (S2)
:

(21)

Under Scenario 3, E[SHjS3] is computed using
Eq. (22):

E[SHjS3] =

Cs[
R T

0

R1
S
q1

(q1z1 � s)g1(z1)f3(x)F 1(x)dz1dx]

P (S3)
: (22)

Under Scenario 4, E[SHjS4] is calculated through
Eq. (23) as shown in Box VI.

4.4. Average warranty cost in each cycle
The average number of the defective items that may be
detected in the warranty period can be obtained based
on Eq. (24):Z w

0
E[N ]h(k)dk: (24)

Therefore, the average warranty cost in each cycle can
be obtained from Eq. (25):

E[WR] = Cw
Z w

0
E[N ]h(k)dk: (25)

E[HCjS4] =
Ch[
R T

0

R x2

0

R S
q1

0 fsx2 + (z1 + q1z1
q2�q1 )s� 1

2 (z1+ q1z1
q2�q1 )q1z1gg1(z1)f1(x1)F 3(x1) f2(x2)

F 2(x1)
dz1dx1dx2]

P (S4)

+
Ch[
R T

0

R x2

0

R1
S
q1
fsx2 + s2

2q1 + s2
2(q2�q1)gg1(z1)f1(x1)F 3(x1) f2(x2)

F 2(x1)
dz1dx1dx2]

P (S4)
: (18)

Box V
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E[SHjS4] =
Cs[
R T

0

R x2

0

R1
S
q1

(q1z1 � s)g1(z1)f1(x1)F 3(x1) f2(x2)
F 2(x1)

dz1dx1dx2]

P (S4)
: (23)

Box VI

The average number of defective products in state 1 in
a cycle is obtained from Eq. (26):

E[N ] = P (S2)E[N jS2] + P (S4)E[N jS4]: (26)

As mentioned before, defective items may be produced
in state 1. In Eq. (26), E[N jSi] denotes the average
number of defective products in state 1 under Scenar-
ios 2 and 4.

Under Scenario 2, E[N jS2] is obtained by
Eq. (27):

E[N jS2] =
q1P [

R T
0 (T � x)f1(x)F 3(x)F 2(T )

F 2(x)
dx]

P (S2)
:
(27)

Under Scenario 4, E[N jS4] is computed using Eq. (28):

E[N jS4] =

q1P [
R T

0

R x2

0 (x2 � x1)f1(x1)F 3(x1) f2(x2)
F 2(x1)

dx1dx2]

P (S4)
:

(28)

5. Numerical study

5.1. Numerical example
In this section, a numerical example is solved to verify
the e�ciency of the model. Due to the complexity of
the equations of the integrated model, the exact meth-
ods are not e�ective in solving the model. Therefore,
the model was �rst solved using a grid search algorithm.
Since the runtime of the grid search is not acceptable, a
genetic algorithm was coded using the MATLAB soft-
ware to optimize the model. The genetic algorithm is
a meta-heuristic method for solving complex problems.
It is inspired by the process of natural selection. The
algorithm is commonly used to generate high-quality
solutions to optimization problems and it is also applied
to many scienti�c subjects such as operation research
and computer science [25,26].

To perform a numerical study in this section, it is
assumed that the times of process state transitions from
the in-control state to an out-of-control state (x1), from
the out-of-control state to machine breakdown (x2),

and from the in-control state to machine breakdown
(x3) are based on the Weibull distribution with the
probability density functions presented in Eqs. (29),
(30), and (31), respectively:

f1(x1) = �1v1(�1x1)v1�1e�(�1x1)v1 ;

x1 � 0; �1 � 0; v1 � 1; (29)

f2(x2) = �2v2(�2x2)v2�1e�(�2x2)v2 ;

x2 � 0; �2 � 0; v2 � 1; (30)

f3(x3) = �3v3(�3x3)v3�1e�(�3x3)v3 ;

x3 � 0; �3 � 0; v3 � 1: (31)

It is also assumed that the CM time (z1) and PM
time (z2) follow the Weibull distribution with the
probability density functions presented in Eqs. (32) and
(33), respectively:

g1(z1) = 
1�1(
1z1)�1�1e�(
1z1)�1 ;

z1 � 0; 
1 � 0; �1 � 1; (32)

g2(z2) = 
2�2(
2z2)�2�1e�(
2z2)�2 ;

z2 � 0; 
2 � 0; �2 � 1: (33)

Moreover, the lifetime of non-conforming items is
assumed to be based on the Weibull distribution with
the probability density function presented in Eq. (34):

h(k) =
k
18
e�( k6 )2

: (34)

The data given in [5] is mostly used to study the
example. Table 2 lists the data used in this study.
The values of the Weibull distributions parameters are
as follows:

�1 = 0:3; �2 = 0:3; �3 = 0:3;

v1 = 2; v2 = 2; v3 = 2;

Table 2. The values of the input parameters.

q1 q2 P Ch Cs CCM CPM Cw W Csetup

90 160 0.3 0.2 0.8 50 5 20 1 300
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Table 3. The values of the GA parameters.

Generation number Population size Crossover rate Mutation rate cm

100 30 0.4 0.1 0.2

Table 4. The optimal values of the decision variables and
ECT .

T � S� ECT

2.7467 131 81.4075

Table 5. The comparison of the obtained results.

ECT
(our model)

ECT
(Ref. [5])

�1 = 0:1, �2 = 0:25 101.4399 96.8037
�1 = 0:3, �2 = 0:25 108.0275 97.0267
�1 = 0:5, �2 = 0:25 114.0605 97.3386
�1 = 0:7, �2 = 0:25 114.9084 97.6490

�1 = 0:5, �2 = 0:1 93.1943 88.0799
�1 = 0:5, �2 = 0:2 98.8950 95.4210
�1 = 0:5, �2 = 0:3 106.2644 98.5072
�1 = 0:5, �2 = 0:4 108.90 99.7307
�1 = 0:5, �2 = 0:5 111.6721 100.295


1 = 0:4; 
2 = 0:4;

�1 = 2; �2 = 2:

Table 3 presents the parameters of the genetic al-
gorithm used for optimization. Table 4 lists the
optimal values of T , S, and ECT . Accordingly, the
optimal value of the safety stock level is 131, and it
is recommended that PM action be taken after 2.7467
time units pass from the start of the production cycle.
Through this policy, the expected total cost per time
unit is optimized, the value of which is calculated as
81.4075.

To validate the results obtained from the genetic
algorithm, they were compared with those obtained
from the optimization algorithm proposed in [5]. In
the referenced study, a computational algorithm was
proposed to reach a global optimum. The integrated
model proposed in the present study was solved by
the genetic algorithm with di�erent values of �1 and
�2 while the other parameters remain constant. The
results are compared with those obtained in [5]. The
obtained solutions are presented in Table 5.

The comparison of the obtained results reveals
that there is a minor di�erence between the optimal
values of the objective function (ECT ) in the proposed
model and the one in [5]. Therefore, it can be concluded
that the solutions obtained through the genetic algo-
rithm in this study are nearly optimal. In addition,

Figure 6. The comparison of the optimal values of ECT
in our model and Ref. [5].

Table 6. The results obtained for �1.

�1 T S ECT

0.1 7.076 115.765 90.2431
0.2 5.856 126.125 113.975
0.35 5.2825 131.405 122.805
0.4 3.0086 189.462 187.4
0.5 1.8288 194.146 194.111

it indicates the e�ciency of the proposed model and
validity of the solutions obtained through the genetic
algorithm. Figure 6 presents the comparison results.

5.2. Sensitivity analysis
In this section, a sensitivity analysis of the critical
parameters is done to identify their e�ects on the
decision variables and total cost.

The e�ects of the change of �1 on the decision
variables and ECT are shown in Table 6 as well as
Figures 7, 8, and 9. The results obtained from the
genetic algorithm indicate that larger values of �1 lead
to a reduction in the optimal value of Tand an increase
in the optimal values of the safety stock and ECT
mainly because an increase in �1 would increase the
probability of the process shift from state 0 to state 1
as well as the probability of producing defective items.
Consequently, the minimal repair cost increases during
the warranty period. In addition, an increase in �1
would increase the safety stock level to avoid shortage.
Moreover, the expected holding cost increases with an
increase in the value of S. Therefore, in case the
holding and minimal repair costs increase, the ECT
would consequently increase. At larger values of �1, the
optimal value of T decreases to reduce the probability
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Figure 7. The e�ect of �1 on the production run time
(T ).

Figure 8. The e�ect of �1 on the optimal safety stock
level (S).

Figure 9. The e�ect of �1 on ECT .

of the process shift from state 0 to state 1 and reduce
the average number of the defective items in state 1.

The e�ects of a change in both �2 and �3 on the
decision variables and ECT are given in Table 7 and
Figures 10{15. Larger values of �2 and �3 would lead
to a decrease in the value of T and an increase in the
optimal values of the safety stock and ECT . With

Table 7. The results obtained for �2 and �3.

T S ECT

�2

0.1 5.8527 45.5386 87.3224
0.2 4.7798 71.5818 96.706
0.35 2.7741 138.119 98.7942
0.4 1.1537 155.811 132.621
0.5 0.7874 165.61 160.53

�3

0.1 9.8834 41.4498 108.383
0.2 7.1648 81.5902 110.877
0.35 5.2074 85.6166 120.228
0.4 4.9811 120.191 128.292
0.5 2.0696 183.79 193.979

Figure 10. The e�ect of �2 on the production run time
(T ).

Figure 11. The e�ect of �2 on the optimal safety stock
level (S).

larger values of �2 and �3, the value of T decreases to
reduce the probability of machine failure. In addition,
as the values of �2 and �3 increase, the safety stock
level increases as well to avoid possible stock-out during
the performance of maintenance actions. Due to
an increase in the failure rate, the maintenance cost



S.M. Hadian et al./Scientia Iranica, Transactions E: Industrial Engineering 30 (2023) 318{335 331

Figure 12. The e�ect of �2 on ECT .

Figure 13. The e�ect of �3 on the production run time
(T ).

Figure 14. The e�ect of �3 on the optimal safety stock
level (S).

increases, and an increase in the safety stock level leads
to a rise in the holding cost and consequently ECT .

Larger values of �1 and �2 would increase the
optimal value of S to avoid possible stock-out and meet
the demand during the CM and PM actions. The
obtained results are presented in Table 8 and Figure 16.

Figure 15. The e�ect of �3 on ECT .

Figure 16. The e�ects of 
1 and 
2 on the optimal safety
stock level.

An increase in the PM cost leads to a decrease in
the safety stock level while an increase in the CM cost
causes an increase in the safety stock level. Table 9 and
Figure 17 present the obtained results.

Larger values of the holding cost decrease the
value of S. In addition, an increase in the shortage
cost causes an increase in the value of S. Table 10 and
Figure 18 list the obtained results.
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Table 8. The results obtained for 
1 and 
2.


1 
2

0.1 0.2 0.4 0.5 0.6 0.1 0.2 0.4 0.5 0.6

S 25.03 61.92 131.85 152.88 198.08 45.53 61.12 131.85 170.72 182.56

Table 9. The results obtained for CPM and CCM .

CPM CCM

2 5 10 15 20 20 30 50 70 100

S 179.75 131.85 119.96 91.85 57.61 61.79 125.56 131.85 152.31 174.87

Table 10. The results obtained for Ch and CS .

Ch Cs
0.1 0.3 0.5 0.6 0.7 0.8 1 2 3 4 5

S 181.62 142.74 130.79 113.19 56.57 131.85 166.78 187.07 188.03 188.46 198.16

Figure 17. The e�ects of CPM and CCM on the optimal
safety stock level.

An increase in the value of P decreases the
optimal value of T and increases the optimal values
of S and ECT . With the larger values of P , the value
of T decreases to reduce the number of the defective
products in state 1. As the value of P rises, the optimal
value of S rises as well to avoid shortage. Moreover, an
increase in the value of P leads to an increase in the

Figure 18. The e�ects of Ch and CS on the optimal
safety stock level.

possibility of producing defective products. As a result,
the repair cost during the warranty period increases.
As a result of an increase in the safety stock level, the
expected holding cost would also increase. These two
increased values will in turn increase the value of ECT .
The obtained results are presented in Table 11 as well
as Figures 19 and 20.
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Table 11. The results obtained for P .

P T S ECT

0.2 3.9819 129.592 80.9773

0.3 2.7467 131.855 81.4075

0.4 2.4187 136.703 86.0378

0.5 1.8222 162.73 89.1744

0.7 1.0937 170.223 93.541

Figure 19. The e�ect of P on the decision variables.

6. Conclusion

In this study, a mathematical model was presented for
joint planning of maintenance and inventory control
in a deteriorating production system. The process
deteriorated and underwent two operational states and
a failure mode. The transitions among the states
of the process were based on general continuous ran-
dom variables. Both Preventive Maintenance (PM)
and Corrective Maintenance (CM) actions were taken
during each production cycle. The time duration
to take maintenance actions was considered to be a
continuous random variable. The proposed model
primarily aimed to integrate the decisions on how to
determine the optimal safety stock level and time to

Figure 20. The e�ect of P on ECT .

perform maintenance actions to �nally minimize the
expected total cost of the process. In this regard,
a numerical study was carried out and a series of
sensitivity analyses of some important parameters were
done. Due to the complexity of the proposed integrated
model, the genetic algorithm was used for optimization
and the solutions were validated. The results indicated
the acceptable performance of the model in real-world
situations. All the products were sold with a free min-
imal repair warranty. The modeling system described
in this study can be used in real-world situations such
as the automobile industry. Car manufacturers and
car dealers specify warranty periods to win and retain
customers, mainly because some non-conforming items
in cars are operational, meaning that they can be
detected after a period of use.

The managers in manufacturing systems can
make dynamic and ideal plans for their production
processes by joint planning of maintenance, produc-
tion, and quality control. Machinery, human resources,
and other production aspects were taken into consid-
eration in an optimal manner and the productivity
of the production process was eventually improved by
integrated planning. The integrated model can be of
bene�t in manufacturing systems with the JIT (Just
In Time) policy. In such systems, the products are
produced based on demand level and the managers
peruse the objective of eliminating inventory. In this
respect, the integrated model made it possible to jointly
deal with production plans, maintenance schedules,
and quality control policies considering the demand
level and production capacity. The integrated models
can also be employed in continuous manufacturing
systems. In such systems, the process should operate
without interruptions during the production process.
Here, optimal planning for production, maintenance
scheduling, and quality control gains signi�cance. Of
note, the e�ciency of production processes can be
improved using an integrated model that enables the
joint planning of production, maintenance, and quality
control.
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Di�erent quality control policies such as accep-
tance sampling plans or 100% inspection policies can be
formulated to detect defective items during production
processes in future research. The insights provided
by this study may be taken into consideration to de-
velop an integrated model for di�erent manufacturing
systems such as multi-machine manufacturing systems,
multi-stage systems, and series production systems.
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