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Abstract. CPU caches are powerful sources of information leakage. To develop practical
cache-based attacks, the need for automation of the process of �nding exploitable cache-
based side-channels in computer systems is felt more than ever. Cache template attack
is a generic technique that utilizes Flush+Reload attack in order to automatically exploit
cache vulnerability of Intel platforms. Cache template attack on the T-table-based AES
implementation consists of two phases including the pro�ling phase and key exploitation
phase. Pro�ling is a preprocessing phase to monitor dependencies between the secret key
and behavior of the cache memory. In addition, the addresses of T-tables can be obtained
automatically. At the key exploitation phase, Most Signi�cant Bits (MSBs) of the secret key
bytes are retrieved by monitoring the exploitable addresses. This study proposed a simple
yet e�ective searching technique, which accelerates the pro�ling phase by a factor of utmost
64. In order to verify the theoretical model of our technique, the mentioned attack on AES
was implemented. The experimental results revealed that the pro�ling phase runtime of
the cache template attack was approximately 10 minutes, while the proposed method could
speed up the running of this phase up to almost 9 seconds.
© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Cryptographic algorithms and protocols alone fail to
provide data security; therefore, they require a digital
platform to run securely and e�ciently. Security eval-
uation of the cryptographic algorithms against side-
channel attacks is one of the most important challenges
in the �eld of applied cryptography. Unlike the math-
ematical analyses that consider the structural weak-
nesses in the cryptographic primitives, side-channel
attacks use data leaking from the implementation of
the cryptographic algorithms.

Timing variation during the run-time program
is one of the most important sources of information
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leakage in the timing channels. Memory access and
presence of branch in the programs are costly at the
runtime. For this reason, modern processors use cache
memories and branch predictors to reduce this cost.
Such an optimization at the runtime would lead to
timing variations. Easy measurement without the need
for speci�c hardware tools for this purpose is among the
speci�c features of timing side-channel attacks. The
cache-based side channel attacks distinguish between
cache hit and cache miss events by measuring the
execution time of the target cryptographic algorithm.
The execution time di�erence between the cache hit
and cache miss leads to information leakage. Cache-
based side-channel attacks are classi�ed into three
categories namely the time-driven, trace-driven, and
access-driven attacks. In the time-driven attacks [1,2],
the attacker does not have access to the cache and
it knows the capacity of the cache memory lines.
In addition, the attacker should retrieve the secret
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key by only measuring the cryptosystem runtime.
In the access-driven attacks, the attacker is able to
evict or reload data from the cache memory [3{5].
Access-driven attacks are classi�ed into synchronous
and asynchronous categories. While the attackers in
synchronous attacks are able to trigger encryption or
decryption, they act as non-privileged adversaries in
parallel to the victim in asynchronous attacks [6{8]. In
trace-driven attacks, the attacker observed a series of
cache misses and cache hits during encryption [9].

The �rst covert channel based on the cache
memory was proposed by Hu [10]. Kelsey believed that
types of attacks done based on cache hit ratio in the
ciphers with large S-boxes were likely to happen [11].
Later, Tsunoo took into account the cache-based side-
channel attacks on the implementation of the ciphers
with large lookups and obtained the �rst results from
the experimental attacks on the block ciphers such as
DES [12]. Bernstein used the aggregate number of
cache hits and misses through indirect measurements
of the total execution time of the encryption process
in order to attack AES for the �rst time [13]. Since
then, several practical time-driven cache attacks on
AES have been proposed [14,15]. Percival et al. were
the pioneers in the access-driven attacks on RSA and
AES [16]. Yarom and Falkner [17] proposed the
Flush+Reload attack and successfully applied the at-
tack on the implementation of RSA. Ronen et al. [18,19]
performed the Flush+Reload attack on the targets us-
ing the last level cache in the virtualized environments.
Then, they employed the Flush+Reload technique to
retrieve all 16 bytes of AES in the native and cross-
VM environments, respectively [20,21]. In the next
year, G�ulmezo�glu et al. [22] improved the attack [21]
by predicting the possible candidates for the last round
of AES, thus reducing the attack noise.

In a majority of the proposed attacks, the attacker
should identify the vulnerabilities manually, which is a
considerable limitation. In response to this challenge,
Gruss et al. [23] proposed cache template attacks. The
attack makes use of the Flush+Reload technique in
order to automatically exploit the cache-based vulner-
abilities in a program running on architecture with
shared inclusive last-level caches.

1.1. Our contribution
The cache-template attack on the T-table based imple-
mentation of the AES proposed in [23] performs both
pro�ling and exploitation phases automatically. The
high runtime of the pro�ling phase is an important
limiting factor in the proposed attack. Measuring the
cache-hit ratio is the most expensive step in the attack
case.

In order to increase the runtime speed at the
pro�ling phase, the current research proposed a simple
yet e�cient method to measure the cache-hit ratio for

each address of the attacked binary and construct the
pro�le.

1.2. Outline
This paper is organized as follows. Section 2 presents
the background information. Section 3 de�nes the
cache template attacks. Section 4 presents an overview
of the proposed technique as well as the experimental
results. Finally, Section 5 concludes the study.

2. Background

2.1. CPU Caches
Cache is an essential feature of modern architecture
that increases the speed of memory access by keeping
the recently accessed instructions and data. The
cache memory is organized as multiple cache sets, each
consisting of a �xed number of cache lines [24]. Each
cache line is split into a tag, index, and block o�set. The
index is used to map the speci�c memory locations in
the cache memory sets. The most signi�cant bits of the
address determine the tag, which is used to uniquely
identify a speci�c cache line in a cache set. The block
o�set identi�es a particular location within a cache line.

In order to bridge the gap between the data re-
trieval and processor speeds, modern processors exploit
a hierarchy in the cache structure. Closest to the core
is the L1 cache which consists of separate parts for data
and instructions while other levels are uni�ed. Down to
the Last-Level Cache (LLC), the cache level gets larger
and slower. The last-level cache is generally shared
between the cores. In most of Intel processors, the
cache memory has three levels and LLC is inclusive,
which means all data in the L1 and L2 caches are also
present within the L3 cache [25]. L3 cache is shared
among all cores, and the inclusive cache is used to apply
the Flush+Reload attack [21,22,26,27], which will be
described in the next section.

2.2. Flush+Reload attack
In Flush+Reload attack on the Intel system, an at-
tacker 
ushes the cache memory using the CLFLUSH
instructions. The Flush+Reload attack on the crypto-
graphic algorithms makes use of the shared memory
and library features in the L3 cache between the
attacker and victim program. The functions of the
Flush+Reload are illustrated in the following:

1. The attacker maps the shared library (or binary)
into the virtual address space and accesses it to
facilitate loading into the cache;

2. The attacker 
ushes the shared library from the
cache and waits an appropriate amount of time for
the victim to use (or not use) the memory locations
that he has already 
ushed;

3. Once the victim is scheduled, the attacker reloads
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the previously 
ushed shared library and measures
the load time.

It was mainly observed that in case the victim
could not access the data 
ushed in the second step, the
data would not be available in the cache memory and
consequently, the attacker would measure high latency.
There are two main reasons why the Flush+Reload
method is more powerful than the previous access-
driven attacks. First, unlike previous attacks initiated
based on the cache set, the attacker here has access
to the cache line in the Flush+Reload attack, which
leads to an increase in the accuracy. Second, the
Flush+Reload attack is a cross-core attack as the L3
cache is shared among all processor cores. For this
reason, Flush+Reload method has been used in many
cache-based attacks in recent years [28{32].

2.3. Memory access in AES implementations
Advanced Encryption Standard (AES) has been
adopted by the U.S. government as an encryption
standard [33]. It is characterized by a Substitution-
Permutation Network (SPN) structure with the �xed
block size of 128 bits and key size of 128, 192 or 256
bits. The current study took into account an attack
on the AES-128. AES operates on a 4� 4 order array
of bytes called the state matrix, and most calculations
are done in GF (28). AES-128 has ten rounds, each
congaing four types of transformation namely SubByte,
ShiftRows, MixColumns, and AddRoundKey. Excep-
tionally, the last round does not have MixColumns.

Di�erent methods have been used in both hard-
ware and software to increase the speed and e�ciency
of software implementation. Given that the SubBytes
is the most expensive type to implement, the lookup
table in the software implementation is ideal to run
this operation. However, a well-known method T-table
implementation [33] has been adopted based on several
crypto libraries such as OpenSSL which precomputes
the round function. In the T-table implementation, the
four look-up tables are as follows:

T0(z) =

266402:S(z)
S(z)
S(z)

03:S(z)

3775 ; T1(z) =

266403:S(z)
02:S(z)
S(z)
S(z)

3775 ;
T2(z) =

2664 S(z)
03:S(z)
02:S(z)
S(z)

3775 ; T3(z) =

2664 S(z)
S(z)

03:S(z)
03:S(z)

3775 : (1)

Each table maps a byte z to a 32-bit value.
Consequently, the size of each T-table is 1024 bytes. If
we assume that the size of each cache line is 64 bytes,
16-cache lines are required to store one T-table. Based
on the T-tables presented in Eq. (1), we can express

the �rst nine rounds of AES, as described in Eq. (2).

T0[s(r)
0 ]� T1[s(r)

5 ]� T2[s(r)
10 ]� T3[s(r)

15 ]

�[k(r)
0 k(r)

1 k(r)
2 k(r)

3 ]jj;
T0[s(r)

4 ]� T1[s(r)
9 ]� T2[s(r)

14 ]� T3[s(r)
3 ]

�[k(r)
4 k(r)

5 k(r)
6 k(r)

7 ]jj;
T0[s(r)

8 ]� T1[s(r)
13 ]� T2[s(r)

2 ]� T3[s(r)
7 ]

�[k(r)
8 k(r)

9 k(r)
10 k

(r)
11 ]jj;

T0[s(r)
12 ]� T1[s(r)

1 ]� T2[s(r)
6 ]� T3[s(r)

11 ]

�[k(r)
12 k

(r)
13 k

(r)
14 k

(r)
15 ]; (2)

where s(r)
i represents the ith byte of the state in the rth

round in which 0 � r � 9, and 0 � i � 15. The �nal
round cannot use the tables presented in Eq. (2) due
to the absence of the MixColumns operation [34]. In
standard implementations, there are two strategies for
implementing the �nal round. One method is to de�ne
another table for the last round, and the other one is to
use the tables presented in Eq. (1) partially. Since the
�nal round comprises only two operations on the state,
i.e., SubBytes and ShiftRows, the values of S(s9

12),
S(s9

8), S(s9
4), and S(s9

0) can be calculated through
access to table T0 and use of the second element of
T0. Similarly, other bytes can be calculated through
access to tables T1, T2, and T3. The implementation
of the �nal round in the OpenSSl library version 1.1.0f
uses the second method.

3. Cache template attacks

Cache template attack on the �rst round of the AES
cipher was proposed in [23]. The attack mainly consists
of two phases: 1) pro�ling phase and 2) key ex-
ploitation phase. At the pro�ling phase, dependencies
between the processing of the secret key of the AES and
speci�c cache accesses are determined. In addition, the
attacker can accurately determine the start and end of
the T-table AES in libcrypto.so �le of the OpenSSL
through the cache hit ratio. At the key exploitation
phase, the Most Signi�cant Bits (MSBs) of the key
of each byte are retrieved. Both phases are brie
y
elaborated in the following.

3.1. Pro�ling phase
The pro�ling phase measures the cache-hit ratios on
speci�c addresses during the execution of the AES.
The cache-hit ratios are stored in a matrix called cache
template matrix which has one column per encryption
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and one row per address. In order to compute the
cache template matrix, �rst, AES encryption should be
performed to encrypt a plaintext where a speci�c byte
is a constant and �xed value, while other bytes can be
random arbitrary byte.

If we assume that the size of each cache line is
64 bytes, the upper four bits of ki can be pro�led
for each key byte ki. It is required that 16 addresses
be pro�led for each key byte ki. To be speci�c, to
determine the cache template matrix for each value of
the key byte k0, the attacker 
ushes the content of
the �rst address in the binary �le and performs AES
with a �xed key k0. The �rst byte of the plaintext
p0 is chosen 0x00, while other bytes of plaintext, i.e.,
(p1; :::; p15), are randomly chosen. Then, the content
of the same address is accessed and the execution time
is measured. In case the access time is less than the
threshold, it can be interpreted as cache hit with high
probability. The attacker performs the process several
times and computes the cache-hit ratio on the same
address. During the attack process, the cache hit ratio
for each address of the binary �le libcrypto.so is
computed. Further, the attack process is repeated for
di�erent values f0x10; 0x20; :::; 0xF0g of the �rst byte
of plaintext p0.

Each column vector of the cache template matrix
is called a pro�le. We denote the jth column vector
of the matrix by ~pj which is a pro�le for a constant
value p0 = 16:j where 0 � j � 15. Each row represents
the address range of the T-table. In other words, each
matrix element represents the cache hit ratio for a
constant p0 and a T-table address.

We should remove all rows that contain redundant
information from the matrix by pruning the rows with
a small di�erence between the minimum and maximum
cache-hit ratios. One should monitor all addresses a64:i
in the binary �le libcrypto.so during the execution
of the AES in order to �nd the start and end of the T-
tables in the mentioned �le and create a cache template
matrix. For this reason, the runtime speed of the
pro�ling phase is slow.

3.2. Exploitation phase
The attacker performs encryption several times for
di�erent chosen plaintexts under an unknown key. As a
result, 16-byte keys ki are attacked sequentially where
0 � i � 15. For example, to retrieve the upper four
bits of k0, the plaintexts are chosen randomly, except
for the four upper bits of p0 which are �xed to the same
chosen value used at the pro�ling phase.

For all addresses in the cache template matrix
resulting from the pro�ling phase, the cache activity is
constantly monitored; hence, cache hit ratio is stored
in a vector ~h. The attacker computes the similarity be-
tween ~h and each pro�le ~pj based on the cache template
matrix using the mean square error function S(~h; ~pj).

Assume that for a pro�le j0, S(~h; ~pj0) has the minimum
value. Then, we conclude that for the plaintexts with
the �xed value p0 2 f0x00; 0x10; 0x20; :::; 0xF0g, the
corresponding address of T-table is accessed. The
address of the T-table that is accessed corresponding to
p0 is determined at the pro�ling phase. By considering
the pro�le ~pj0 , we can determine which cache line has
the highest cache-hit ratio and, consequently, compute
the four most signi�cant bits of<s0>. Finally, the four
most signi�cant bits of k0 are exploited using Eq. (3).

<k0> = <p0 � s0>: (3)

The four MSBs for other bytes of the secret key
can similarly be retrieved through the aforementioned
method.

4. Our attack scenario

4.1. Modi�ed pro�ling phase
This section presents an e�ective method for monitor-
ing the addresses of binary �le libcrypto.so which
accelerates the pro�ling phase in the cache template
attack.

As described in Section 3.1, the distance between
two addresses in the monitoring step of the pro�ling
phase is considered 64 bytes by Gruss et al. [23]. In
the proposed approach, the attacker should consider
all addresses in the binary �le with the distance of
64 bytes and repeat the described process for each of
them [23]. This approach demands a notable amount
of time. Although increasing the distance between the
addresses during the search step can be an appropriate
solution to this problem, it is still challenging since the
address line of the �rst block of T0 cannot be found in
this way. Of note, restricting the distance between the
addressed to 64 bytes slows down the speed. Further,
increasing the distance leads to missing the start point
as 4096 bytes are allocated for saving the lookups. In
order to overcome this challenge, a combined approach
is suggested.

Our approach consists of two steps. First, we
trace addresses where the di�erence between two con-
secutive addresses is d bytes in which d < 4096 and the
process stops when we �nd an address where the cache
hit ratio is large enough. In the second step, we trace
the addresses in the backward direction such that the
distance between two consecutive addresses is 64 bytes
and the process stops when the cache hit ratio is small.
Obviously, this approach enjoys one major advantage,
that is, the process of �nding the address of the �rst
block of T0 can be accelerated notably.

Assume a cache line with the size of 64 bytes. The
process of modi�ed pro�ling phase for the upper four
bits of k0 is described in Algorithm 1.

First, choose the byte p0 from the set
f0x00; 0x10; 0x20; :::; 0xF0g and generate other bytes
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Algorithm 1. Pro�ling phase algorithm for k0.

of plaintext randomly. Then, consider addresses ai =
d � i for 0 � i � e=d where e denotes the address
of the last byte in the binary �le B. We repeat the
Flush+Reload process N times for each address ai and
the cache-hit ratio for ai is computed and saved as
L[p0][ai]. The threshold used in Algorithm 1 denotes
the minimum cache miss cycles which depends on the
processor. Finally, stop the process if the cache-hit
ratio for a speci�c astart = ai is larger than N=2. In
the second step, consider the addresses âi = (astart �
1024)64�i. For each address, repeat the Flush+Reload
process N times, compute the cache-hit ratio L[p0][âi],
and construct the cache template matrix M [p0][âi].

Finally, stop the process when the cache-hit ratio for
âi is less than N=2.

4.2. Experimental results
The main advantage of the proposed method and
cache template attack, compared to existing cache
attacks against AES [21,22], is that they are fully
automated. In addition, the cache template attack
requires an extremely less amount of data (only 16-
160 encryptions). Once the binary is deployed on
the target system, it performs both pro�ling and
exploitation phases automatically and returns the key
byte candidates to the attacker. Of note, contrary
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Table 1. Comparison results for the runtime speed (second) of the attacks.

Number of
the encryption

Attack [23] Our attack
(d = 1024)

Our attack
(d = 2048)

Our attack
(d = 3072)

Our attack
(d = 4096)

10 9.021 s 0.560 0.275 0.189 0.145
50 33.773 s 2.128 1.062 0.711 0.527
100 72.927 s 4.362 2.028 1.354 1.017
500 364.830 s = 6 min 19.650 9.838 6.778 4.924
1000 681.916 s = 10 min 39.343 23.090 13.216 9.832

to the attacks [21,22], the attacker at the pro�ling
phase of the cache template attack does not need prior
knowledge about the addresses of the T-table elements
and can accurately determine the start and end of the
T-table implementation in the binary �le.

At the pro�ling phase proposed in the original
paper, the attacker should construct 16 pro�les to
determine the cache template matrix M one key byte.
To construct each pro�le, Flush+Reload technique is
performed for the addresses ai where 0 � i � [ e+1

64 ]
and each time is repeated under N encryptions. Con-
sequently, the time complexity of the original method
is 16 � [ e+1

64 ] � N where e denotes the address of the
last byte in the binary �le and N denotes the number
of required encryptions. In the proposed approach, the
time complexity of the pro�ling phase is approximately
16: e+1

d �N + 16�N where d is the distance between
two consecutive addresses. The time complexity is
dominated by the term 16: e+1

d � N . According to
our expectation, the proposed approach performs faster
than original proposal by a factor of d

64 where d < 4096.
To verify the viability of the theoretical model,

the proposed approach and original method given in
[23] were employed. The experimental results are
summarized in Table 1. The proposed approach was
then tested on the openSSL library (version 1.1.0f)
under the Ubuntu 16:04 operating system performed
in the Intel Corei5-2.50 GHz.

Di�erent distance values between the two con-
secutive addresses, denoted by d, were taken into
consideration. According to Table 1, the pro�ling-
phase runtime of the cache template attack is around
10 minutes; however, the proposed method speeds up
the running of this phase up to approximately 39, 23,
13, and 9 seconds for d = 1024, 2048, 3072, and
4096 bytes, respectively. Therefore, this approach is
approximately 16, 32, 48, and 64 times faster than the
original proposal for d = 1024, 2048, 3072, and 4096
bytes, respectively.

5. Conclusion

Cache template attack is a method used to automate
the process of �nding exploitable cache vulnerabilities.
In this respect, the current study revisited the cache

template attack on the T-table-based implementation
of AES and proposed an e�cient technique to speed
up the pro�ling phase process. Finally, the proposed
approach was employed to experimentally validate the
theoretical model. The experimental results con�rmed
that the given approach was faster than the original
method.
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