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Abstract. In this paper, we develop two acceptance sampling plans where the lifetimes
of the products follow Weibull Exponential and Weibull Lomax distributions both of
which are derived from the new truncated Weibull-X family of distributions based on run
lengths of the conforming items. The model parameters are estimated using the maximum
likelihood method contrary to the existing plans where authors selected arbitrary values of
the parameters. The e�ciency of the proposed plan is established by comparing it with the
existing plan based on the average number of inspected items. A real example of failure
rates of a piece of electronic equipment operating in a speci�c mode is presented to illustrate
the proposed plans for industrial use.

© 2023 Sharif University of Technology. All rights reserved.

1. Introduction

Statistical quality control involves the implementation
of various methods for monitoring and maintenance of
the quality of products as well as services. \Quality is
now not only an option or aim of companies but a ne-
cessity for businesses in a global market" [1]. Sampling
plans are popular practicable tools used for quality
a�rmation and decision making, such as whether to
accept or reject new lots of products. Now, it is no more
an optional parameter for a business but a prioritized
basic necessity to be catered for. Acceptance sampling
and statistical quality control are the most important
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tools for quality assurance. Acceptance sampling plans
protect both producer and customer interests. For
instance, for a newly manufactured product that is
ready to be dispatched into the market, sometimes
it is not possible for the manufacturer to inspect all
the items. In these circumstances, the use of e�cient
acceptance sampling plans minimizes the inspection
time, costs, and e�orts. These plans also include qual-
ity contracting between vendor and buyer. However,
it could also convince the manufacturer to reject an
acceptable lot and the buyer to accept a faulty lot.
In today's fast-paced environment of manufacturing
technologies and market competition, product manu-
facturers and suppliers require the highest standard
of quality and minute fractions of non-conformities.
Traditional methods and strategies for calculating
fractional non-conformities are no longer helpful. In
a sampling plan where time is restricted, a random
sample is selected from the product batch and tested.
The number of defective items is recorded within the
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speci�ed time interval. If the number of recorded
defective items is less than the minimum acceptance
number then the batch is accepted. Another important
factor to consider is that there are two errors associated
with each sampling method regardless of the type
of inspection sampling plan. Since a sample is the
representation of a speci�c part of the products or
services, there is a possibility of erroneous outcomes.
The producer and customer risks are associated with
these erroneous outcomes. The producer risk is the
possibility of rejecting a conforming batch and the
customer risk is the possibility of accepting a non-
conforming batch. An e�cient acceptance sampling
plan is one that is designed to minimize time, e�ort,
costs, and risks, and provide an optimum sampling size
that is acceptable and a�ordable to both the producer
and the customer.

Many trials have been conducted to develop new
e�ective acceptance techniques to minimize the cost
of inspection and save time. Bourke [2,3] proposed a
sampling plan based on geometric Cumulative Sums
(CUSUMs) and the run-lengths of products with suc-
cessive conforming items to determine whether to
perform 100% sampling inspection or phase inspection.
Niaki and Fallahnezhad [4] designed an optimum accep-
tance plan in quality control using Bayesian inference
and stochastic dynamic programming by considering
cost and risk functions. Mirabi and Fallahnezhad [5]
developed single-step and two-step plans using the
Markovian approach and provided an acceptance policy
based on the quality of inspected items. Fallah-
nezhad [6] determined the optimum value of thresh-
olds based on the Markov model using the minimum
angle method. Fallahnezhad and Naiki [7] proposed
a Markov model to reduce costs related to machine
replacement policy built on the optimal values of upper
and lower limits. Balamurali et al. [8] used a double
sampling plan and capability index-based variables
sampling plan to propose a group acceptance plan
protecting manufacturer and consumer risks. Baklizi [9]
determined that the life test is trimmed at a pre-
assigned time, based on Lomax distribution. Aslam
et al. [10] used Gamma distribution to design a group
acceptance plan in the life test experiment. Aslam et
al. [11] suggested a decision procedure for the conform-
ing items following the Weibull-distributed products
and determined the plan parameters according to
the associated risks. Chowdhury [12] designed an
acceptance sampling plan under a truncated lifetime
test at the pre-assigned time for generalized Weibull
distribution and found the smallest sample size for
the median life of the experimental unit. Shahbaz
et al. [13] proposed single and double acceptance
sampling plans for the power Lindley distribution by
considering �nite and in�nite lot sizes. Al-Omari et
al. [14] developed an acceptance sampling plan under

the truncated lifetime test at a pre-determined time for
Rama distribution and obtained the smallest sample
size to ensure speci�ed mean life for consumer risk.
Mahdy and Ahmed [15] provided acceptance sampling
plans for generalized inverse Weibull, skew-generalized
inverse Weibull, and compound inverse Rayleigh distri-
butions under truncated lifetime experiment to decide
on the acceptance or rejection of the submitted lots.
Fallahnezhad and Saredorahi [16] used the Bayesian
approach to develop a new acceptance sampling plan
by examining the minimum proportion of the lot with
inspection errors.

Some recent contributions to the development
of acceptance sampling plans using di�erent method-
ologies, selecting di�erent quality characteristics, and
objective functions based on di�erent probability dis-
tribution, are also stated. Fallahnezhad and Sei� [17]
proposed a new repetitive group sampling plan based
on the process capability index for variable inspection.
They designed di�erent sampling plans where the study
variable follows the Bayesian approach. Fallahnezhad
and Yazdi [18] introduced a sampling plan based on
the conforming run-length where the consumer loss
is estimated using the Taguchi loss function. They
assumed two constraints for model development, the
average outgoing quality limit and the lot tolerance
percent defective. Rasay et al. [19] used a sequential
sampling plan to truncate life test and design a repet-
itive group sampling plan and a double sampling plan.
Fallahnezhad and Saredorahi [20] provided a variable
repetitive group sampling plan based on the expected
loss function. They used acceptable quality level and
limiting quality level to satisfy the priorities of the
producer and the requirements of the consumers ac-
cording to the set criteria. Al-Omari and Al-Hadhrami
[21] developed the acceptance sampling plans for time
truncated life tests based on extended exponential
distribution. Al-Omari [22] proposed a new acceptance
sampling plan where the truncated life test follows the
Sushila distribution. Aslam et al. [23] designed a
group acceptance sampling plan based on neutrosophic
statistics when the mean life of the product follows
Weibull distribution. Singh and Buttar [24] developed
a sequential sampling plan for generalized exponential
distribution based on a truncated life test, taking the
median life of an item as quality characteristic. Al-
Nasser and Obeidat [25] presented a single acceptance
sampling plan when the average lifetime of the product
follows Tsallis q-exponential distribution. Divecha and
Raykundaliya [26] proposed a two-stage time censor-
ing scheme to develop three economical acceptance
sampling plans by following the method of modi�ed
exponentially weighted moving average.

Several probability distributions have been exten-
sively used in various �elds like �nance, economics,
reliability analysis, engineering, medicine, and insur-
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ance. Probability distributions play a vital role in
quality assurance as well. We see several distribu-
tions compounded with the Weibull distribution be-
come more 
exible through generalization. Luko [27]
highlighted the importance of Weibull distribution to
study the tenacity and strength of the material and
devices in engineering. Mandouh [28] introduced the
Lomax-Modi�ed Weibull distribution and discussed its
properties and Bayesian inference. Hanook et al. [29]
proposed a Beta Inverse Weibull distribution generated
from the logit of a Beta random variable. Cordeiro
and de Castro [30] de�ned the Kumaraswamy-class
of distributions. Ahsanuallah et al. [31] proposed a
new bivariate pseudo-Weibull distribution to �nd the
distribution of concomitants of upper record statistics.
Alzaatreh et al. [32] proposed a method to create a
continuous family of distributions by the technique of
random variable where each generated distribution is
taken as a weighted hazard function. Aljarrah et al. [33]
suggested a technique similar to Alzaatreh et al. [32]
based on quantile function. Rather and Rather [34]
proposed k-generalized Exponential distribution which
includes generalized exponential and Weibull as special
cases. Mahdavi and Oliveira Silva [35] proposed a
method for the expansion of continuous distribution
based on truncated distribution.

The present research contributes to acceptance
sampling plans based on the Weibull family of dis-
tributions by constructing Weibull Exponential (WE)
and Weibull Lomax (WL) distributions following the
technique of Mahdavi and Oliveira Silva [35]. The
proposed distributions are used to design an acceptance
sampling plan for conforming items. The proposed
acceptance sampling plan and the study of Aslam et
al. [11], both based on the Markovian approach and
using Weibull distributions, are compared to estimate
the expected average number of inspected items using
optimum parameter values. The distinction of this
paper is that the model parameters are estimated
using the maximum likelihood method contrary to
the existing plans where authors selected arbitrary
values of the parameters. The successful application
of the proposed plan in real-life examples supports
the argument that our plan is more time and cost-
e�ective.

The rest of the paper is organized as follows: The
notations are given in the subsequent section. Model
development is presented in Section 2. The proposed
plans based on the Weibull-X family of distributions
containing Lomax and Exponential distributions are
discussed in Section 3. The comparison of our plans
with the existing plan is provided in Section 4. A
real example of failure rates of a piece of electronic
equipment to check the e�cacy of our proposed plans
is demonstrated in Section 5. Some concluding remarks
are stated in Section 6.

2. Model development

In this section, the model is developed using the
technique of Mahdavi and Oliveira Silva [35]. They
proposed a new family of truncated TF-G distributions
where G is an absolutely continuous baseline distribu-
tion. The expressions for the cumulative distribution
function (cdf) and the probability density function
(pdf) of the TF-G family of distributions are given as:

G (x) =
H (F (x))�H (0)
H (1)�H (0)

; (1)

and:

g (x) =
h (F (x)) f (x)
H (1)�H (0)

; (2)

respectively, where H(0) and H(1) are the cdfs of the
generator distribution evaluated at 0 and 1 while f(x)
and F (x) represent the pdf and the cdf of the input
distributions. We consider an exponential distribution
and a Lomax distribution as input distributions to
propose WE and WL distributions. In this paper, we
take h(t) as Weibull distribution with parameters k and

 having cdf and pdf as:

H (t) = 1� e�( t
 )k ; (3)

and:

h (t) =
k



�
1



�k�1

e�( 1

 )k�1

; (4)

respectively. So the proposed Weibull-X family of
distributions has the cdf and the pdf as:

G (x) =
1� e�(F (x)


 )k

1� e�( 1

 )k

(5)

and:

g (x) =
k



�
F (x)



�k�1

e�(F (x)

 )k�1

f (x) : (6)

2.1. Markov method
The Markovian approach is used to determine optimal
values of the thresholds for acceptance or rejection of
an experimental batch. Suppose that for an acceptance
plan; Yi is described as the number of conforming items
between two defective items with upper control limit U
and lower control limit L. In this case, the decision rule
is described as:

� If L < Yi < U then the batch is in the transient
state and the inspection continues;

� If Yi � U then the batch is in the accepted state;
� If Yi � L then the batch is in the rejected state.

State-1 (L < Yi < U): The value of Yi is between
upper and lower control limits; therefore, testing
continues;
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State-2 (Yi � U): The batch is in good condition
and will be accepted;
State-3 (Yi � L): The batch is in bad condition and
will be rejected.

The probability of continuing the inspection of `n' items
is:

p11 = PfL < Yi < Ug =
U�1X

Yi=L+1

p (1� p)Yi : (7)

The probability of batch acceptance is:

p12 = P fYi � Ug =
1X

Yi=U

p (1� p)Yi : (8)

The probability of batch rejection is:

p13 = P fYi � Lg =
LX

Yi=0

p (1� p)Yi : (9)

Yi � geometric distribution with parameter p and its
pdf is given as:

P (Yi = r) = p(1� p)r;
where r = 0; 1; ::: The transition probability matrix of
the above three states of the batch can be expressed
as:

P =

24 p11 p12 p13
0 1 0
0 0 1

35 : (10)

Matrix P in Eq. (10) is an absorbing Markov model
in which State-1 is transient while States-2 and 3 are
absorbing, i.e., once it has reached a state, it can
never leave. Since State-I denotes the probability
of inspecting more items p11 is the probability of
transition from State-1 to State-1 i.e., we need to
inspect more items. Hence, the transition probability
matrix is reorganized as:

P =
�
A O
R Q

�
; (11)

where A denotes identity matrix, O is a matrix of zeros,
R is the matrix comprising of probabilities of moving
from a non-absorbing state to an absorbing state and Q
is a square matrix comprising of transition probabilities
of going from a non-absorbing state to another non-
absorbing state. This reorganization gives the following
form of transition probability matrix:

P =

24 1 0 0
0 1 0
p12 p13 p11

35 : (12)

The fundamental matrix M can be expressed as follows
[36]:

M = m11 = (I �Q)�1 =
1

1� PrfL < Yi < Ug ;
where \I" denotes the unit matrix, \m11" denotes
the expected number of times occupying the transient
State-1 before absorption occurs in the long-run. The
long-run expected probability matrix F can be com-
puted as follows:

F = M �R =
�

p12

1� p11

p13

1� p11

�
:

Here, the elements p12 and p13 of this matrix represent
the probability of acceptance and rejection of a batch
respectively.

3. Proposed plan based on Weibull-X family of
distributions

The Weibull-X family of distributions, containing Lo-
max and Exponential distributions, has been used for
modeling lifetime data and phenomenon with mono-
tonic failure rates. In this paper, we develop WE
and WL distributions using the technique of Mahdavi
and Oliveira Silva [35] and use them to propose new
acceptance sampling plans. The positively and the
negatively skewed density shapes of the Weibull-X
family of distributions may be a starting choice for
modeling monotonic failure rates.

It is assumed that the lifetime of a product follows
the Weibull-X distribution given in Eq. (5) with a scale
parameter greater than zero. Then the probability of
failure of an item before experiment time t0 is expressed
as:

p =

1� exp
 
�
�

1�exp(�F( t0� ))



�k!
1� exp

�
�� 1




�k� : (13)

Let the termination time ratio be t0
�0

= a, which implies
that t0 = a�0 for the constant value of a. Thus, an
item is categorized as a nonconforming item only when
its failure occurs before the termination time. The
average number of items inspected E(I), for each visit
to the transient state, will be the product of the mean
of the geometric distribution (1=p) and the expected
number of visits to State-1, i.e., m11. Hence, the E(I)
is expressed as:

E (I) =
1
p
�m11: (14)

Under the proposed plan the probability of acceptance
of a batch in the operating characteristic curve is
expressed as:

L (p) = p12 =
P fYi � Ug

1� PfL < Yi < Ug ; (15)

where L(p) presents the probability of acceptance of
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the batch when the probability of failure of an item
is p. Each sampling plan must satisfy Type-1 and
Type-2 errors. The Type-1 error means the rejection
probability of a batch when the lifetime of all the items
in the batch is acceptable while the Type-2 error means
the acceptance probability of a batch when the lifetime
of all the items in the batch is rejected.

At this stage, we consider di�erent values of L
and U to select their feasible values that satisfy Type-
1 and Type-2 errors and from these feasible values, we
can choose the least values for the expected number of
items inspected which is calculated using Eq. (16) for a
given value of �. It is important to note that the mean
ratio �=�0 works as a quality parameter in lifetime ex-
periments. For �=�0 = 1; the acceptance probability of
the lot should be greater than the producer con�dence
level 1 � � and smaller than the consumer risk �. So,
�rst, we have to �nd out the feasible values of L and U
to satisfy these two conditions expressed in Eqs. (17)
and (18). Substituting Eq. (13) in Eq. (14) we get the
following objective function E(I). The average number
of inspected items E(I) is minimized using feasible
values of L and U .

E(I) =
1� exp

�
�� 1




�k�
1� exp

 
�
�

1�exp(�F( t� ))



�k!m11; (16)

subjected to the following conditions:

L (p1) =
P fYi � Ug

1� PfL < Yi < Ug � (1� �) ; (17)

L (p2) =
P fYi � Ug

1� PfL < Yi < Ug � �: (18)

The values of p1 and p2 can be obtained using Eqs. (7)
and (8) relative to producer and consumer risk respec-
tively.

3.1. WE distribution
The WE distribution, being more 
exible than the
exponential distribution, is a key life testing model
and is extensively used in engineering. We use WE
distribution to check the quality of electro-mechanical
products using an acceptance sampling plan. The
probability density function (pdf), cumulative density
function (cdf), mean (�), probability of an item failure
before the time of experiment (p1) and probability of
non-conforming items when it fails in a test batch (p2)
of WE distribution are presented in Table 1. The plans
for di�erent parameter values are shown in Tables 2{4.

3.2. WL distribution
The WL distribution is equally useful in life testing
modeling and has wider applications in areas such
as engineering, lifetime data, hydrology, economics,
(income inequality), and others. We use WL distribu-
tion to check again the quality of electro-mechanical
products using an acceptance sampling plan. The
probability density function (pdf), cumulative density
function (cdf), mean (�), probability of an item failure
before the time of experiment (p1) and probability of
non-conforming items when it fails in a test batch (p2)

Table 1. Properties of Weibull exponential and Weibull Lomax distribution.

Weibull exponential distribution Weibull Lomax distribution

cdf F (x) = 1�e
�
 

1�e�x=�



!k
1�e�

�
1



�k F (x) = 1�e
�
0B@ 1��1+ x

�

���



1CAk

1�e�
�

1



�k

pdf g (x) = k

�


 
1�e�( 1

� )k
!� 1�e� x�




�k�1
e� x� e

�
0@ 1�e� x�




1Ak�1

g (x) = k

�


0@1�e�( 1

 )k

1A
 

1��1+ x
�

���



!k�1�
1 + x

�

���
e
�
0B@ 1��1+ x

�

���



1CAk�1

� E (X) =
1P
j=0

(�1)j�2Hjk+k

(j+1)!

0@0@1�e�
�

1



�k1A
jk+k

1A E (X) =
1P
j=0

(�1)jk�
�
B
�
kj+k;1� 1

�

�� 1
(jk+j)

�
(j)!

0@0@1�e�
�

1



�k1A
jk+k

1A

p1 p1 =

1�exp

0BBBB@�
0BBBB@

1�exp
 
�
�
�1
�0

��1 a
h(y)

!



1CCCCA
k1CCCCA
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1�exp
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Table 2. Plan parameter values when 
 = 0:6 and k = 2 for Weibull exponential distribution.

a = 0:5 a = 0:3
� �=�0 L U E(I) L(p1) L(p2) L U E(I) L(p1) L(p2)

0.25 4 6 10 8.05 0.9555 0.2469 20 22 4.45 0.9519 0.0036
6 16 18 7.11 0.9521 0.0639 47 49 4.44 0.9508 0.0000
8 30 32 7.04 0.9505 0.0074 48 50 4.44 0.9713 0.0000
10 47 49 7.03 0.9508 0.0005 48 50 4.44 0.9815 0.0000

0.01 4 5 34 11.60 0.9554 0.0089 20 22 4.45 0.9519 0.0036
6 16 31 7.53 0.9503 0.0092 47 49 4.44 0.9508 0.0000
8 30 32 7.04 0.9506 0.0074 48 50 4.44 0.9713 0.0000
10 47 49 7.03 0.9508 0.0005 48 50 4.44 0.9815 0.0000

0.05 4 6 22 10.16 0.9521 0.0494 20 22 4.45 0.9519 0.0036
6 16 20 7.23 0.9518 0.0478 47 49 4.44 0.9508 0.0000
8 30 32 7.04 0.9506 0.0074 48 50 4.44 0.9713 0.0000
10 47 49 7.03 0.9508 0.0005 48 50 4.44 0.9815 0.0000

0.10 4 6 18 9.75 0.9533 0.0877 20 22 4.45 0.9519 0.0036
6 16 18 7.11 0.9521 0.0639 47 49 4.44 0.9508 0.0000
8 30 32 7.04 0.9506 0.0074 48 50 4.44 0.9713 0.0000
10 47 49 7.03 0.9508 0.0005 48 50 4.44 0.9815 0.0000

Table 3. Plan parameter values when 
 = 0:5 and k = 2 for Weibull exponential distribution.

a = 0:5 a = 0:3
� �=�0 L U E(I) L(p1) L(p2) L U E(I) L(p1) L(p2)

0.25 2 0 5 6.13 0.9612 0.2487 3 5 2.22 0.9506 0.0441
4 4 6 2.98 0.9554 0.0785 16 17 2.14 0.9525 0.0000
6 11 13 2.86 0.9519 0.0036 36 37 2.14 0.9505 0.0000
8 21 23 2.85 0.9502 0.0000 48 50 2.14 0.9607 0.0000

0.01 2 0 8 7.48 0.9572 0.0833 2 8 2.50 0.9608 0.0074
4 4 6 2.98 0.9554 0.0785 16 17 2.14 0.9525 0.0000
6 11 13 2.86 0.9519 0.0036 36 37 2.14 0.9505 0.0000
8 21 23 2.85 0.9502 0.0000 49 50 2.14 0.9615 0.0000

0.05 2 0 10 7.86 0.9541 0.0369 3 5 2.22 0.9508 0.0441
4 4 8 3.12 0.9546 0.0347 16 17 2.14 0.9525 0.0000
6 11 13 2.86 0.9519 0.0036 36 37 2.14 0.9505 0.0000
8 21 23 2.86 0.9502 0.0000 48 50 2.14 0.9607 0.0000
2 { { { { { 3 5 2.22 0.9506 0.0441
4 4 11 3.20 0.9534 0.0097 16 17 2.14 0.9525 0.0000
6 11 13 2.86 0.9519 0.0036 36 37 2.14 0.9505 0.0000
8 23 24 2.86 0.9501 0.0000 48 50 2.14 0.9607 0.0000

of WL distribution are given in Table 1. In Table 1:

h(y) =
1Z

0

k ln(1� 
y) yk�1 e�yk



�

1� e�( 1

 )k
� dy;

g(y) =

1Z
0

k�(y � 1)y�(�+1)
�

1�y��



�k�1
e�
�

1�y��



�k


�

1� e�( 1

 )k
� dy

are computed using numerical integration whereas
Hjk+k represents the (jk � k)th harmonic number

de�ned as Hjk�k =
jk�kP
i=1

1
i . The plans for di�erent

parameter values are shown in Tables 5{7. The plan pa-
rameters of the two distributions can be calculated for
di�erent values of termination time ratio (a = 0:5; 0:3),
mean ratio

�
�
�0

= 4; 6; 8; 10
�

, and consumer risk (� =
0:25; 0:01; 0:05; 0:10) of both WE and WL distribu-
tions. We take the values of the shape parameter (k)
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Table 4. Plan parameter values when 
 = 0:5 and k = 4 for Weibull exponential distribution.

a = 0:5 a = 0:3
� �=�0 L U E(I) L(p1) L(p2) L U E(I) L(p1) L(p2)

0.25 2 19 21 9.73 0.9501 0.1008 48 50 3.98 0.9823 0.0000
4 48 50 9.62 0.9912 0.0041 48 50 3.98 0.9988 0.0000
6 48 50 9.62 0.9981 0.0041 48 50 3.98 0.9997 0.0000
8 48 50 9.62 0.9994 0.0041 48 50 3.98 0.9997 0.0000

0.01 2 17 44 11.1 0.9521 0.0092 48 50 3.98 0.9823 0.0000
4 48 50 9.62 0.9912 0.0041 48 50 3.98 0.9988 0.0000
6 48 50 9.62 0.9981 0.0041 48 50 3.98 0.9997 0.0000
8 48 50 9.62 0.9994 0.0041 48 50 3.98 0.9997 0.0000

0.05 2 18 29 10.5 0.9514 0.0451 48 50 3.98 0.9823 0.0000
4 48 50 9.62 0.9912 0.0041 48 50 3.98 0.9988 0.0000
6 48 50 9.62 0.9981 0.0041 48 50 3.98 0.9997 0.0000
8 48 50 9.62 0.9994 0.0041 48 50 3.98 0.9997 0.0000

0.10 2 18 22 9.96 0.9522 0.0925 48 50 3.98 0.9823 0.0000
4 48 50 9.62 0.9912 0.0041 48 50 3.98 0.9988 0.0000
6 48 50 9.62 0.9981 0.0041 48 50 3.98 0.9997 0.0000
8 48 50 9.62 0.9994 0.0041 48 50 3.98 0.9997 0.0000

Table 5. Plan parameter values when 
 = 2; � = 1:5, and k = 3 for Weibull Lomax distribution.

a = 0:5 a = 0:3
� �=�0 L U E(I) L(p1) L(p2) L U E(I) L(p1) L(p2)

0.25 2 5 7 3.34 0.9537 0.0771 25 26 2.08 0.9512 0.0000
4 39 41 3.23 0.9505 0.0000 48 50 2.08 0.9851 0.0000
6 48 50 3.23 0.9800 0.0000 48 50 2.08 0.9953 0.0000
8 48 50 3.23 0.9911 0.0000 48 50 2.08 0.9979 0.0000

0.01 2 5 13 3.59 0.9515 0.0089 25 26 2.08 0.9512 0.0000
4 39 41 3.23 0.9505 0.0000 25 26 2.08 0.9512 0.0000
6 48 50 3.23 0.9800 0.0000 48 50 2.08 0.9851 0.0000
8 48 50 3.23 0.9911 0.0000 48 50 2.08 0.9953 0.0000

0.05 2 5 9 3.48 0.9530 0.0383 48 50 2.08 0.9979 0.0000
4 41 42 3.23 0.9505 0.0000 25 26 2.08 0.9512 0.0000
6 48 50 3.23 0.9800 0.0000 48 50 2.08 0.9851 0.0000
8 48 50 3.23 0.9911 0.0000 48 50 2.08 0.9953 0.0000

0.10 2 5 7 3.34 0.9537 0.0771 48 50 2.08 0.9979 0.0000
4 39 41 3.23 0.9505 0.0000 25 26 2.08 0.9512 0.0000
6 48 50 3.23 0.9800 0.0000 48 50 2.08 0.9851 0.0000
8 48 50 3.23 0.9911 0.0000 48 50 2.08 0.9953 0.0000

as 2 and 4 while the values of the scale parameter (
)
as 0.6 and 0.5 in the WE distribution as shown in
Tables 2, 3, and 4, respectively. We couldn't �nd plan
parameters for the shape parameter values 2 and 4 in
some cases during simulation. It is worth mentioning
that the plan parameters are not also found when the
shape parameter is 1. We take the values of the shape
parameters (k) and (�) as 3, 2 and 1.5, 3, 2, respectively
whereas the values of the scale parameter (
) as 3 and
2 in the case of the WL distribution as shown in Tables
5, 6, and 7, respectively.

The empty cells show that the plan parameters
don't satisfy the conditions. The �ndings of the above
tables for WE and WL distributions can be stated as:

1. E(I) decreases when the termination time ratio
increases;

2. E(I) decreases when the mean ratio �=�0 increases;

3. E(I) decreases as a (a constant) decreases;

4. E(I) increases as the value of the shape parameter
increases.
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Table 6. Plan parameter values when 
 = 2, � = 3, and k = 2 for Weibull Lomax distribution.

a = 0:5 a = 0:3

� �=�0 L U E(I) L(p1) L(p2) L U E(I) L(p1) L(p2)

0.25 2 0 3 2.83 0.9716 0.1405 5 6 1.44 0.9573 0.0007

4 7 8 1.82 0.9550 0.0016 19 20 1.43 0.9500 0.0000

6 15 16 1.82 0.9522 0.0000 38 40 1.43 0.9510 0.0000

8 26 27 1.82 0.9513 0.0000 34 48 1.43 0.9744 0.0000

0.01 2 0 7 3.26 0.9685 0.0065 5 6 1.44 0.9573 0.0007

4 7 8 1.82 0.9550 0.0016 19 20 1.43 0.9500 0.0000

6 15 16 1.82 0.9522 0.0000 34 44 1.43 0.9555 0.0000

8 26 27 1.82 0.9513 0.0000 40 47 1.43 0.9703 0.0000

0.05 2 0 5 3.18 0.9701 0.0318 5 6 1.44 0.9573 0.0007

4 7 8 1.82 0.9550 0.0016 19 20 1.43 0.9500 0.0000

6 15 16 1.82 0.9522 0.0000 32 33 1.43 0.9608 0.0000

8 26 27 1.82 0.9513 0.0000 34 44 1.43 0.9745 0.0000

0.10 2 0 4 3.06 0.9709 0.0683 5 6 1.43 0.9573 0.0007

4 7 8 1.82 0.9550 0.0016 19 20 1.43 0.9500 0.0000

6 15 16 1.82 0.9522 0.0000 37 50 1.43 0.9516 0.0000

8 26 27 1.82 0.9513 0.0000 37 42 1.43 0.9725 0.0000

Table 7. Plan parameter values when 
 = 3, � = 2, and k = 2 for Weibull Lomax distribution.

a = 0:5 a = 0:3

� �=�0 L U E(I) L(p1) L(p2) L U E(I) L(p1) L(p2)

0.25 2 2 3 2.23 0.9723 0.1181 4 6 1.47 0.9505 0.0010

4 8 9 1.86 0.9504 0.0009 19 20 1.46 0.9523 0.0000

6 16 17 1.85 0.9513 0.0000 40 44 1.46 0.9506 0.0000

8 27 28 1.85 0.9516 0.0000 39 48 1.46 0.9722 0.0000

0.01 2 0 7 3.42 0.9707 0.0082 4 6 1.46 0.9505 0.0010

4 8 9 1.86 0.9504 0.0009 19 20 1.46 0.9523 0.0000

6 16 17 1.85 0.9513 0.0000 36 50 1.46 0.9548 0.0000

8 27 28 1.85 0.9516 0.0000 36 49 1.46 0.9742 0.0000

0.05 2 0 5 3.31 0.9722 0.0374 4 6 1.46 0.9505 0.0010

4 8 9 1.86 0.9504 0.0001 19 20 1.46 0.9523 0.0000

6 16 17 1.85 0.9513 0.0000 36 50 1.46 0.9548 0.0000

8 27 28 1.85 0.9516 0.0000 36 49 1.46 0.9742 0.0000

0.10 2 0 4 3.183 0.9728 0.0776 4 7 1.46 0.9505 0.0010

4 8 9 1.86 0.9504 0.0009 4 6 1.46 0.9505 0.0010

6 16 17 1.85 0.9513 0.0000 19 20 1.46 0.9523 0.0000

8 27 28 1.85 0.9516 0.0000 34 37 1.46 0.9577 0.0000
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4. Plans assessment

The shape parameter of the failure rate should be
closely monitored while applying the proposed accep-
tance sampling plan. If it is increasing then the
sampling plan is reasonable. As the frequency of the
inspected items increases, the quality of conforming
items improves. A comparison between the proposed
plans and an already existing plan proposed by Aslam
et al. [11] in terms of E(I) for a = 0:5 and k = 2
is presented in Table 8. A plan with lower values of
E(I) is considered to be more e�cient. It is evident
from Table 8 that the proposed plan has lower values
of E(I) for both WE and WL distributions than those
of the existing plan. For instance, for the mean ratio
�=�0 = 4 and the consumer risk � = 0:25; the values of
E(I) for WE and WL distributions are 6.13 and 2.23
respectively while the value of E(I) for the acceptance
plan proposed by Aslam et al. [11] is 9.49. Hence, the
proposed plan is performing better than the existing
one.

5. Application in electronic industry

The data, taken from Juran and Gryna [37], shows
the failure times (hours) of 107 units of a piece of
electronic equipment. Schneider et al. [38] suggested
that there is an approximately 20 hours early failure
period and about a 100-hour wear-out period i.e.,
the period between these hours being shown fairly
constant. They considered the expected number of
failures at the end of the early period and at the
beginning of the wear-out period. In this example, the
parameters are estimated by the Maximum Likelihood
Estimation (MLE) method for WE, WL, and Weibull
distributions using R-code and are given in Table 9.

The MLEs from Table 9 are used to �nd the
expected number of conforming items, e.g. for �=�0 =
4; a = 0:5, 1 � � = 0:95, � = 0:25, we get L = 16,
U = 25; and E(I) = 1:0 for the WL distribution which
is the smallest value of E(I) as compared to those of
WE and Weibull distributions.

The practical implementation of the proposed

Table 8. Comparison of the proposed plan with the existing one in terms of E(I) for a = 0:5 and k = 2.

� �=�0

Proposed plan
based on WE

E(I)

Proposed plan
based on WL

E(I)

Existing plan
by Aslam et al. [11]

E(I)

0.25

4 6.13 2.23 9.49
6 2.98 1.86 6.47
8 2.86 1.85 6.33
10 2.85 1.85 6.29

0.10

4 7.48 3.42 11.37
6 2.98 1.86 6.89
8 2.86 1.85 6.33
10 2.85 1.85 6.29

0.05

4 7.86 3.31 14.82
6 3.12 1.86 7.31
8 2.86 1.85 6.33
10 2.86 1.85 6.29

0.01

4 { 3.18 15.36
6 3.20 1.86 7.88
8 2.86 1.85 6.51
10 2.86 1.85 6.29

Table 9. MLEs of Weibull exponential, Weibull Lomax, and Weibull distributions for failure times (hours) of 107 units of
a piece of electronic equipment along with negative log-likelihood values.

Model Estimates Negative log
likelihood values� � k 
 �

Weibull exponential { { 0.896 2.120 42.959 �52:09
Weibull lomax 1.925 0.017 0.049 2.473 { �53:67
Weibull 2.012 25.820 { { { �53:78
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Table 10. Expected number of conforming items using
estimated parameter values for Weibull exponential,
Weibull Lomax, and Weibull distributions.

Weibull exponential

� �=�0 L U E(I) L(p1) L(p2)

0.25 4 0 1 1.2971 1.0000 0.0000

6 0 1 1.2971 1.0000 0.0000

0.05 4 0 1 1.2971 1.0000 0.0000

6 0 1 1.2971 1.0000 0.0000

Weibull Lomax

0.25 4 16 25 1.0000 1.0000 0.0000

6 4 11 1.0000 1.0000 0.0000

0.05 4 15 47 1.0000 1.0000 0.0000

6 6 16 1.0000 1.0000 0.0000

Weibull

0.25 4 2 20 12.07 0.9502 0.0423

6 8 16 6.43 0.9503 0.0495

0.05 4 2 12 9.58 0.9607 0.2397

6 8 10 5.79 0.9518 0.1477

plan considering the WL distribution for the inspection
of electronic equipment is illustrated as follows. Let
Yi be the number of conforming items between the
successive second and third non-conforming items. The
states involved in this process are de�ned under the
time truncated life tests as follows:

State-1: Yi is between the two control thresholds
(i.e., 16 < Yi < 25); thus testing of the lifetime of
items continues;
State-2: Yi is greater than or equal to the upper
control threshold (i.e., Yi � 25); hence the batch is
accepted;
State-3: Yi is less than or equal to the lower control
threshold (i.e., Yi � 16); hence the batch is rejected.

From Table 10, it is obvious that the proposed plan has
lower values of E(I) for both WE and WL distributions
as compared to the Weibull distribution showing that
the Weibull-X family performs better. Moreover, the
larger negative log-likelihood value for the proposed
Weibull-X family than for the Weibull distribution
con�rms the better model performance.

6. Conclusion

The acceptance sampling plan is, indeed, the core
qualitative element in the industrial as well as service
sector since it particularly focuses on the reduction in

manufacturing tolerances and the addition of speci�-
cations. Several sampling plans have been proposed
using standard distributions in the literature. In
this research, sampling plans based on the Weibull-
X family of distributions are proposed under the time
truncated life test. The use of the Weibull-X family
of distributions not only distinguishes the present work
but it paves the way for extending it to any other family
of distributions. Moreover, the distribution parameters
are estimated using the maximum likelihood method
contrary to the existing plans where authors select
arbitrary values of the parameters. In the real-life
example, the parameters obtained by the maximum
likelihood method for Weibull Exponential and Weibull
Lomax distributions are used to design the acceptance
sampling plans and calculate the expected number of
inspected items E(I) The smaller values of E(I) of
the proposed plans than those of the sampling plan
proposed by Aslam et al. [11] suggest a smaller length of
the transient state. This will lead to a prompt decision
of accepting or rejecting a batch even after inspecting
a smaller number of items. As the sample size becomes
larger, the time and the cost of inspection of the
product also become larger. So, it is recommended to
use the proposed plan in the industry to save inspection
costs and e�ort while protecting the producer and
consumer risks.

The proposed plan can be applied in engineering
especially in failure time modeling and reliability anal-
ysis to check the quality of electro-mechanical products
whose lifespan follows the Weibull Exponential and
Weibull Lomax distributions.
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Notations

p Probability of nonconforming items
when it fails in a test batch

� Probability of Type-I error in decision
making

� Probability of Type-II error in decision
making

pij Probability of moving from state i to
state j in a single-stage

p1 Probability of conforming items when
it fails in a test batch

p2 Probability of nonconforming items
when it fails in a test batch

A Identity matrix depicting the
probabilities of staying in a state
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O Null matrix depicting the probabilities
of not reaching an absorbing state

Q Square matrix comprising transition
probabilities of going from a
non-absorbing state to another
non-absorbing state

R Matrix comprising probabilities of
moving from a non-absorbing state to
an absorbing state

M Fundamental matrix comprising
expected transitions from a non-
absorbing state to another non-
absorbing state before the occurrence
of absorption

F Absorption probability matrix
comprising long-run probabilities of
transitions from non-absorbing states
to absorbing states

U Upper threshold number of defective
items

L Lower threshold number of defective
items

I Number of items inspected
a Termination time ratio
t0 Total testing time for an item in an

experiment
�0 Mean lifetime of failure of a

nonconforming item
�1 Mean lifetime of failure of a conforming

item
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