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Abstract. Perishable products may expire if their holding time exceeds their shelf-life.
In this study, along with designing a forward 
ow to distribute perishable products, the
remaining perished products at retailers can be gathered for recycling during fresh product
distribution. To mitigate waste, recycled products are o�ered to a secondary market.
A mathematical model for this Closed-Loop Location-Routing-Inventory Problem (CL-
LRIP) is developed by considering multi-compartment trucks, simultaneous pickup and
delivery, technology selection, and the risk of urban tra�c. Based on three sustainability
pillars, three objective functions are considered. This way, the interests of the network's
three main stakeholders are embedded. The proposed model is solved by the Torabi-
Hassini method. Two evolutionary algorithms, including Non-Dominated Sorting Genetic
Algorithm-II (NSGA-II) and a new hybrid one, are also developed to solve large-sized cases
of the NP-complete problem. Statistical tests show the superiority of the hybrid algorithm
in the Computational Time (CT) metric, which is about 0.4 NSGA-II's CT. The results
indicate the importance of closing the network loop for perishable products. Finally, the
sensitivity analysis determined that 83.33% decrease in recycled product's sale price caused
9.08% increase in costs, 2.77% decrease in environmental side-e�ects, and 5.16% decrease
in social objectives, which are signi�cant.

© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

The distribution type of product wastage involves a
remarkable part of losses, especially for perishable
products such as food and vegetables [1]. Meanwhile,
in some societies, children su�er from malnutrition
[2]. Even in some populated developing or developed
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countries, adults su�er from food poverty [3]. Accord-
ing to Par�tt et al. [3], in 2050, nine billion people
are going to be fed by the same earth resources that
exist now. Meanwhile, the agriculture �elds lose their
fertility for agro-food products after several harvests
[4]. Perishable products begin to deteriorate when their
shelf-life expires. Therefore, some parts of a retailer's
perishable inventories can perish in each period because
of quality loss, outdatedness, etc. [5].

Sustainable Supply Chain Management (SSCM)
refers to designing products and distribution networks,
causing no harm to recent or future generations con-
sidering the economic, environmental, and social conse-
quences [6]. Thus, satisfaction of all stakeholders in the
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supply chain should be taken into account. According
to Eskandarpour et al. [7], there are three main
stakeholders in a supply chain, including customers,
personnel who are working in the supply chain, and the
local community a�ected by the supply chain activities.

A product can complete its life cycle by integrat-
ing forward and reverse logistics in the Closed-Loop
Supply Chains (CLSCs). In addition to the forward

ow of materials from suppliers to customers, the col-
lection and management of perished products through
reusing, recycling, etc. are addressed in CLSCs [8].

To reduce urban wastes, perishable products that
have not perished yet but lost their quality can be
o�ered to a secondary market after reprocessing [5].
Govindan et al. [2] stated that low-quality products
could be sold at a secondary market at a lower price,
especially in societies in which people in various areas
have di�erent Maximum Willingness to Pay (MWP).
Thus, a CLSC can help reduce resource consumption
and waste generation to achieve global sustainabil-
ity [9].

This paper is among the �rst studies that deals
with a Closed-Loop Location-Routing-Inventory Prob-
lem (CL-LRIP) considering (a) simultaneous pickup
and delivery for perishable products, (b) the possibility
of selling recycled products to a secondary market, (c)
the possibility of applying di�erent technologies, each
one with speci�ed economic, social, and environmental
speci�cations at DCs and RCs, and (d) applying multi-
compartment trucks in a Vehicle Routing Problem
(VRP) with simultaneous pickup and delivery to reduce
transport costs besides energy and fuel consumption
of the trucks. By this contribution, there is no need
to use two di�erent 
eets for delivering fresh products
and picking up the remaining products (visiting each
retailer twice). Utilizing multi-compartment vehicles
are inspired by Moon et al. [10] who utilized a multi-
compartment 
eet for di�erent types of products.

This problem is inspired by real-world obser-
vations. For instance, some of the applications of
the proposed model are in fruit/vegetable distribution
networks in which DCs dispatch products to retail-
ers, but the remaining unsold products can be sold
at a lower price to workshops, which produce dried
fruits/vegetables to supply part of their demand. In
the industrial bread case, one of the resources used to
supply bread demands (versus bakeries), people usually
avoid buying low-quality or stale bread, which can be
collected and turned into toasted 
our for humans or
animals and poultry feed. There are similar examples
in dairy industry, fashion industry, and cut 
ower
supply chains, which unsold
owers can be carried to
some workshops to produce dry decorative 
owers,
scent, etc.

A mathematical model is developed to formulate
the CL-LRIP of a network including a supplier, Distri-

bution Centers (DCs), retailers/customers, Recycling
Centers (RCs), and a Central Disposal Center (CDC).
The proposed model aims to make decision about: the
location of active DCs in the CL-LRIP, the product
distribution routes from DCs to retailers, the opti-
mal and eco-friendly inventory policy of retailers, the
location of the RCs for collecting/recycling perished
low-quality products to turn them into the second
product. Also, it identi�es the impacts of the leading
stockholder's utility functions on optimal location,
routing, and inventory decisions, the impacts of multi-
compartment trucks on CL-LRIP, and the impacts of
recycled product sale on sustainability pillars.

In this paper, three objective functions are consid-
ered. The �rst objective function attempts to minimize
costs. The second one concentrates on environmental
side e�ects by proposing a new model to calculate them
based on the weight of fresh and expired products
carried simultaneously by multi-compartment trucks
and the distance between nodes. In the third objec-
tive function, the impacts of opening DCs/RCs on
increasing job opportunities and balanced economic
development for local communities, which are two
main aspects of Social Responsibility (SR) [11], are
considered. The interests of two other groups of
stakeholders, including customers and personnel, are
maintained by their utility functions.

The remainder of the paper is organized as fol-
lows: Section 2 involves a review of related literature.
Section 3 presents the mathematical formulation of
the problem. Section 4 provides a real-case study,
which is solved by an exact method, and two developed
multi-objective meta-heuristic algorithms. Section 5
reports numerical results and sensitivity analysis in
detail. The �nal section discusses conclusions and some
future directions.

2. Literature review

Following a review of related studies, we found that
SSCM was �rst de�ned by Seuring and M�uller [6]
as a balance among economic, environmental, and
social aspects. Numerous studies on SSCM have
merely focused on economic and environmental issues,
perhaps due to international goals set by the European
Commission, e.g., reduction of 500 million tons of GHG
emissions from the year 2015 to 2035 [12]. However,
social aspects of sustainability are a matter of great
concern, especially in labor-intensive industries. In
Table 1, some social criteria studied in quantitative
models are summarized.

Integration of forward and reverse logistics that
causes the formation of a CLSC [13] strongly in
uences
three pillars of sustainability. For instance, by using the
same facilities/resource/workforce for the distribution
and collection and the same 
eet for the line-haul and
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Table 1. Social criteria considered in some recent SSCM studies.

Article Problem type Economic Environmental Social

Devika et al. [5] CLSC network design Total cost Environmental impact

Fixed & variable
job creation Personnel
damage at the time
of facility establishment

Rahimi et al. [16] IRP Total pro�t Noise Emission
Vehicle accidents Number
of expired products

Khalili-Damghani
et al. [17]

LRP Total cost {
Balance of workload
of DCs personnel

Zhalechian et al. [11] LRIP in CLSC Total cost
Energy consumption
CO2 emission

Job creation
Economic development

Rabbani et al. [18] Transportation LRP Total cost
Fuel consumption
CO2 emission

Personnel interests (balancing
drivers route length)
Customers satisfaction
(soft time windows)

Sazvar et al. [19] Transportation Inventory Total cost CO2 emission Public health

Sazvar and
Sepehri [20]

Inventory Total pro�t GHG emission
Job creation for native
labor instead of
unemployed immigrant labor

back-haul, the amounts of wastes/environmental side-
e�ects as well as costs are reduced [14]. In designing
forward and reverse logistics, only strategic decision
levels (e.g., Facility Location Problem (FLP)) are
taking into account (i.e., facilities are connected only by
the 
ow balancing equations, which are an elementary
type of connection) [15]. However, these connections
play an important role in energy consumption rates
and operational network costs. Therefore, in this
study, VRP decisions are integrated. A comprehensive
literature review of CLSC was presented by Govindan
et al. [8].

Based on sustainable development pillars, since
the inventory management of the deteriorating prod-
ucts, divided into perishable and decaying products
by Bakker et al. [21], can give rise to environmental
protection, job creation, and �nancial bene�ts [22],
this study focuses on perishable products. Challenges
intensify in the case of managing the transportation
and vehicle routing of perishable products, given their
impact on the environment [23]. A systematic review
was conducted on inventory models of perishable prod-

ucts by Chaudhary et al. [24]. Di�erent approaches to
modeling perishability of products were found: expira-
tion after passing product shelf life [25,26], expiration
of a speci�c percentage of inventory per period [27,20],
a nonlinear holding cost function depending on the
product life cycle/amount of remaining inventories
[28,29], and combination of the three previously men-
tioned techniques [30].

Recently, the concept of sustainability is raised
in the IRP. Rahimi et al. [16] considered lower selling
price for products with a longer age and found that
exceeding the shelf life of a product would lead to
spoilage. They added the concept of reverse logistics to
the IRP to increase the distribution network sustain-
ability for perishable products. Moreover, Rahimi et
al. [31] formulated a fuzzy multi-objective IRP model
that considers maximizing pro�t, maximizing service
level, and minimizing the GHG emissions of network
activities

In this paper, the Location-Routing-Inventory
Problem (LRIP) that was introduced by Ahmadi Javid
and Azad [32] by integrating the LRP, which is re-
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viewed by Prodhon and Prins [33] with IRP is included
in a CLSC. In the LRIP, di�erent decision-making
levels including strategic (i.e., location), tactical (i.e.,
routing), and operational (i.e., inventory) ones are
integrated.

A two-stage multi-product LRIP with stochastic
demand and travel time was studied by Nekooghadirli
et al. [34]. In their two-objective problem, which
minimizes the total cost and maximum meantime of
delivering commodities to customers, (R;Q) ordering
policy with a Safety Stock (SS) is used. A multi-
product LRIP with the back-ordered demand and
split-sourcing was solved by Ghorbani and Akbari
Jokar [35] with the application of the automobile
industry. The order and shortage amount and in-
ventory level at the end of the period were added as
decision variables. They developed an e�cient hybrid
imperialist competitive-simulated annealing algorithm
to �nd near-optimal solutions. Tavakkoli-Moghaddam
and Raziei [36] considered a bi-objective multi-product
LRIP with a heterogeneous 
eet and a fuzzy demand,
which minimized the cost of the two-echelon network

and the total lost sales. They used the Torabi-Hassini's
(TH) method to solve the problem by GAMS software.
A generalized Benders decomposition method was de-
veloped by Zheng et al. to solve an integrated location-
inventory-routing problem for the supply chain design
[37]. Because of the LRIP complexity, Karakostas et al.
[38] solved an LRIP with distribution outsourcing via
a variable neighborhood search-based meta-heuristic
algorithm.

With the advent of the SSCM, sustainable LRIP
has also received the attention of some researchers.
Zhalechian et al. [11] formulated the LRIP in a CLSC
for the automobile industry by considering three pillars
of sustainability (i.e., the economic, environmental, and
social impacts). They integrated reverse and forward
logistics by using common facilities for collecting and
distributing. However, in the current study, the
same 
eet for forward and backward 
ows is utilized.
In Table 2, a summary of the existing articles that
address sustainability along with location, routing, and
inventory problems is given.

According to Table 2, a limited number of re-

Table 2. Signi�cant features of the current study versus other related articles.
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Ahmadi Javid
and Azad [32]

X X X X X X X X
Ramezani et al. [13] X X X X X X 3X X X

Kim et al. [9] X X X X X X X
Devika et al. [5] X X X X X X 1;2X X

Rahimi et al. [16] X X X X X X X X 2X X
Zhalechian et al. [11] X X X X X X X X 1X X X X

Tavakkoli-Moghaddam
& Raziei [36]

X X X X X X X X X
Hiassat et al. [39] X X X X X X X X
Rahimi et al.[31] X X X X X X X 3X X

Rabbani, et al. [18] X X X X X X X X X 1;3X X
Ra�e-Majd et al. [40] X X X X X X X X X X X

Sazvar, et al. [19] X X X X X 3X X
Navazi et al. [41] X X X X X X X X 1;2X X
Zheng et al. [37] X X X X X X X

This study X X X X X X X X X X X X 1;2;3X X X X
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searches on the LRIP concentrate on perishable prod-
ucts. For instance, by considering a limited determinis-
tic shelf life for products, Hiassat et al. [39] developed
a Mixed-Integer Linear Programming (MILP) model
to solve the LRIP for a perishable product. Their
results con�rm the bene�ts of integrating di�erent
decision levels. Ra�e-Majd et al. [40] developed a
Lagrangian relaxation algorithm to solve the LRIP for
multi-perishable products that should be delivered in a
limited time horizon. However, some real assumptions
have not been studied in previous models such as gath-
ering perished products via VRP with simultaneous
pickup and delivery; using multi-compartment trucks
for forward and backward 
ows; collecting expired
products, turning them into the second-hand product
in RCs, and selling them in a secondary market;
considering all sustainable development pillars; and
preserving the interest of three main supply chain
stakeholders.

This paper tries to cover the aforementioned gaps.
The main contributions of this study are as follows:

� Considering reverse logistics in a CL-LIRP by lo-
cating some RCs and, then, selling their recycled
products to a secondary market;

� Concentrating on perishable products, technology
selection, GHG emission, and the risk of urban
tra�c along with sustainability requirements in
LRIP;

� Considering multi-compartment trucks for simulta-
neous pickup and delivery in a CL-LRIP. This way,
a new formulation is developed to calculate the
Fuel/energy Consumption Rate (FCR) and GHG
emission of the multi-compartment trucks and other

eets based on their load weight;

� Focusing on the social satisfaction of the three main
stakeholders of the supply chain by developing a new
quantitative formulation to calculate satisfaction as
the social objective function. However, in most
studies, just one group of stakeholders is considered;

� Developing two evolutionary algorithms, including
a new hybrid, with a new customized solution rep-
resentation to solve the developed multi-objective
large-sized problems.

3. Problem description and mathematical
formulation

This study aims to achieve an e�cient plan for a
sustainable closed-loop network for perishable products
by integrating forward and reverse 
ows. Three eche-
lons of the forward 
ow are plant, DCs, and retailers.
Tra�c restrictions of the populated cities on the entry
of lorries prohibit a direct connection between the
supplier and retailers and add an echelon between a

supplier and retailers. In this one source problem,
a supplier (e.g., far distant factory, orchard, garden,
far-�eld, and the like) must supply the uncertain
demands of retailers through several DCs. Products
should �rst be received by DCs and then, delivered
to retailers. Retailers are prioritized based on their
loyalty. The location of active DCs, as intermediate
facilities with limited capacities, should be selected
from some potential points in the city's outskirts (DCs
location decision). In addition, the technology level of
active DCs should be speci�ed among solar, gasoline,
and oil (DCs technology level decision). The number
of lorries should also be determined (forward 
ow
transportation decision).

Product delivery should take place in the soft
time windows of the DCs. Otherwise, it would incur
a penalty cost. A soft time window is also included
for retailers/customers. Unlike DCs, the violation of
the retailer's time windows a�ects the satisfaction level
of customers in the social criterion. The time of fast
unloading and loading products in DCs is ignorable
in comparison to other times of distribution activities.
Therefore, DCs do not hold inventories.

DCs should deliver products to retailers by some
smaller trucks as soon as possible. Since smaller trucks
are multi-compartment, the forward and reverse 
ows
are joined together. We attempted to improve network
performance by sharing the transportation 
eet in the
forward and reverse 
ows. Each compartment of the
truck has a limited capacity. The cold compartment
for transporting fresh products consumes energy to
provide an appropriate cold temperature. Retailers
keep inventory until the next visit (order quantities and
inventories decisions). The no freezer compartment of
the truck is for picking up the retailer's perished prod-
ucts and handing them over to the RCs. The model
should also �nd an optimal location for operated RCs
among some potential points (RCs location decision).
After connecting the last retailer of the route to an RC,
the mission of the multi-compartment truck �nishes
(multi-compartment VRP with simultaneous pickup
and delivery decisions). The risk of urban tra�c is also
considered, which in
uences traveling time and time of
delivery. There is no necessity for multi-compartment
trucks to come back to their departure DCs in each
period. Therefore, open VRP is encountered. Keeping
the routes open instead of closing them to departure
DCs can help drivers reach their home sooner and
increase their work satisfaction.

Usable perished products are reprocessed and
turned into new products for the secondary market in
operated RCs. Value-added products can be sold to a
secondary market with a notable price to compensate
for the collecting and recycling expenditures. Sending
unusable perished products from RCs to bury in the
CDC by homogeneous 
eet forms a transportation
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Figure 1. Schematic of the CL-LRIP.

phase at the end (reverse 
ow transportation decision).
A schematic view of the considered CL-LRIP is shown
in Figure 1.

The problem has three objective functions accord-
ing to the three pillars of sustainability. The traditional
goal of the problem is to minimize network costs. The
second objective function, called the green objective
function, tries to minimize energy consumption and
destructive environmental e�ects of activating DCs and
operating RCs based on their technology levels; it
also minimizes fuel consumption and CO2 emission of
lorries, multi-compartment trucks, and homogeneous

eets based on their traveled distance and the weight of
their load. This way, the fuel consumption formulation
for classic VRP presented by Soysal [42] is extended
to VRP with simultaneous pickup and delivery. The
energy consumption of cooling equipment of multi-
compartment trucks is calculated by a similar formula-
tion based on a load of fresh products.

The third objective function, called the social
objective function, aims to maximize the satisfaction
of three main stockholders. This way, the retailers'
satisfaction is de�ned based on a utility function upon
considering time windows for retailers. Simultaneously,
the DCs' personnel satisfaction is maximized by ac-
tivating the DCs, which have a reasonable distance
from personnel location. For maximizing the local
community's satisfaction, improving the economic de-
velopment of regions besides job creation is considered
by allocating the required number of personnel to
DCs/RCs.

Assumptions
� The plant has enough capacity to satisfy all retailers'

demands;

� The location of the plant, retailers, and CDC is
prede�ned and �xed;

� The plant and DCs do not keep the inventory. The
products are fresh while leaving the plant;

� The demands of retailers are uncertain and indepen-
dent;

� A dummy arc with zero cost and time is considered
between the last retailer and the origin DC of a route
to model simplicity.

Notations
Indices and sets:
O 2 f1g Plant
t2f1; 2; :::; Tg Time periods
d2f1; 2; :::; Dg Potential DCs
g2f1; 2; :::; Gg Technology levels of DCs (e.g.,

gas, solar, and electricity)
i 2 f1; 2; :::; Ig Retailers
r 2 f1; 2; :::; Rg Potential RCs
s2f1; 2; :::; Sg Technology levels of RCs
cdc 2 f1g Central disposal center
l 2 f1; 2; :::; Lg Network personnel location
m2f1; 2; :::; D + Ig Potential DCs and retailers nodes
m02f1; 2; :::; D+I+RgPotential DCs, retailers,

and potential RCs nodes
Parameters:
~dit Fuzzy demand of retailer i in period t
Ql Capacity of a lorry
Dpdd Distance of the plant to DC d
ttd Travel time from the plant to DC d
Ce CO2 emission from one-liter fuel

consumption
Cldt Transportation cost per km for a lorry

from plant to DC d in period t
FCRl0

(FCRl1)
Fuel consumption rate of an empty
(fully-loaded) lorry per kilometer
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wl0 Weight of an empty lorry

wl1 Weight of a fully-loaded lorry
(wl1 = wl0 +Ql)

fddgt Fixed activation cost of DC d with
technology level g in period t

cedg Carbon emission of DC d with
technology g

Qd Maximum capacity of DC d
[edt; ldt] The soft time window of DC d in

period t
Pet(Plt) Penalty cost for violating the earliest

(latest) time of DC's time windows in
period t

rpdg Required number of personnel for DC
d with technology g

rprs Required number of personnel for RC
r with technology s

dpld Distance of the personnel in location
l from DC d

~al Desired distance from a DC for
personnel in location l stated
by a trapezoidal fuzzy number,
~al = (a1l; a2l; a3l; a4l)

bm0n0 Distance of node m0 from node n0
ttmn Time of traveling from node m to

node n
'mnt Urban tra�c risk between nodes m

and n in period t
Fv Fixed cost of hiring a multi-

compartment truck
Q1t Capacity of the �rst part of the

multi-compartment truck (freezer)

ECRt1 Energy consumption rate of the
cooling system of a fully-loaded
truck

Q2t Capacity of the second part of the
multi-compartment truck (without
freezer)

Ctm0n0t Transportation cost per kilometer for
a multi-compartment truck traveled
from node m0 to node n0 in period t

FCRt0
(FCRt1)

Fuel consumption rate of an empty
(fully-loaded) multi-compartment
truck per kilometer

wt0 Weight of an empty multi-
compartment truck

wt1 Weight of a fully-loaded multi-
compartment truck (wt1 = wt0+
Q1t +Q2t)

pri Priority coe�cient of retailer i
(t ~wit) Desired time window of retailer i in

period t by a trapezoidal fuzzy number,
t ~wit = (tw1it; tw2it; tw3it; tw4it)

hit Inventory holding cost of retailer i in
period t

capi Depot capacity of retailer i
� Percentage of perished products that

should be disposed
frrst Fixed operating cost of RC r with

technology level s in period t
cers Carbon emission of RC r with

technology s
Qr Maximum capacity of RC r
Pt Selling price of recycled products in

the secondary market in period t
bdr Distance of RC r to the CDC
Qf Capacity of a homogeneous 
eet
Cfrt Transportation cost of a 
eet from

RC r to the CDC in period t
FCRf0

(FCRf1)
Fuel consumption rate of an empty
(fully-loaded) 
eet per kilometer

wf0 Weight of an empty homogeneous

eet

wf1 Weight of a fully-loaded homogeneous

eet (wf1 = wf0 +Qf)

rdd(rdr) Regional development percentage for
region d (region r)

ifdg Regional development impact of
activated DC d with technology g

ifrs Regional development impact of
operated RC r with technology s

M A large arbitrary number

Variables:
Nldt Number of lorries sent from the plant

to DC d in period t
Nfrt Number of homogeneous 
eets from

RC r to the CDC in period t
V edt Violation amount from edt, the earliest

time of the soft time window of DC d
in period t

V ldt Violation amount from ldt, the latest
time of the soft time window of DC d
in period t

Vdt Number of products sent from plant to
DC d in period t

atit Arrival time at retailer i in period t
wldt 1 if personnel l allocated to DC d in

period t; 0, otherwise
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ygdt 1 if DC d with technology g is activated
in period t; 0, otherwise

ysrt 1 if RC r with technology s is operated
in period t; 0, otherwise

zidt 1 if retailer i is allocated to DC d in
period t; 0, otherwise

yxtir 1 if the last retailer i connects to RC r
in period t; 0, otherwise

xtmn 1 if node m connects to node n in
period t, m;n 2 f1; 2; :::; D + Ig; 0,
otherwise

yndt Auxiliary variable, 1 if Nldt > 0; 0,
otherwise (i.e., Nldt = 0)

yfrt Auxiliary variable, 1 if Nfrt > 0; 0,
otherwise (i.e., Nfrt = 0)

utm Deliverable load of a multi-
compartment truck before starting to
serve node m in period t

uutm Picked load of a multi-compartment
truck after serving node m in period t

Iit Inventory level of retailer i at the end
of period t

qqit Total quantity of received products by
retailer i in period t

qitt0 Quantity of received products by
retailer i in period t for being used in
period t0

exit Quantity of expired products in retailer
i at the end of period t

Based on the membership function of the trape-
zoidal fuzzy number ~al, the utility function of personnel
l working in DC d, upld, is de�ned as follows:

upld =

8>>><>>>:
0 dpld < a1l or dpld > a4l
dpld�a1l
a2l�a1l

a1l � dpld < a2l

1 a2l � dpld � a3l
a4l�dpld
a4l�a3l

a3l < dpld � a4l

(1)

Similarly, the utility function of retailer i in period
t, ucit, is de�ned as Eq. (2) based on the desired arrival
time (t ~wit) stated by experts subjectively:

ucit =

8>>><>>>:
0 atit < tw1it or atit > tw4it
atit�tw1it
tw2it�tw1it tw1it � atit < tw2it
1 tw2it � atit � tw3it
tw4it�atit
tw4it�tw3it tw3it < atit � tw4it

(2)

3.1. Mathematical formulation
Objective functions:

Minf1 =
TX
t=1

DX
d=1

NldtCldtDpdd

+
TX
t=1

DX
d=1

GX
g=1

fddgtygdt

+
TX
t=1

DX
d=1

(petvedt + pltvldt)

TX
t=1

DX
d=1

IX
i=1

fvxtdi

+
TX
t=1

MX
m=1

MX
n=1

Ctmntbmnxtmn

+
TX
t=1

IX
i=1

RX
r=1

Ctirtbiryxtir

+
TX
t=1

RX
r=1

SX
s=1

frrstysrt

+
TX
t=1

RX
r=1

NfrtCfrtbdr

+
TX
t=1

IX
i=1

1
2
hitIit �

TX
t=1

DX
d=1

Pt(1� �)uutd; (3)

Minf2 =
TX
t=1

DX
d=1

GX
g=1

cedgygdt +
TX
t=1

RX
r=1

SX
s=1

cersysrt

+
TX
t=1

DX
d=1

(1 + ce)DpddFCRl1(Nlt � 1)yndt

+
TX
t=1

DX
d=1

((1 + ce)DpddFCRl0yndt

+
�
FCRl1�FCRl0

Ql

�
(Vdt

�Ql(Nldt�1)yndt))

+
TX
t=1

DX
d=1

IX
i=1

(1 + ce)bmixtmi(FCRt
0

+
�
FCRt1 � FCRt0

Q1t+Q2t

�
(uti + uutm=fDg))

+
TX
t=1

IX
i=1

RX
r=1

(1 + ce)biryxtir(FCRt
0

+
�
FCRt1 � FCRt0

Q1t+Q2t

�
(uti + uuti))



F. Navazi et al./Scientia Iranica, Transactions E: Industrial Engineering 30 (2023) 757{783 765

+
TX
t=1

RX
r=1

(1 + ce)bdrFCRf1
hf (Nfrt � 1)yfrt

+
TX
t=1

RX
r=1

((1 + ce)bdr(FCRf0
hfyfrt

+

 
FCRf1

hf � FCRt0hf
Qf

!�
�

IX
i=1

uutiyx
t
ir

�Qf(Nfrt � 1)yfrt
�

+
TX
t=1

MX
m=1

IX
i=1

bmixtmi

�
ECR1

Q1t

�
uti; (4)

Maxf3 = �1

TX
t=1

IX
i=1

priucit + �2

TX
t=1

DX
d=1

LX
l=1

wldtupld

+�3

�� TX
t=1

DX
d=1

GX
g=1

ygdtifdg(1� rdd)

+
TX
t=1

RX
r=1

SX
s=1

ysrtifrs(1� rdr)
�

+
� TX
t=1

DX
d=1

GX
g=1

ygdtrpdg

+
TX
t=1

RX
r=1

SX
s=1

ysrtrprs
��

: (5)

Constraints:
Nldt � Vdt=Ql 8t 2 T; 8d 2 D; (6.1)

Nldt � Vdt=Ql + 1 8t 2 T; 8d 2 D; (6.2)

Vdt � Qd
GX
g=1

ygdt 8t 2 T; 8d 2 D; (7)

GX
g=1

ygdt � 1 8t 2 T; 8d 2 D; (8)

Vdt =
IX
i=1

ygdtqqitzidt 8t 2 T; 8d 2 D; (9)

DX
d=1

zidt = 1 8t 2 T; 8i 2 I; (10)

IX
i=1

zidt �M
GX
g=1

ygdt 8t 2 T; 8d 2 D; (11.1)

GX
g=1

ygdt �
IX
i=1

zidt 8t 2 T; 8d 2 D; (11.2)

V edt � (edt�ttd)
GX
g=1

ygdt 8t2T; 8d2D; (12.1)

V ldt � (ttd � ldt)
GX
g=1

ygdt 8t 2 T; 8d 2 D; (12.2)

wldt �
GX
g=1

ygdt 8t 2 T; 8d 2 D; 8l 2 L; (13)

LX
l=1

wldt =
GX
g=1

rpdgygdt 8t 2 T; 8d 2 D; (14)

MX
m=1

xtim = 1 8t 2 T; 8i 2 I; i 6= m; (15)

MX
n=1

xtnm =
MX
n=1

xtmn 8t 2 T; 8m 2M; (16)

DX
d=1

xtiduu
t
i �M

RX
r=1

yxtir 8t 2 T; 8i 2 I; (17.1)

RX
r=1

yxtir �M
DX
d=1

xtid:uu
t
i 8t 2 T; 8i 2 I; (17.2)

RX
r=1

yxtir � 1 8t 2 T; 8i 2 I; (17.3)

IX
i=1

yxtir �M
SX
s=1

ysrt 8t 2 T; 8r 2 R; (18.1)

SX
s=1

ysrt �
IX
i=1

yxtir 8t 2 T; 8r 2 R; (18.2)

SX
s=1

ysrt � 1 8t 2 T; 8r 2 R; (19)

xtid � zidt 8t 2 T; 8i 2 I; 8d 2 D; (20)

xtdi � zidt 8t 2 T; 8i 2 I; 8d 2 D; (21)

xtij + zidt +
DX
d=1
d6=d0

zjd0t � 2

8t 2 T; 8i; j 2 I; i 6= j; 8d 2 D; (22)
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IX
i=1

uutiyx
t
ir � Qr

SX
s=1

ysrt 8t 2 T; 8r 2 R; (23)

utj�uti+xtijQ1t+(Q1t�qqit�qqjt)xtji � Q1t�qqit
8t 2 T; 8i; j 2 I; i 6= j; (24)

uuti�uutj+xtijQ2t+(Q2t�exit�exjt)xtji
� Q2t�exjt; 8t 2 T; 8i; j 2 I; i 6= j;

(25)

uti � Q1t� (Q1t� qqit)
DX
d=1

xtid 8t 2 T; 8i 2 I;
(26)

uu2bt
i � Q2t�(Q2t�exit)

DX
d=1

xtdi 8t2T; 8i2I;
(27)

utd =
IX
i=1

zidtqqitutd 8t 2 T; 8d 2 D; (28)

uutd =
IX
i=1

zidtexit 8t 2 T; 8d 2 D; (29)

qqit +
JX
j=1
i 6=j

xtijqqjt � uti 8t 2 T; 8i 2 I; (30)

exit +
JX
j=1
i 6=j

xtijexjt � uuti 8t 2 T; 8i 2 I; (31)

atit +M(1� xtdi) � ttdi(1 + 'dit)

8t 2 T; 8i 2 I; 8d 2 D; (32.1)

atit �M(1� xtdi) � ttdi(1 + 'dit)

8t 2 T; 8i 2 I; 8d 2 D; (32.2)

atjt +M(1� xtij) � atit + ttij(1 + 'ijt)

8t 2 T; 8i 2 I; 8j 2 I; (33.1)

atjt �M(1� xtij) � atit + ttij(1 + 'ijt)

8t 2 T; 8i 2 I; 8j 2 I; (33.2)

Nfrt � �
IX
i=1

uutiyx
t
ir

,
Qf 8t 2 T; 8r 2 R;

(34.1)

Nfrt � �
IX
i=1

uutiyx
t
ir

,
Qf + 1 8t 2 T; 8r 2 R;

(34.2)

Iit=Iit�1+ qqit �fdit�exit 8t 2 T; 8i 2 I; (35)

qqiy � capi � Iit�1 8t 2 T; 8i 2 I; (36.1)

Iit � capi 8t 2 T; 8i 2 I; (36.2)

qitt0 � capi 8t 2 T; 8i 2 I; (36.3)

Exit=
TX
k=t

qi(t�sl)k 8t2T; 8i2I; t � SL; (37.1)

Exit = 0 8t 2 T; 8i 2 I; t � SL; (37.2)

TX
t0=1

qitt0 = qqit 8t 2 T; 8i 2 I; (38)

TX
t0�t

qitt0 = 0 8t 2 T; 8i 2 I; (39)

Nldt �Myndt 8t 2 T; 8d 2 D; (40)

Nfrt �Myfrt 8t 2 T; 8r 2 R; (41)

ygdt; y
s
rt; wldt; zidt; x

t
mn; yx

t
ir; yndt; yfrt 2 f0; 1g;

Nldt; Nfrt 2 Z+ on other domain;

Vdt; vedt; vldt; atit; uti; uu
t
i; Iit; qitt0 ; qqit; Exit�0: (42)

The �rst objective function minimizes the cost
of transportation by lorries from plant to DCs in the
outskirts, activating DCs with speci�ed technology
levels, violation of DC time windows, hiring of multi-
compartment trucks, multi-compartment truck trans-
portation to/between retailers and to RCs, operating
RCs, transportation of homogenous 
eet to the CDC,
and retailers' inventory holding minus the revenue of
new products sold to the secondary market.

The second objective function minimizes environ-
mental side e�ects including CO2 emission of activat-
ing/operating DCs /RCs, FCR, and CO2 emission of
lorries, multi-compartment trucks, and homogeneous

eet. FCR of and CO2 emission from vehicles are
formulated based on the traveled distance and weight
of the carried loads. Xiao et al. [43] plotted real data
and calculated the FCR of fully-loaded and unloaded
trucks per kilometer. In Eq. (4), the FCR of partially-
loaded multi-compartment trucks was computed with
linear interpolation by considering the summation of
two variables, deliverable load (utm) and picked up load
(uutm).



F. Navazi et al./Scientia Iranica, Transactions E: Industrial Engineering 30 (2023) 757{783 767

The third objective function maximizes the utility
of three main network stakeholders. A coe�cient is
assigned to each stakeholder that can be changed based
on the prioritization of the company. The utility of
retailers (customers) is formulated as the satisfaction
level of service time in comparison to their desired
time stated by fuzzy numbers. However, the utility of
personnel is de�ned based on the distance of personnel
from assigned DCs (Eq. (1)). The social objective
function includes the social and economic impacts
of activating/operating a DC/RC with a speci�ed
technology level on economic development and job
creation.

Constraints (6.1) and (6.2) specify the number of
lorries moving from plant to active DCs. Constraint (7)
avoids exceeding the capacity level of DCs in each
period. Constraint (8) ensures that a DC can work with
only one technology level. Constraint (9) calculates
the demand assigned to an active DC. Constraint
(10) vouches that each retailer be assigned to only
one DC. Constraints (11.1) and (11.2) impose that
a DC can be activated if there is a retailer assigned
to it. Constraints (12.1) and (12.2) calculate the
violation of the earliest and latest DC time windows,
respectively. Constraint (13) states that only if a DC is
activated, personnel can be allocated to it. Constraint
(14) maintains the number of allocated personnel to
a DC under maximum required personnel. Constraint
(15) shows that each retailer should be connected to
one of the retailers/ DCs. The 
ow balance of each
node is guaranteed by Eq. (16). Constraints (17.1)
to (17.3) assign operated RCs to the last retailer
of routes if any expired products are loaded on the
multi-compartment truck. If no expired product was
picked up by trucks, the route would be open without
assigning to RCs.

Constraints (18.1) and (18.2) impose that an RC
can be active if there is a truck visiting it. Con-
straint (19) ensures that an RC is activated with just
one technology level. Constraints (20){(22) prevent
the creation of unauthorized routes. The Location
Routing Problem with Simultaneous Pickup and De-
livery (LRPSPD) is subject to structural constraints.
If a retailer is allocated to DC d, it can be the
last retailer of a route linked to DC d by a dummy
arc (Constraint (20)), or the �rst retailer in a route
starting from DC d (Constraint (21)); or be connected
to other retailers that are allocated to the same DC
(Constraint (22)). Constraint (23) ensures the capacity
limitation of RCs. Constraints (24) and (25) state the
imbalance of delivery and pick-up 
ows between two
nodes.

Constraints (26) and (27) mandate the remaining
load of each compartment of trucks at each node.
Also, Constraints (24) and (26) ascertain that fresh
load be under the capacity of the compartment with

cooling equipment. Constraints (25) and (27) put
the second compartment capacity limitation on the
amount of picked up expired products. Constraint (28)
determines the fresh products needed at each active
DC. Constraint (29) calculates the number of expired
products gathered from all retailers, which are al-
located to the same DC. Constraints (24) to (31)
determine the limitations of auxiliary variables uti and
uuti.

Constraints (32.1) and (32.2) calculate the arrival
time at the �rst retailer along each route. Con-
straints (33.1) and (33.2) calculate the arrival time at
other retailers. The number of the needed homoge-
nous 
eet for transferring unusable perished products
to the CDC is calculated by Constraints (34.1) and
(34.2). For each retailer, Constraint (35) balances
among the inventory levels of the current and previous
period, the demand, received products, and expired
products of the current period. Constraints (36.1),
(36.2), and (36.3) ensure that the inventory level of
a retailer does not exceed its capacity level. The num-
ber of expired products is calculated by Constraints
(37.1) and (37.2) based on the violation of holding
duration from the product's shelf life. Constraint
(38) calculates the total quantity of received prod-
ucts by each retailer periodically. Constraint (39)
prohibits back-ordering demands to avoid customer
dissatisfaction. Constraints (40) and (41) determine
variables yndt and yfrt based on their de�nition.
Finally, Constraint (42) determines the variable's do-
main.

3.1.1. Linearization of multiplying a binary variable
by a continuous variable

This multiplicative statements appeared in the objec-
tive functions (e.g., Nldt:yndt and Nfrt:yfrt in Eq. (4)
and, also, some constraints (e.g., (9), (17.1), (23), (24),
(25), (26), (27), (29), (30), (34.1), and (34.2)). If
a continuous variable (Q) is multiplied by a binary
variable (x), the multiplicative statement should be
replaced by a new continuous variable y (i.e., y = Qx)
and the following constraints should be added to the
model:

y � Q �Mx; (43.1)

y �Mx; (43.2)

y � Q�M(1� x); (43.3)

Q � 0; x 2 f0; 1g; y � 0:

3.1.2. Linearization of multiple breakpoint functions
Regarding the fuzzy desired time window of retailer i in
period t, t ewit, the utility function of retailer i in period
t, ucit, can be stated as a piecewise linear function of
arrival time, atit, as follows:
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ucit =8>>><>>>:
0 atit<tw1itoratit>tw4it

atit
tw2it�tw1it � tw1it

tw2it�tw1it tw1it�atit<tw2it
1 tw2it�atit� tw3it

tw4it
tw4it�tw3it � atit

tw4it�tw3it tw3it<atit� tw4it
(44)

According to Al-e-hashem et al. [44], by de�ning a
continuous variable attbp it and a binary variable bbbp,
where index bp shows each linear piece of the utility
function, the multiple breakpoint functions (44) can
be converted into the following single function:

ucit = att2it
1

tw2it � tw1it
� bb2 tw1it

tw2it � tw1it

+bb3 � 1� att4it 1
tw4it � tw3it

+bb4
tw4it

tw4it � tw3it
: (45)

Also, the following equations should be added to the
model:

�Mbb1 � att1it � tw1itbb1 8t2T; 8i2I; (46.1)

tw1itbb2�att2it� tw2itbb2 8t2T; 8i2I; (46.2)

tw2itbb3�att3it� tw3itbb3 8t2T; 8i2I; (46.3)

tw3itbb4�att4it� tw4itbb4 8t2T; 8i2I; (46.4)

tw4itbb5 � att5it �Mbb5 8t 2 T; 8i 2 I; (46.5)

BPX
bp=1

attbpit = atit 8t 2 T; 8i 2 I; 8d 2 D; (46.6)

BPX
bp=1

bbbp = 1; (46.7)

bbbp2f0; 1g; attbpit�0 8t2T; 8i2I;8bp2BP:
Other multi breakpoint linear functions in the

developed mathematical model (e.g., the utility of per-
sonnel) can be converted into a single linear statement
similarly.

3.2. Dealing with fuzzy uncertainty
Because of the competitive market, demand is vague
and uncertain. Since no distributional data is available
in many cases, demand is stated by a trapezoidal fuzzy
number, i.e., ~dit = (dit(1) ; dit(2) ; dit(3) ; dit(4)). Here,
the Basic Possibilistic Chance-Constrained Program-
ming (BPCPP) approach is applied for defuzzi�cation.
Regarding BPCPP, the expected value is used for

uncertain parameters in the objective function. To
transform constraints to crisp statements, the necessity
measure (Nec) is applied [45]. Constraint (35) is
replaced with two inequalities below:

NecfIit � Iit�1 + qqit � fdit � exitg � �
8t 2 T; 8i 2 I; (47.1)

NecfIit � Iit�1 + qqit � fdit � exitg � �
8t 2 T; 8i 2 I; (47.2)

where 0:5 < � < 1 is the minimum con�dence level of
chance constraints. Finally, the two above constraints
are replaced with Constraints (48.1) and (48.2) as
follows:

Iit � Iit�1 + qqit � ((1� �)dit(2) + �dit(1))� exit
8t 2 T; 8i 2 I; (48.1)

Iit � Iit�1 + qqit � ((1� �)dit(3) + �dit(4))� exit
8t 2 T; 8i 2 I: (48.2)

In the rest of this study, � is set to 0.8.

4. Solution approach

In this section, the developed model is �rst solved by
the exact method. The multi-objective model is turned
into a single-objective one by the TH method [46].
Then, two meta-heuristics are developed to �nd near-
optimal solutions in a reasonable time, especially for
medium- and large-sized cases.

Ahmadi Javid and Azad [32] found that the LRIP,
which is a simple form of the model presented in Sec-
tion 3, belonged to the NP-complete class with a non-
polynomial order of solving time, without considering
backward 
ow, recycling stage, and product shelf life.
Devika et al. [5] also formulated a CLSC that could
be a sub-problem of our model without perishability
and some decision levels, and acknowledged the NP-
completeness of the studied problem. Thus, the LRIP
model considered in this paper is classi�ed as an NP-
complete problem since it is a comprehensive version
of the problems mentioned above. Because of the long
solving time of the exact method, two meta-heuristics
namely Non-Dominated Sorting Genetic Algorithm-II
(NSGA-II) and a hybrid multi-objective algorithm are
developed and compared based on the multi-objective
performance metrics to deal with the problem in a
reasonable solving time. Moreover, some heuristic
procedures are tailored for solution representation to
achieve a feasible solution by taking all constraints into
account. A core i7 laptop does all computations with
12 GB RAM and 2.6 GHz CPU on a 64-bit Windows.
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4.1. Model validation and application
The developed model is solved by CPLEX solver of
GAMS software version 24.8.3 as powerful software
in solving MILP problems. For model validation, it
is implemented for a real-case study. There is an
industrial bread plant in a neighboring city of Tehran.
There are two DCs in the outskirt for unloading
products from big lorries to smaller two-compartment
trucks. There are �ve retailers in the city. Two RCs
in the city are ready to recycle expired products. The
DCs and RCs should decide on their applied technology
to be solar or electricity. The planning horizon is
three periods. Therefore, the size of the case study
is jDj� jGj� jIj� jRj� jSj� jLj� jT j = 2�2�5�2�
2� 10� 3. The extent of other parameters is stated in
Subsection 4.6 used for generating test problems.

The three single-objective problems by each ob-

jective function are solved for showing the con
ict
among three objective functions [11]. The results of
these problems are reported in Table 3. In this table,
retailers are shown by numbers 3 to 7. The �rst part
of the table shows the optimal solution obtained in
the presence of the economic objective function. In
this case, because of selling secondary products, a
signi�cant number of expired products are delivered
to the RCs. Moreover, a limited number of DCs and
RCs are opened with a cheap technology level even
though this technology level has high environmental
side e�ects. Activation of a few DCs/RCs prevents
job creation through opening DCs/RCs. Therefore,
the supply chain is planned without attention to its
environmental and social impacts.

In the second part of Table 3, when the problem is
solved in the presence of the green objective function,

Table 3. Optimal solution of the case study by considering only one objective function.

Period Plant NL DC Order of retailers
in a route

RC Nf CDC

O
bj

ec
ti

ve
fu

nc
ti

on
1

1 1
1 1X

fg=2g
1� 5 > 3 > 4� 1

1� 7 > 6� 1
1 {

1
{ 2 { 2 {

2 1
1 1X

fg=2g
1� 4 > 3 > 7� 1

1� 5 > 6� 1
1 {

1
{ 2 { 2 {

3 1
1 1X

fg=2g
1� 4 > 3 > 7�(RC:1)

1� 5 > 6�(RC:1)
1X
fs=2g 1

1
{ 2 { 2 {

O
bj

ec
ti

ve
fu

nc
ti

on
2

1 1
1 1X

fg=1g 1� 5 > 4� 1 1 {
1

1 2X
fg=1g 2� 6 > 7 > 3� 2 2 {

2 1
1 1X

fg=1g 1� 7 > 6 > 5� 1 1 {
1

1 2X
fg=1g 2� 4 > 3� 2 2 {

3 1
1 1X

fg=1g 1� 5 > 6 > 7 > 3 > 4� 1 1 {
1

{ 2 { 2 {

O
bj

ec
ti

ve
fu

nc
ti

on
3

1 1
1 1X

fg=1g 1� 7 > 6� 1 1 {
1

1 2X
fg=1g 2� 3 > 4 > 5� 2 2 {

2 1
1 1X

fg=1g 1� 7 > 6� 1 1 {
1

1 2X
fg=1g 2� 3 > 4 > 5� 2 2 {

3 1
1 1X

fg=1g 1� 7�(RC:2) 1X
fs=1g 1

1

1 2X
fg=1g 2� 3 > 6 > 4 > 5�(RC:1) 2X

fs=1g 1
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there is no need to store excessive products and then,
sell expired products to the RCs, which cause GHG
emissions. Plus, DCs utilizes nature-friendly technol-
ogy; however, it is expensive.

Based on the last part of Table 3, which shows
the optimal solution in the presence of only the social
objective function, most of the DCs/RCs are operated.
However, it is costly and may not be environment-
friendly; it causes job creation and economic growth
in the local regions. In this case, the length of the
routes is more uniform because of emphasizing the time
windows of the retailers. In this table, the distinction
among optimal solutions by considering di�erent goals
con�rms the con
ict of goals. Therefore, the necessity
of considering di�erent objective functions simultane-
ously and solving a multi-objective problem is veri�ed.

4.2. Turning the multi-objective problem to a
single one by the TH method

One of the main methods for solving MOPs that gives
e�cient balanced and unbalanced solutions is the TH
method [46]. This method is a fuzzy-based method
that deals with the MOP in a way that maximizes
the satisfaction degree of objective functions [41].
After determining the Positive Ideal Solution (PIS),
(fPISi ; xPISi ), and the Negative Ideal Solution (NIS),
(fNISi ; xNISi ), the satisfaction degree of a minimization
objective function is calculated by:

�i(x) =

8><>:
1 If fi < fPISi
fNISi �fi

fNISi �fPISi
If fPISi � fi � fNISi

0 If fi > fNISi

(49)

The satisfaction degree for maximization objective
functions is formulated as Eq. (50):

�i(x) =

8><>:
1 If fi > fPISi
fi�fNISi

fPISi �fNISi
If fNISi � fi � fPISi

0 If fi < fNISi

(50)

In the developed model, three objective functions
are targeted. The values of the PIS are reported by
solving three single objective problems in Table 4 (pay-
o� table), while the values of the NIS are speci�ed to
be approximate that result from having more than two
objective functions.

After determining �i(x) for all objectives, the
aggregate function of the TH method for turning MOP
into a single-objective problem is formulated by:

Max'�0 + (1� ')
X

k
�k�k(x); (51)

�k(x) � �0 8k; x 2 Fx; (52)

where �0 2 [0; 1] and �0 = f�k(x)g. ' is the coef-
�cient of compensation, which controls the minimum
satisfaction level of the objectives (�0) besides the
compromise degree among the objectives. Moreover,
�k shows the relative importance of the kth objective
function determined by the decision-maker based on
the preferences such that

P
k �k = 1, �k > 0.

The optimal solution of the TH method for �1 =
0:4, �2 = 0:2, �3 = 0:4, ' = 0:55 is reported in Table 5.
To show the solution better, a schematic view is also
presented in Figure 2.

Table 4. Pay-o� table.

x�i Desired orientation of fi f1 f2 f3

x�1 Min f1 fPIS1
� = 7254:767 f2(x�1) = 6449:520 f3(x�1) = 30:2386

x�2 Min f2 f1(x�2) = 12056:5 (fPIS2 )� = 4668:214 f3(x�2) = 38:7702
x�3 Max f3 f1(x�3) = 18261:3 f2(x�3) = 10449:519 (fPIS3 )� = 59:952

fNISi
Maxff1;2(x�)g
Minff3(x�)g 18261.3 10449.519 30.2386

Table 5. Optimal solution of the case study by the TH method, �1 = 0:4, �2 = 0:2, �3 = 0:4, ' = 0:55.

Period Plant NL DC Order of retailers
in a route

RC Nf CDC

1 1
1 1X

fg=1g
1� 4 > 6� 1

1� 5 > 7 > 3� 1
1 {

1
{ 2 { 2 {

2 1
1 1X

fg=1g
1� 3 > 7� 1

1� 5 > 6 > 4� 1
1 {

1
{ 2 { 2 {

3 1
1 1X

fg=1g
1� 4 > 3 > 7�(RC:1)

1� 5 > 6�(RC:1)
1X
fs=1g 1

1
{ 2 { 2 {
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Figure 2. Solution obtained by the TH method for ' = 0:55.

Table 6. Pareto-optimal solutions of the TH method.

2
�2
�5
�

2
�2
�1

0
�3

' Objective 1 Objective 2 Objective 3 Satisfaction degree Computational time

0.55 10518.43 6362.177 67.9 �T (f) = 0:805 14400

0.65 10178.19 6193.62 61.03 �T (f) = 0:788 14550

0.75 9837.953 6025.061 54.166 �T (f) = 0:769 14500

0.85 9830.153 6020.403 53.661 �T (f) = 0:767 14250

0.95 9820.352 6015.816 53.156 �T (f) = 0:767 14300

Avg. 10037.02 6123.415 57.9726 0.7794 14400

The Pareto solutions are obtained by di�erent
values of ', including 0.55, 0.65, 0.75, 0.85, 0.95,
presented in Table 6. As shown in the last column of
this table, the computation time of the exact method
for even a small problem is very long, let alone the
medium- or large-sized ones. Even the time required
for estimating fNISi , which is necessary for the TH
method, is ignored in the calculation. Therefore, two
meta-heuristic algorithms are developed.

4.3. Non-dominated Sorting Genetic
Algorithm-II (NSGA-II)

NSGA-II is a population-based meta-heuristic algo-
rithm [47] that �nds a set of non-dominated solutions
(called a Pareto front) using speci�c sorting and se-
lection methods. Due to the domination concept, x
dominates y if and only if in all objectives, x is not
worse than y and at least in one of the objectives, x is
better than y [47]. The steps of the NSGA-II procedure

are as follows:

Phase 1: Initialization:

Step 1. Generating the initial population;

Step 2. Calculating �tness (objective) functions for
each solution;

Step 3. Assigning a rank to each chromosome based
on the concept of domination for sorting purposes.
For sorting chromosomes with the same rank, a
Crowding Distance (CD) measure, which declares
an estimate of the solution's density surrounding a
speci�c solution, is used. CD is equal to the average
distance of two neighboring solutions of a speci�c
solution. CD measure prefers the uniformly spread
of solutions in the objective space and prioritizes
solutions with lower crowding distance. After sorting,
the best solutions will be selected as parents by
selection methods.
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Phase 2: Main loop:

Step 1. Employing the crossover operator with
crossover rate, Pc, and the mutation operator with
mutation rate, Pm; the next population, Qt, called
o�spring population with size N is generated;

Step 2. Combining the o�spring with parents
organizes the union population Rt;

Step 3. Calculating the �tness value of the union
population Rt;

Step 4. Applying non-dominated sorting concerning
domination and crowding distance criteria, in order.
The �rst N solutions from the sorted union popula-
tion Rt are selected as the best solutions to form the
population Pt+1 at the next iteration.

The above steps will be accomplished until reach-
ing the stopping criterion.

4.4. A new hybrid multi-objective
meta-heuristic algorithm

The NSGA-II does not have a memory to take advan-
tage of the learning. Thus, a new hybrid algorithm
is developed by combining the NSGA-II with Multi-
Objective Particle Swarm Optimization (MOPSO),
which has memory and self-learning ability [48].

The Particle Swarm Optimization (PSO) algo-
rithm for single-objective problems is inspired by the
movement of folk birds for �nding food. In 2006,
the multi-objective version of PSO, named MOPSO,

was proposed by Reyes-sierra and Coello [48]. In this
population-based algorithm, each particle (equivalent
to the chromosome of NSGA-II), uses its personal best
memory (xpbest) and global best memory (xgbest) of the
swarm to �nd the best movement for the 
ight route. It
means that each particle uses the knowledge of personal
and group intelligence for learning.

The velocity of each particle p for the ith dimen-
sion at iteration t, vpi(t), is calculated by:

vpi(t) = wvpi(t� 1) + c1r1(xpbest(t)� xpi(t))
+c2r2(xgbest(t)� xpi(t)); (53)

where xpbest is the personal best position of a particle so
far and xgbest is the position of the best group (swarm)
particle. w is the inertia weight that maintains the
impact of the last velocity on the new velocity. C1
and C2 are cognitive and social learning coe�cients
associated with the particle success and neighborhood
success, respectively, to handle their in
uence on the
new velocity. r1 and r2 are random numbers on [0; 1].
The position of each particle p for the ith dimension at
iteration t, xpi(t), is calculated by:

xpi(t) = xpi(t� 1) + vpi(t): (54)

With these explanations, the hybridization pro-
cess can be illuminated, in which the NSGA-II and
MOPSO are integrated hierarchically, as shown in
Figure 3. The NSGA-II is �rst run and, then, the

Figure 3. Proposed hybrid NSGA-II-MOPSO algorithm.
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solutions are imported to the MOPSO algorithm as an
initial swarm to be improved by it.

The initialization phase: The initial population is
generated using NSGA-II. The non-dominated solu-
tions are determined by the NSGA-II set as initial
particles of MOPSO. Then, the personal best positions
and velocities of initial solutions are set to their current
position and zero, in order. Finally, the non-dominated
solutions are saved in a repository set of MOPSO as
initial repository members.

The main body: The main loop starts with the
NSGA-II. After generating o�spring by crossover and
mutation operators, the velocity of each generated
solution is updated. Then, the union population
is formed and ranked based on domination and CD
criteria. The resulting non-dominated population will
be the input of the MOPSO algorithm. The best
position of each particle is selected as the personal best
position. The best position of non-dominated solutions
as leaders of the swarm is selected as the global best
position. If the number of non-dominated solutions
is more than the capacity of the repository, the Beta
parameter is used as a leader selection pressure [48] to
choose leaders from the repository. Then, the steps of
the MOPSO algorithm run sequentially. The velocity
vector of each particle and its position will be updated
by Eqs. (53) and (54), respectively. Afterward, the
�tness of each swarm particle is evaluated, and new
non-dominated solutions are added to the repository
of non-dominated solutions. Subsequently, dominated
solutions are eliminated to amend the repository set.
If the number of candidate particles for saving in the
repository is more than the capacity of the repository,
the Gamma parameter is used as a deletion pressure.

Finally, a new iteration will start if the stopping
criterion is not satis�ed.

4.5. Initial solution representation
This study attempts to �nd feasible solutions from the
beginning. Since the model has several categories of
decision variables, several representation codes, includ-
ing matrixes/cell arrays, are used to generate the initial
solution.

� The �rst matrix: jT j� jN +D�1j matrix is used
to determine the open DCs and allocate retailers to
them. For each period (each row), the matrix is
�lled with a permutation of the number of retailers
and DCs minus one. How to extract activated DCs
and assign retailers to them is visible in two steps
given in Figure 4.

The capacity allocated to each active DC
should be controlled periodically, which is equal
to the total demand of retailers allocated to that
DC. The number of trucks needed to deliver the
products from the plant to DCs (Nldt) is derived
from the division of assigned capacity to the truck
capacity and rounding up the quotient. It is possible
to calculate the violation penalty of the soft time
windows (V edt,V ldt) for each DC by identifying
operated DCs and traveling time from the plant to
them.

� The second matrix: To decide on the technology
applied in each DC, a matrix of 1� jDj, �lled with
integers from [1, G (the number of technology levels
for DCs)] is randomly produced, as demonstrated
in Figure 5. Thus, the binary variables ygdt can be
speci�ed.

Now, by considering the demand of assigned
retailers to a DC as well as the capacity of the refrig-

Figure 4. First matrix to present a solution.
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Figure 5. Second matrix to select the DC's technology.

erated and normal part of the multi-compartment
truck, the routes beginning from each DC can
be determined via the pseudo-code presented in
Figure 6.

By identifying the routes, it is easy to calculate
the arrival time at each retailer (atit).

� The third matrix with changing number of
columns (cell array): If a truck carries expired
products at the end of an open route, the route
should be connected to RC. For this purpose, a cell
array of jT j � jnT j is used where nT shows the
number of routes formed in period T . Since nT
may vary over periods, cell arrays are used instead
of a matrix. The cell array is randomly �lled with
integers from [1; R], as shown in Figure 7.

To maintain the feasibility of the solution,
the capacity assigned to each operated RC in each
period is calculated continuously. As long as the
allocated capacity is more than the predetermined
capacity of RC, it continues to generate that row of
cell arrays randomly. Whenever the last retailer in
a route and the RC assigned to it are speci�ed, the
binary variables yxtir can be determined.

� The fourth matrix: To decide on the technology
used in each RC, a matrix of 1 � jRj is considered
�lled by integers from [1, S (the number of technol-
ogy levels for RCs)] randomly. An example is shown

Figure 7. Third cell array to connect eligible routes to
RCs.

Figure 8. Fourth matrix to select the RC's technology.

in Figure 8. Therefore, the binary variables ysrt can
be speci�ed.

The number of expired products shipped to
each RC is determined. By dividing �% by the

eet capacity, the number of required 
eets, Nfrt,
to transfer unusable products from an operated RC
to the CDC is obtained.

� The �fth matrix: To allocate personnel to active
DCs, �rst personnel numbers are put on a permuta-
tion matrix for each period. Then, it starts with the
�rst active DC and assigns the �rst rpdg cells of the
matrix to that DC. Similarly, the personnel required
for other active DCs are allocated. The matrix with
the size of jT j � jLj is used for this process shown in
Figure 9. In this way, the binary variables wldt can
be determined.

Random numbers are applied to determine inven-
tory decision variables. Before generating the matrices

Figure 6. Pseudo code to specify routes.
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Figure 9. Process of personnel allocation.

mentioned above, the number of products that must be
delivered to the retailers in each period, including the
product needed for the current period and a random
percentage of the products for the next periods, qqit
and qit, should be determined. Two main limitations
namely the retailer's capacity and the product's shelf
life are controlled in generating qqit and qit. Moreover,
the expired products at the end of each period (exit)
can be calculated considering qqit, qit and the product's
shelf life.

The single-point crossover and inversion mutation
are used to generate o�spring. These operators are
described by Rabbani et al. [18] in detail. In the hybrid
algorithm, the MOPSO algorithm with continuous
solution space is merged. Thus, a continuous equivalent
for the initial solution is required. Instead of permu-
tation, continuous numbers with uniform distribution
in [0, 1], sorted from small to large, are ranked for
further use. Furthermore, the second to fourth matrices
�lled by integer numbers in a certain range should be
adjusted. Herein, continuous numbers with uniform
distribution in [0, 1] are generated, and its related
integer is replaced based on which interval each number
belongs.

4.6. Test problem generation
Since a new network design for a sustainable CLSC
is proposed in this study, there is no benchmark or
data set in the literature to use for model veri�ca-
tion. Therefore, some medium- and large-sized test
problems are generated and inspired by the studied
case study. Table 7 is used to set the size of the test
problems. The test problem parameters are available
at http://dx.doi.org/10.17632/3d286djjfd.1.

5. Computational results and sensitivity
analysis

To demonstrate the e�ectiveness of the developed hy-
brid multi-objective algorithm, it is compared with the
conventional algorithm (i.e., NSGA-II) based on multi-
objective comparison metrics. Firstly, the parameters
of the two proposed algorithms are tuned. Then,
outputs of the proposed algorithms are reported and
compared using bar charts and t-test. Finally, the

Table 7. Size of test problems.

No. Problem size
jDj � jGj � jIj � jRj � jSj � jLj � jT j

0 2� 2� 5� 2� 2� 10� 3
1 3� 2� 6� 2� 2� 20� 3
2 3� 2� 8� 3� 2� 25� 3
3 4� 2� 12� 3� 2� 30� 3
4 6� 2� 18� 4� 2� 40� 4
5 8� 3� 24� 4� 3� 60� 4
6 10� 3� 30� 5� 3� 80� 4
7 12� 3� 40� 8� 3� 100� 5
8 15� 3� 50� 10� 3� 140� 5
9 18� 4� 60� 12� 4� 180� 5
10 20� 4� 70� 15� 4� 200� 6

sensitivity analysis is done on the selling price of
recycled products as an in
uential parameter.

5.1. Comparison metrics
To evaluate the performance of the meta-heuristics,
four comparison metrics are applied:

1. Number of Pareto front Solutions (NPS): It refers
to the number of non-dominated points that each
algorithm obtains, which shows the high ability of
each algorithm to �nd e�cient points.

2. Computational Time (CT): It indicates the time
taken by each algorithm to �nd the Pareto front.
The low value of CT shows the better performance
of an algorithm.

3. Spacing Metric (SM): It means how non-dominated
solutions are distributed throughout the obtained
Pareto front. The lower value of the SM shows the
more uniform distribution of Pareto points. It is
calculated as follows [18]:

SM =

vuut 1
NPS � 1

nX
i=1

(di � d)
2

; (55)

di =
j

min
i6=j

kX
k=1

��f ik(�!x ) � f jk(�!x )
���

i; j = 1; 2; :::; NPS; (56)

where �d is the average value of dis. ~x is the solution
vector, k is the index of the kth objective function,
and i and j are the indexes of Pareto solutions.

4. Diversity Metric (DM): It distinguishes the spread
of solution sets calculated as follows:

DM =

vuut KX
k=1

(maxifk �minifk)2; (57)

where k is the index of the kth objective function,
and i is the index of Pareto solutions.
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5.2. Parameters tuning
The performance of meta-heuristics is highly dependent
on their parameter values; therefore, the calibration
of their parameters is essential. Here, the Taguchi
Design of Experiment (DOE) method, as a powerful
tool for parameter tuning [49], is employed for pa-
rameter setting of algorithms. One of the distinctive
features of the Taguchi method is achieving the most
extensive information by generating the least number
of experiments [49].

A three-level Taguchi design is applied to analyze
the in
uence of vital parameters of NSGA-II involving
population size (Np), the total number of iterations
(Max Iteration), crossover rate (Pc), and mutation rate
(Pm) shown in Table 8.

Besides the aforementioned parameters, the three
levels of repository size (Nr), leader selection pressure
(Beta), deletion pressure (Gamma), inertia weight (w),
personal learning coe�cient (c1), and global learning
coe�cient (c2) are given in Table 9 for the proposed
NSGA-II-MOPSO algorithm.

Based on the Taguchi method, it is enough to
use L9 orthogonal array (nine experiments) for the

Table 8. Levels of parameters for the NSGA-II.

NSGA-II Levels

parameters 1 2 3

Max iteration 80 100X 120

Population size 50 100 150X
Crossover probability 0.6 0.7X 0.8

Mutation probability 0.2 0.3X 0.4

NSGA-II [50] instead of 34 full factorial experiments
and L27 orthogonal array (27 experiments) instead of
310 full factorial experiments for the hybrid NSGA-II-
MOPSO algorithm. The L9 and L27 orthogonal arrays
are available in MINITAB software, version 17.

Here, Taguchi is employed on Problem No. 1.
The response variable of the Taguchi is the weighted
average of the four main comparison metrics (i.e., CT,
NPS, DM, and SM). To avoid the e�ect of scales on
computations, values of metrics should be normalized
as follows. If higher values of a metric (x) are
desirable (e.g., NPS and DM), it is denoted by x+ and
normalized by Eq. (58). However, if lower values of a
metric are desired (e.g., CT and SM), x� is its symbol
and will be normalized by Eq. (59):

x+ ! ri =
xi �mini(xi)

maxi(xi)�mini(xi)
; (58)

x� ! ri =
maxi(xi)� xi

maxi(xi)�mini(xi)
: (59)

Regarding the NSGA-II, by doing nine experi-
ments with di�erent levels of the parameter, the values
of metrics are measured and normalized in Table 10,
which also reported weights. Due to the widespread
metrics data for the hybrid NSGA-II-MOPSO, their
values are not reported here.

Figure 10 shows the experimental results of
NSGA-II and NSGA-II-MOPSO parameters tuning. In
Taguchi, a robustness measure, signal-to-noise (S/N)
ratio, is used to identify control factors and reduce the
e�ects of noise factors. Higher values of the S/N ratio
specify control factor settings that minimize the e�ects
of the noise factors [51]. The desirable levels of each

Table 9. Levels of parameters for the hybrid NSGA-II-MOPSO.

NSGA-II-MOPSO Levels

parameters 1 2 3

Max iteration 80X 100 120

Population size 50 100X 150

Repository size 20X 40 60

Crossover probability 0.6 0.7X 0.8

Mutation probability 0.2 0.3X 0.4

Beta (leader selection pressure) 0.8 1.2X 2.4

Gamma (deletion selection pressure) 0.8 1.2 1.4X
Weight of inertia 0.5X 0.7 0.9

Personal learning (c1) 1 1.25 1.5X
Global learning (c2) 1X 1.5 2
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Table 10. Values and normalized values of metrics for nine NSGA-II experiments.

RUN CT(0.2) NPS(0.2) DM(0.3) SM(0.3) Response

1 105.142 50 21421.1 613.71

(1) (0) (0) (0.326282) 0.297885

2 167.587 100 85098 377.702

(0.867305) (0.5) (1) (0.658177) 0.770914

3 371.973 150 47398.1 431.552

(0.432989) (1) (0.40795) (0.58245) 0.583718

4 173.621 50 76568.1 439.558

(0.854483) (0) (0.866045) (0.57119) 0.602067

5 441.866 97 44443.6 396.191

(0.284467) (0.47) (0.361552) (0.632177) 0.449012

6 410.854 147 76998.4 134.635

(0.350367) (0.97) (0.872801) (1) 0.825914

7 152.874 50 48602.8 327.439

(0.898570) (0) (0.426869) (0.728862) 0.526433

8 449.621 100 46711.6 669.836

(0.267988) (0.5) (0.397169) (0.247354) 0.346954

9 575.734 150 59786.4 845.727

(0) (1) (0.602499) (0) 0.38075

Figure 10. NSGA-II (a) and NSGA-II-MOPSO (b) parameters tuning by the Taguchi DOE.

parameter, which have the maximum mean of the S/N
ratio, are marked in Tables 8 and 9.

5.3. Results of meta-heuristics
In this section, the case study described in Section 4.1 is
solved by two developed meta-heuristics, and obtained
results are compared with those obtained by the TH
method. For this purpose, both meta-heuristics are
coded in MATLAB version R2016b. The value of each
objective function reported in Table 11 is the average

of that objective function values for obtained Pareto
solutions. As shown in Table 11, the solving time of
two developed meta-heuristics is much shorter than the
TH method. The results reported in this table verify
the acceptable performance of developed algorithms
in both speed and accuracy for small-sized problems.
The medium- and large-sized problems generated in
Section 4.6 are not solvable by the TH method in
a reasonable time. Therefore, these problems are
solved using only two developed meta-heuristics, and
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Table 11. Results of solving the case study by the developed meta-heuristic algorithm.

Problem (0) 2� 2� 5� 2� 2� 7� 3

Solving method obj 1 obj 2 obj 3
Computational

time
(s)

Exact 10037.02 6123.415 57.9726 1440
NSGA-II 10945 6490 54.9 210.922

NSGA-II-MOPSO 10578 6753 52.6 160.56

Table 12. Objective function values of medium- and large-sized problems.

Solving method
NSGA-II NSGA-II-MOPSO

Number Obj 1 Obj 2 Obj 3 Obj 1 Obj 2 Obj 3

1 23482 9565.29 19 34413 9518.5 19
2 43904.5 18237.5 20.5 24034 20930 20
3 53861.5 28073.5 22.5 44598.5 28509 28
4 67791 50094.5 56.5 100870 64892.5 57.5
5 96077 75479 84 149520 77120 80
6 163575 90897 105 176315 90390 105
7 262445 153760 165 307975 16941.5 185
8 293430 179815 200 418805 206910 220
9 371120 212640 240 538555 255265 290
10 584590 312140 370 665140 345065 405

Avg. 196028 113070 128.25 246023 111554 140.95

Figure 11. NSGA-II (a) and NSGA-II-MOPSO (b) Pareto front for Problem No. 1.

the average of objective functions regarding the Pareto
front is reported in Table 12.

The Pareto solutions for Problem No. 1 obtained
by the NSGA-II and NSGA-II-MOPSO algorithms are
depicted in Figure 11. Table 13 reports the value of
comparison metrics for both algorithms. The values
of metrics show the acceptable performance of the
developed algorithms. As shown, by increasing the
problem size, the CT is also increased, but not in a non-
polynomial manner. According to Figure 12, although
the NSGA-II generates more Pareto solutions than the

NSGA-II-MOPSO, the NSGA-II-MOPSO algorithm
has shorter CT due to the application of global and
personal best memory. Compared with the hybrid
algorithm, the average of the CT for the NSGA-II is
about 2.5 times higher.

The comparison of the NPS and the CT is visible
by visual tools. However, a statistical paired t-test is
applied to compare the two algorithms based on DM
and SM [52]. Is there any di�erence in the mean of
metrics? The paired t-test checks the hypothesis that
DM and SM averages of the problem solved by the
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Table 13. Comparison of metrics for all test problems solved by the meta-heuristic algorithms.

Solving method
NSGA-II NSGA-II+MOPSO

Number NPS CT SM DM NPS CT SM DM

1 149.5 686.01 587.86 50283.46 43 280.94 1275.11 39215.91
2 150 564.84 450.66 66974.38 27 175.39 1831.28 31659.29
3 150 740.79 1097.46 84805.57 36 329.55 2549.86 63160.06
4 150 1289.04 1063.99 82289.67 30.5 516.20 2259.80 63363.62
5 150 1829.46 1589.44 115534.84 24 719.83 3031.04 67915.54
6 150 2413.91 2173.89 196498.64 32 919.88 3200.55 101544.32
7 148 3548.40 3766.65 270177.99 21.5 1361.19 4559.14 104738.16
8 150 5357.59 4252.88 315787.54 24.5 2111.51 5047.74 176943.67
9 150 7149.93 3660.71 380093.08 17.5 2476.42 6054.67 143434.65
10 150 9415.76 4403.10 438262.53 22 4526.44 6585.65 122197.37

Avg. 149.75 3299.57 2304.66 200070.77 27.8 1341.74 3639.48 91417.26

Table 14. Results of the paired t-test for the DM and the SM.
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DM 200071 91417 134877 44364 108654 42156 175151 3.64 9 0.005
SM 2305 3639 1486 1728 -1330 -1702 -968 -8.10 9 0

Figure 12. NPS (a) and CT (b) of the NSGA-II versus the NSGA-II-MOPSO.

hybrid algorithm remain equal to the DM and the SM
averages of the problem solved by NSGA-II. Since DM
and SM have a normal distribution, the paired t-test
is allowed to be used. At a con�dence level of 95%,
if the p-value is under 0.05, the hypothesis is rejected.
The outputs of running the paired t-test are reported
in Table 14 to determine the best algorithm.

Regarding Table 14, the p-value is less than 0.05
for both the DM and SM metrics. Therefore, there
is a meaningful di�erence in the performance of two
algorithms. Based on the obtained statistical data, the
NSGA-II has higher diversity with less spacing than
the NSGA-II-MOPSO and, consequently, has better

performance in terms of the DM and SM metrics.
However, if the decision-maker cares about the CT, a
hybrid algorithm should be selected.

5.4. Sensitivity analysis
Since the selling price of recycled products to the
secondary market, Pt, is a signi�cant parameter in the
considered problem, this parameter is analyzed here.
It is a prominent parameter, because if this price is
deducted, perhaps the retailer will not be able to bear
the holding cost of perishable inventory plus the risk of
not selling it. The results of the sensitivity analysis on
Pt are shown in Figure 13. According to Figure 13(a),
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Figure 13. Economic (a), environmental (b), social (c), and e�ects of the selling price of recycled products.

since increasing the price of selling recycled products
to the secondary market up to six times brings about
greater pro�t, the �rst objective function experiences a
decreasing trend (�8:33%), while it causes more RCs to
operate, which in turn increases the employment rate.
Herein, an increase in the social objective function
is observed (+5.44%) in Figure 13(c). When the
retailers know that the expired products can be sold
out to the secondary market at higher prices, more
products will be delivered to the retailers, resulting in
increased vehicle FCR and GHG emissions (+2.85%)
(Figure 13(b)). Consequently, it is imperative to decide
on this price at �rst and, then, plan the supply chain
network.

6. Conclusions and future research

This study proposed a new sustainable location-
routing-inventory model, called Closed-Loop Location-
Routing- Inventory Problem (CL-LRIP), to plan an
e�cient closed-loop supply chain for perishable prod-
ucts. To do this, a multi-objective mathematical pro-
gramming model was proposed to minimize the total
costs and environmental impacts while maximizing the
utility of three main network stakeholders. Then, the
chance-constrained possibilistic programming method
was employed to encounter uncertainty in the param-
eters of the model. Afterward, the TH method was
applied to convert the multi-objective model into a
single one solved by CPLEX solver of GAMS software.
Since the problem is NP-complete, exact methods
were ine�cient to solve the problem in large-sized
instances. Hence, a hybrid metaheuristic algorithm
was developed to solve the proposed model in large-
sized instances. The obtained results showed the
e�ciency and performance of the proposed model and
the applied NSGA-II-MOPSO algorithm. Likewise,
the results pointed to the validity and applicability of
the proposed model in a case study from the bread
industry. The results of solving the problem indicated
that the developed hybrid algorithm can obtain high-
quality solutions with 89% lower CPU time than the
exact method. Finally, a sensitivity analysis was

conducted on important parameters of the proposed
model and the obtained results demonstrated that the
sale price of the recycled products had a signi�cant
impact on sustainability goals, such that increasing it
by six times caused an 8.33% decrease in the economic
objective, a 2.83% rise in environmental side-e�ects,
and a 5.44% increase in social goals. Therefore, supply
chain managers are required to determine the prices at
the secondary market before the planning of the supply
chain. Some of the future research directions are:

i) Considering the risk of roads' or facilities' disrup-
tion;

ii) Tacking into account scheduling decisions of the
plant;

iii) Embedding pricing decisions of the second bazaar
into the developed model. Moreover, solving
the problem with a customized exact method or
�nding a lower bound for it can be a contribution
to the solution methods.
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