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Abstract. Demand Response (DR) is proven very e�cacious in load mitigation, especially
in peak time period. DR bene�ts both consumers and system operators so that they
can reduce their payment and system operating cost, respectively. The proposed cost
minimization is currently used as a clearing mechanism with locational marginal pricing
scheme to determine consumers' payment. These clearing and pricing mechanisms are
inconsistent as the system cost is minimized, but the �nal payments are calculated based
on marginal prices. Payment Cost Minimization (PCM) auction as a price-based clearing
mechanism is envisaged to be an e�ective alternative to solve the issue. This paper
demonstrates how to include DR in PCM mechanism to further reduce the consumers'
payment. It facilitates utilizing price responsive consumers for Load Shifting DR (LSDR)
in PCM auction. The optimization problem is modeled as a mixed-integer nonlinear bi-level
programming. Duality theorem, Karush-Kuhn-Tucker conditions, and integer algebra are
used to convert such a problem into a single-level mixed-integer linear programing problem.
This problem is then solved by CPLEX solver in GAMS. The impacts of LSDR are studied
using the proposed formulation to solve the clearing problem in the case studies, deriving
promising numerical results.
© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

According to Order No. 888 issued by US Federal
Energy Regulatory Commission [1], the objective of
deregulation is to encourage investments to provide
cheaper electric power generation by competing power
producers. Under deregulation, increasing electric de-
mand imposes unlimited market power on a few large
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power plants that typically have fossil fuel generators
with fast start and ramping times, resulting in rela-
tively large Market-Clearing Prices (MCPs) both in
energy and ancillary services [2]. O�er Cost Minimiza-
tion (OCM) auction mechanism, which is similar to the
classical Unit Commitment (UC) in the case of inelastic
demand, is currently used in most electricity markets
for market clearing, while marginal pricing schemes
are then usually used to determine �nal prices [3].
When the supply bids represent the real production
costs, this type of auctions may maximize social welfare
as a factual objective. Given the strategic bidding by
producers to make greater bene�ts, this assumption
does not hold in reality. Moreover, this type of auctions
might be inconsistent with marginal pricing schemes



H. Jafarirad et al./Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 2450{2464 2451

since the total payment cost di�ers from minimizing the
total o�er costs. Therefore, consumer payments can be
signi�cantly higher than the minimized o�er costs [4].

Consumer payment minimization has been pro-
posed as a solution to the lack of incentives for suppliers
to o�er their actual costs. This auction mechanism
directly minimizes the payment costs and is considered
as an instrument to protect consumers against exercis-
ing market power by suppliers via submitting higher
production bids than their actual costs [5]. From a
mathematical viewpoint, the objective function of Pay-
ment Cost Minimization (PCM) is more complicated
than that of OCM. The reason is the existence of MCPs
in the payment terms of each consumer, leading to a
self-referred optimization problem. Nonlinear terms in
the objective function and constraints of PCM problem
may increase its complexity. In [4], the authors
proposed an augmented Lagrange Relaxation (LR) em-
ploying surrogate optimization method to solve PCM
problem. Obtained results were near-optimal and some
modi�cations should be made to guarantee the solution
feasibility. Bragin et al. [6] and Chang [7] applied
an almost identical optimization technique with some
modi�cations to include the impact of transmission
network. Moreover, in the literature, PCM has been
addressed both with and without transmission network
constraints [8]. In case of no transmission constraints,
a marginal pricing scheme yields a uniform price as
MCP [9]; this �nding is compared with the results
of OCM mechanism. Authors in [10] formulated the
problem of optimization as a general bi-level pro-
gramming problem, in which the resulting bi-level
programming formulation was transformed into an
equivalent single-level mixed integer linear program-
ming through Karush-Kuhn-Tucker (KKT) optimality
conditions through the conversion of some nonlinearity
into the linear equivalent.

Considering the element of transmission network
constraint makes the problem more complicated, where
each bus of the network has its own Locational
Marginal Price (LMP) [11]. The authors proposed a
method for solving joint energy and reserved PCM
auction by incorporating network security constraints.
In [12], the behavior of LMP under PCM and OCM
mechanisms was compared, demonstrating that the
sensitivity of LMPs under the PCM mechanism was
lower than that under the OCM mechanism. Some
uncertainties such as load 
uctuation and component
unavailability were added to the main problem in [13],
in which the proposed model generated a tri-level
optimization problem that was solved after converting
into an equivalent single-level programming problem.
In another study, a PCM unit commitment model
was proposed to incorporate the uncertainty associated
with wind generation [14], while the optimization prob-
lem was solved using GA, where the global optimality

Figure 1. Demand response e�ect on MCP [16].

could not be guaranteed. It should be noted that none
of the aforementioned studies did not consider the
demand side participation in their models.

It should be noted that in the absence of demand-
side participation, price spikes, supply shortages, and
market power may occur seriously. If retail consumers
purchase electricity based on time-invariant prices,
they have no incentive to respond to the wholesale
prices. As shown in Figure 1, when the supply is
restricted for some reasons, e.g., unexpected generation
outage and/or transmission congestion, substantial
reduction of price (P � P 0) may take place even if a
small fraction of the load (Q � Q0) responds to price
variations [15].

Some studies have investigated the bene�ts of
Demand Response (DR). In [16], an economic model
based on price elasticity and consumer bene�t function
was introduced for analyzing incentive-based DR pro-
grams on the load curve characteristics improvement.
Time-based DR in [17] and generator rescheduling as a
demand side bidder in [18] were introduced as proper
tools for congestion management. Emergency DR Pro-
gram (EDRP) as an incentive-based DR was included
in the unit commitment problem in [19]. Incorporation
of Load Shifting Demand Response (LSDR) in the secu-
rity constraint unit commitment problem was proposed
in [20], while in [21] and [22], stochastic models of
DR for reserve scheduling were discussed. A dynamic
economic model of DR programs based on the concept
of the 
exible elasticity and the consumer bene�t
function was proposed in [23]. An e�ective mechanism
for demand-side participation in electricity market is
proposed as a step of utmost importance in market
design, since some large consumers may have storage
facilities and the ability of direct participation in the
wholesale market. In this condition, they can produce
and store electricity during low-price periods and may
use it over high-price periods [24]. Price responsive
loads were incorporated into PCM mechanism by the
following studies. In [25], demand bids were considered
in a two-layer structure in case no solution methodol-
ogy was provided. Although some simple nonstandard
pricing schemes were applied in [26] and [27], such a
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simpli�ed pricing scheme could not be implemented
in practice. It should be noted that authors in [28]
pointed out the main advantage of DR, i.e., load
shifting capability while it is not employed. In fact, the
demand-side bids might be rejected if their values were
lower than the MCPs.

Here, this study utilizes a particular type of DR,
so-called LSDR. A partial LSDR is implemented in
a day-ahead wholesale PCM-based electricity market.
Through the application of this mechanism, the ef-
fects of the percentage of load shifting demand on
the alleviated load pro�les and MCP are discussed
next. Given the product of MCPs and consumption
levels as two continuous decision variables in associa-
tion with integer decision variables, the optimization
is a nonconvex problem that can be treated as a
Mixed Integer Non-linear Problem (MINLP). Similar
to studies in [29], a bi-level programing framework was
applied here to schedule the generating units where
the price responsive loads were determined at the
upper level along with the unit commitment status
and generation/consumption levels were speci�ed at
the lower level. Bi-level programming is �t to model
such problems in which one agent, the leader, optimizes
its objective function (upper-level problem) while the
second agent, the follower, reacts by optimizing its
own objective function (lower-level problem). These
models �nd relevancy in these situations where the
actions of the follower a�ect the decision-making of
the leader. This is the case in price-based market
clearing: The selection of accepted bids and o�ers
(upper-level problem) depends on MCPs (lower-level
problem), which are in turn determined based on the
set of accepted bids and o�ers. MCPs at di�erent hours
are computed as the shadow prices of power balance
constraints. By applying a primal-dual transformation
to a mixed integer nonlinear problem that is converted
to a mixed integer nonlinear problem, it is converted to
a single level mixed integer nonlinear problem [30]. Bi-
linear terms of the single-level mixed integer nonlinear
problem regarding a product of energy prices and con-
sumption levels are linearized by use of complementary
slackness of KKT optimality conditions at lower levels.
In fact, a mixed integer linear problem could be solved
via shelf branch and bound method, which ensured
the optimality [31]. Here, a pseudo-novel approach to
LSDR on a portion of forecasted load in PCM auction
mechanism was proposed. Other than the load balance
and capacity constraints, the intertemporal constraints
of generation scheduling were also incorporated in the
proposed methodology.

The remaining parts of the paper are organized as
follows: Section 2 describes a load shifting model and
its mathematical constraints. Section 3 presents the
formulation of scheduling problem with price-sensitive
demands, while Section 4 describes the proposed solu-

tion methodology. Simulation studies are carried out,
while numerical results and discussions are presented
in Section 5. Finally, concluding remarks and possible
future works are provided in Section 6.

2. LSDR model

As mentioned in the introduction, the DR program
employed in this paper as part of total forecasted load
(P djt) is suitable for industrial consumers with storage
facilities. The other types of loads, e.g., residential
loads, are considered as inelastic loads (Dz

jt), as shown
by Eq. (1):

Dtotal
jt = Dz

jt + P djt: (1)

The basic concept of the proposed modeling is that this
type of consumers may produce and store electricity
during the low-price periods in order to meet the
demand in high-price periods. Load Participation
Factor (LPF) is then de�ned as the ratio of price
responsive demand to the total demand (Eq. (2)):

LPF =
P dt

Dtotal
t

: (2)

As shown in Figure 2, total load in the auction
framework consists of two categories: the price taking
demand and the price responsive demand. Price taking
demand will receive a speci�ed volume (Dz

t ) for all
hours of the scheduling horizon.

The bene�t of consuming demand by price taking
bidders for computational reasons is taken as zero. The
price responsive bid allows consumers to submit their
bids for the amount of their demand that are sensitive
to electricity price. Therefore, similar to generators'
o�er blocks, consumers' multi-segment bids have two
important characteristics: bene�t of consuming de-
mand and consumption limits. Eq. (3) shows a gross
surplus of price-sensitive loads based on the accepted
demand side bids (P dbjt) with respect to the marginal
values that consumers submit for these bids (Cdbjt):

GSt =
X
j

X
b

CdbjtP
d
bjt: (3)

Figure 2. Price taking and price responsive demand [25].
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In Eq. (3), b is the index of a bidding block and j is
the index of a demand-side bidder. Total consumption
level for price responsive demand (P djt) is provided in
Eq. (4):

P djt =
X
b2�j

P dbjt: (4)

Hourly consumption limit exhibited by Eq. (5) and
daily energy requirement limit shown in Eq. (6) are
two constraints for the load shifting characteristics of
price-sensitive demands:

VjtP djtmin � P djt � VjtP djtmax; (5)

0 �X
t

P djt � Ej ; (6)

0 � P dbjt � P dbjtmax: (7)

P djtmin and P djtmax are the minimum and maximum
amounts of active power that can be consumed during
scheduling period t. Vjt is the acceptance status of de-
mand j and Ej is the maximum amount of energy that
is required by bidder j over the optimization horizon.

3. PCM with LSDR problem formulation

In this section, the mathematical formulation of the
optimization problem is presented. As mentioned
before, the problem is for energy scheduling of day-
ahead pool-based electricity market considering LSDR
based on PCM auction [32]. All inter temporal con-
straints of generation and marginal pricing scheme
except transmission constraints are modeled in this
section. A bi-level programing technique is modeled
based on the following mathematical statements [33].

Higher level problem:

min
X
t2T

(�tDt +
X
i2I

(SUit + SDit + VitONLit )) (8)

s.t:

SUit � Osuit (Vit � Vit�1) i 2 I; t 2 T; (9)

SDit � Osdit (Vit�1 � Vit) i 2 I; t 2 T; (10)

LiX
t=1

(1� Vit) = 0 i 2 I;

t+UTi�1X
q=t

Viq � UTi(Vit � Vit�1)

i 2 I; t = (Li + 1):::(nT � UTi + 1); (11)

nTX
q=t

(Viq � (Vit � Vit�1)) � 0

i 2 I; t = (nT � UTi+2):::(nT )

Li = min(nT ; (UTi � UT 0
i )Vi0)

FiX
t=1

(Vit) = 0 i 2 I;

t+DTi�1X
q=t

(1� Viq) � DTi(Vit�1 � Vit)

i 2 I; t = (Fi + 1):::(nT �DTi + 1); (12)

nTX
q=t

(1� Viq � (Vit�1 � Vit)) � 0

i 2 I; t = (nT �DTi + 2):::(nT )

Fi = min (nT ; (DTi �DT 0
i )(1� Vi0);

Vit 2 (0; 1) i 2 I; t 2 T; (13)

Vjt 2 (0; 1) j 2 J; t 2 T: (14)

The on-o� status of generating units (Vit) and on-o�
status of consumers o�er acceptance (Vjt) which are
the binary variables of the upper level. The start-
up (SUit) and shut-down (SDit) costs of generation
unit i are determined according to the o�ers submitted
by this unit (Osdit , Osuit ) and units status following
Eqs. (9){(10). The upper level problem minimizes
consumer payment and comprises two terms. The �rst
term is the energy payment of consumers in which
�t and Dt are continuous variables associated with
hourly energy marginal price and consumption level.
This term makes the problem complicated due to the
bilinear product of two continuous variables. The
second term is related to the start-up, shut-down, and
no-load costs of generation units. These costs are fully
compensated in the objective function, while minimum
up- and down-time constraints are provided in Eqs.
(11) and (12), respectively. The integrality constraints
of binary variables are provided in Eqs. (13) and (14).

Lower level problem:

max
�X

t

(GSt �OCt) =
�X

t

X
j

X
b

CdbjtP
d
bjt

�X
t

X
i

X
o

CgoitP
g
oit

��
; (15)

s.t.:
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X
j2J

Dz
jt +

X
j2J

P djt =
X
i2I

P git t 2 T (�t); (16)

VitP gitmin � P git � P gitmaxVit

t 2 T; i 2 I (�loit ; �
up
it ); (17)

0 � P goit � P goitmax

t 2 T; i 2 I; o 2 Oi (�looit; �
up
oit); (18)

P git � P git�1 +RUiVit � P gitmax(1� Vit)
t 2 T; i 2 I (�it); (19)

P git � P git�1 �RDiVit�1 � P gitmax(1� Vit�1)

t 2 T; i 2 I (�it); (20)

P git � P gitmaxVit+1 +RDi(Vit � Vit+1)

t = 1 � � �nT�1; i 2 I ("it); (21)

P git =
X
o2Oi

P goit t 2 T; i 2 I (
it); (22)

VjtP djtmin � P djt � VjtP djtmax

t 2 T; j 2 J (�lojt; �
up
jt ); (23)

0 �X
t

P djt � Ej j 2 J (�loj ; �
up
j ); (24)

P djt =
X
b2�j

P dbjt t 2 T; j 2 J (#jt); (25)

0 � P dbjt � P dbjtmax

t 2 T; j 2 J; b 2 �j (�lobjt; �
up
bjt): (26)

The lower-level objective function, Eq. (15), is consid-
ered as Social Welfare Maximization (SWM), which is
the di�erence between consumer surplus and genera-
tion cost according to the o�ered bid blocks. This
optimization is, in fact, a multi-period economic dis-
patch considering that the on/o� variables Vit and Vjt
are supplied by the upper level optimization. Power
generations (P git), power consumptions (P djt), awarded
levels of generation o�er (P goit), and demand bidding
blocks (P dbjt) are continuous variables at this level.
Generation load balance at each hour (Eq. (16)), the
capacity limitations of generating units (Eq. (17)),
generation limit in each o�er block (Eq. (18)), ramp-
up and start-up ramp rate (Eq. (19)), ramp-down (Eq.
(20)) and shut-down ramp rate (Eq. (21)) form a list
of generation-side constraints in this optimization. It

is assumed that start-up and ramp-up rates are the
same. The same assumption applies to ramp-down
and shut-down ramp rates. Eqs. (22)-(26) describe the
consumption constraints as mentioned before.

4. Solution methodology

In bi-level programming, any solution procedure at-
tempting to �nd a global optimum must devise a sys-
tem to enumerate the solution space. Such an approach
cannot be taken for large-scale systems. Without
such state enumeration, only the local optima can be
guaranteed. In this paper, following Eq. (28), the
proposed solution methodology is to convert the mixed
integer nonlinear bi-level program with bilinear terms
introduced in the previous section into an equivalent
single-level mixed integer linear problem. To this end,
the duality theorem of linear programming, integer
algebra, and KKT optimality conditions are employed
through the following two-step procedure.

Step 1: nonlinear single-level equivalent
In the bi-level formulation of the original problem, the
lower level problem is a linear programming problem
because lower level problem, i.e., Eqs. (15)-(26), is pa-
rameterized in terms of the upper level binary variables.
Therefore, it can be replaced by its equivalent KKT
optimality conditions, where the Lagrangian function
associated with the lower level is presented in Eq. (27):

L
�
P git; P

g
oit; P

d
jt; P

d
bjt; �t; �

lo
it ; �

up
it ; �

lo
oit; �

up
oit;

�it; 
it; �it; "it; #jt; �lojt; �
up
jt ; �

lo
j ; �

up
j ; �

lo
bjt; �

up
bjt)

=�X
t

X
j

X
b

CdbjtP
d
bjt +

X
t

X
i

X
o

CgoitP
g
oit

+
X
t

�t(
X
j

Dz
jt +

X
j

P djt �
X
i

P git)

+
X
t

X
i

(�loit (�P git + VitP gitmin)

+ �upit (P git � VitP gitmax))�X
t

X
i


it(P git

�X
o

P goit) +
X
t

X
i

X
o

(�upoit(P
g
oit � P goitmax)

� �looitP goit) +
X
t

X
i

�it(P git � (P git�1 +RUiVit

� P gitmax(1� Vit)))
+
X
t

X
i

�it(�P git + P git�1 �RDiVit�1
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� P gitmax(1� Vit�1)) +
X
t

X
i

"it(P git

� (P gitmaxVit+1 +RDi(Vit � Vit+1)))

+
X
t

X
j

(�lojt(�P djt + VjtP djtmin))

+
X
t

X
j

�upjt (P djt � VjtP djtmax)

�X
j

(�jlo
X
t

P djt) +
X
j

(�upj (
X
t

P djt �Ej))

�X
t

X
j

(#jt(P djt �
X
b2�j

P dbjt))

+
X
t

X
j

X
b

(�upbjt(P
d
bjt � P dbjtmax)� �lobjtP dbjt):

(27)

Primal feasibility constraints (16){(26), dual feasibility
constraints (28){(38), and complementary slackness
conditions and KKT optimality conditions replace the
lower level.

@L
@P git

= 0! ��t � �loit + �upit � 
it + �it � �it+1

� �it + �it+1 = 0 t = 1:::nT�1; i 2 I (28)

@L
@P git

= 0! ��T � �loiT + �upiT � 
iT + �iT � �iT = 0

t = nT ; i 2 I; (29)

@L
@P djt

= 0! �t � �lojt + �upjt � �loj + �upj � #jt = 0

t 2 T; j 2 J; (30)

@L
@P goit

= 0! Cgoit � �looit + �upoit + 
it = 0

t 2 T; i 2 I; o 2 Oi; (31)

@L
@P dbjt

= 0! �Cdbjt + #jt � �lobjt + �upbjt = 0

t 2 T; j 2 J; b 2 �j ; (32)

�loit ; �
up
it � 0 t 2 T; i 2 I; (33)

�looit; �
up
oit � 0 t 2 T; i 2 I; o 2 Oi; (34)

�it; �it; "it � 0; t 2 T; i 2 I; (35)

�lojt; �
up
jt � 0 t 2 T; j 2 J; (36)

�lojt; �
up
jt � 0 t 2 T; j 2 J; (37)

�lobjt; �
up
bjt � 0 t 2 T; j 2 J; b 2 �j : (38)

Based on the �ndings obtained in [34], linearization of
complementary slackness conditions adds some more
binary variables prolonging the computational time.
These complementary slackness conditions help replace
the nonlinear terms of the objective function applying
strong duality conditions in Eq. (39):

�X
t

X
j

X
b

CdbjtP
d
bjt +

X
t

X
i

X
o

CgoitP
g
oit

=
X
t

�t(
X
j

Dz
jt)�

X
t

X
i

(�loit (VitP
g
itmin)

+ �upit (�VitP gitmax))

�X
t

X
i

X
o

(�upoit(P
g
oitmax))

�X
t 6=1

X
i

�it((RUiVit � P gitmax(1� Vit)))

�X
t 6=1

X
i

�it(RDiVit�1 + P gitmax(1� Vit�1))

�X
t

X
i

"it((P gitmaxVit+1 +RDi(Vit � Vit+1)))

+
X
t

X
j

(�lojt(VjtP
d
jtmin))

�X
t

X
j

�upjt (VjtP djtmax)�X
j

(�upj (Ej))

�X
t

X
j

X
b

(�upbjt(P
d
bjtmax)� �lobjtP dbjt)

+
X
i

�i1(P gi0 �RDiVi0 � P gi1 max(1� Vi0))

+
X
i

�i1(P gi0�RUiVit+P gi1 max(1�Vi1)):
(39)

The resulting single-level problem is still nonlinear due
to the product terms of binary variables and contin-
uous Lagrange multipliers associated with the lower-
level problem in the strong-duality equation. These
nonlinear terms are linearized following [35] in Eq. (40):

�X
t

X
j

X
b

CdbjtP
d
bjt +

X
t

X
i

X
o

CgoitP
g
oit

=
X
t

�t(
X
j

Dz
jt)
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�X
t

X
i

(aitP gitmin � bitP gitmax)

�X
t

X
i

X
o

(�upoit(P
g
oitmax))

�X
t 6=1

X
i

(cit(RUi � P gitmax)� �itP gitmax)

�X
t 6=1

X
i

(dit(RDi � P gitmax) + �itP gitmax)

�X
t 6=T

X
i

(fit(P gitmax �RDi) + eitRDi)

+
X
t

X
j

(gitP djtmin)�X
t

X
j

(hitP djtmax)

�X
j

(�upj (Ej))�X
t

X
j

X
b

(�upbjt(P
d
bjtmax)

� �lobjtP dbjt)
+
X
i

�i1(P gi0�RDiVi0 � P gi1 max(1�Vi0))

+
X
i

(ci1(�RUi + P gimax)� �i1(P gi0 + P gimax)); (40)

0 � ait � �loitmaxVit; (41)

0 � �loit � ait � (1� Vit)�loitmax; (42)

0 � bit � �upitmaxVit; (43)

0 � �loit � bit � (1� Vit)�upitmax; (44)

0 � cit � �itmaxVit; (45)

0 � �it � cit � (1� Vit)�itmax; (46)

0 � dit � �itmaxVit; (47)

0 � �it � dit � (1� Vit)�itmax; (48)

0 � eit � "itmaxVit; (49)

0 � "it � eit � (1� Vit)"itmax; (50)

0 � fit � "itmaxVit+1 t =2 nT ; (51)

0 � "it � fit � (1� Vit+1)"itmax t =2 nT ; (52)

0 � gjt � �lojtmaxVjt; (53)

0 � �lojt � gjt � (1� Vjt)�lojtmax; (54)

0 � hjt � �upjtmaxVjt; (55)

0 � �upjt � hjt � (1� Vjt)�upjtmax: (56)

Eqs. (41){(56) are equations of integer algebra tech-
nique used for linearization of the product of binary and
continuous variables. Therefore, Eqs. (16)-(26), (28)-
(38), and (40)-(56) represent an equivalent mixed inte-
ger linear form for the lower-level problem. The upper
bounds of dual variables are also required in order to
solve this optimization. Devising a method to properly
determine these parameters is of premium importance
through which overestimation slows down the solution
and underestimation may render the optimization in-
feasible. Therefore, this study uses the values of the
corresponding Lagrange multipliers resulting from the
optimal solution to the associated OCM problem.

Step 2: Single-level linear equivalent
Nonlinearity of the equivalent formulation lies in bi-
linear terms in the formulation of energy payment.
A methodology based on binary expansion approach
[36] and Schur's decomposition [37] were proposed for
linearization of bilinear products, but such techniques
are based on approximation and necessitate the in-
clusion of additional binary variables. This section
applies the strong-duality theory of linear programming
and KKT optimality condition and integer algebra for
linearization of these bilinear terms. Using Eq. (30),
Eqs. (57) and (58) are determined:X
t2T

�tDtotal
t =

X
t2T

�t
X
j2J

(Dz
jt + P djt); (57)

X
t

X
j

�tP djt =
X
t

X
j

(�lojt � �upjt + �loj � �upj

+ #jt)P djt: (58)

Using complementary slackness conditions associated
with Constraints (23) and (24) at the lower level, Eqs.
(59)-(62) are derived:

�lojt(P
d
jt � VjtP djtmin) = 0! �lojtP

d
jt = �lojtVjtP

d
jtmin;

(59)

�upjt (P djt � VjtP djtmax) = 0! �upjt P
d
jt = �upjt VjtP

d
jtmax;

(60)

�loj
X
t

P djt = 0; (61)
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Figure 3. Solution steps 
owchart.

�upj (Ej �X
t

P djt) = 0! �upj
X
t

P djt = �upj Ej : (62)

Based on Eqs. (32) and (26), Eqs. (63)-(65) are derived:

#jt = Cdbjt + �lobjt � �upbjt; (63)

�lobjtP
d
bjt = 0; (64)

�upbjt(P
d
bjt � P dbjtmax) = 0! �upbjtP

d
bjt

= �upbjtP
d
bjtmax: (65)

Using Eqs. (58)-(65), the energy payment term in Eq.
(57) is expressed in Eq. (66):X
t2T

�t
X
j2J

(Dz
jt + P djt) =

X
t

X
j

�tDz
jt

+
X
t

X
j

(�lojtVjtP
d
jtmin � �upjt VjtP djtmax)

�X
j

�upj Ej �
X
t

X
j

X
b

�upbjtP
d
bjtmax

+
X
t

X
j

X
b

CdbjtP
d
bjt: (66)

In Eq. (66), there are two nonlinear terms associated
with the product terms of binary and continuous
variables. These terms are linearized in Eqs. (67)-(71)
using integer algebra technique:X
t2T

�t
X
j2J

(Dz
jt + P djt) =

X
t

X
j

�tDz
jt +

X
t

X
j

(kjtP djtmin � LjtP djtmax)

�X
j

�upj Ej �
X
t

X
j

X
b

�upbjtP
d
bjtmax

+
X
t

X
j

X
b

CdbjtP
d
bjt;

(67)

0 � kjt � �lojtmaxVjt; (68)

0 � �lojt � kjt � (1� Vjt)�lojtmax; (69)

0 � Ljt � �upjtmaxVjt; (70)

0 � �upjt � Ljt � (1� Vjt)�upjtmax: (71)

Finally, the single-level mixed integer linear equivalent
of the original bi-level nonlinear program is presented
in Eq. (72):

min(
X
t

X
j

�tDz
jt +

X
t

X
j

(kjtP djtmin � LjtP djtmax)

�X
j

�upj Ej�
0@X

t

X
j

X
b

�upbjtP
d
bjtmax�CdbjtP dbjt

1A
+
X
t2T

X
i2I

(SUit + SDit + VitONLit ));
(72)

subject to Eqs. (9)-14), (16)-(26), (28)-(38), (40)-(56),
and (68)-(71).

The 
owchart of all the steps is depicted in
Figure 3.

5. Simulation studies and results analysis

5.1. RTS-based case
In this section, the proposed market clearing mecha-
nism is implemented on the 24-bus IEEE Reliability
Test System (RTS) comprising 32 generating units in
24-hour load variations. The economic viability of
demand shifting and its impact on market with PCM
auction are evaluated. The results are also compared
with those achieved by conventional SWM proposed
in [24]. The e�ects of LSDR in comparison with
price-volume biding DR model are illustrated. Data
generation and all inter temporal constraints are given
in Table 1.

It is assumed that generating units submit four
o�er blocks associated with their incremental heat
rates. The hourly total forecasted system demand is
shown in Table 2, in which the load pro�le corresponds
to the Wednesday of week 35 [38].
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Table 1. Generating units' data for RTS.

Unit
group

Number of
units

P gitmin

(MW)
P gitmax

(MW)
RUi

(MW/h)
RDi

(MW/h)
UTi
(h)

DTi
(h)

UTi0

(h)
DTi0

(h)
Osuit
($)

Osdit
($)

ONLit
($)

U12 5 2.4 12 12 12 4 2 0 2 87 50 56
U20 4 15.8 20 20 20 1 1 0 1 15 10 467
U50 6 0 50 50 50 1 1 0 1 0 0 0
U76 4 15.2 76 76 76 8 4 0 4 715 430 174
U100 3 25 100 100 100 8 8 0 8 575 326 456
U155 4 54.25 155 155 155 8 8 0 8 312 210 539
U197 3 68.95 197 180 180 12 10 0 10 1019 600 1324
U350 1 140 350 240 240 24 48 0 24 2298 950 1411
U400 2 100 400 400 400 1 1 0 1 0 0 531

Table 2. Daily load pro�le.

period Forecasted
load (MW)

Period Forecasted
load (MW)

Period Forecasted
load (MW)

1 1277 9 1926 17 1824
2 1257 10 2007 18 1865
3 1216 11 2027 19 1946
4 1176 12 2007 20 1987
5 1196 13 1885 21 1946
6 1318 14 1865 22 1824
7 1459 15 1824 23 1622
8 1723 16 1784 24 1419

The demand shifting part of total load and param-
eters of bidding behavior are described by the following
equations:

Ej =
LPF
K

X
t

Dtotal
t ; (73)

P djtmax = Ej ; (74)

P djtmin = 0: (75)

Three bidding blocks are considered for each one of all
K bidders between the average and highest quantities
of generating unit o�er blocks as descending staircase
form with a negative slope. It is assumed that all
generation o�ers and demand bids are time invariant.
The simulation was performed using a computer with
2.67GHZ core i5 processor with 4GB of RAM using
CPLEX [37] in GAMS 25.1.3 [39,40]. The results of the
proposed auction mechanism are �rst compared with
those of conventional SWM mechanism for LPF = 0,
LPF = 0:02, and K = 10. Figures 4 and 5 show that
through the PCM auction mechanism, electricity prices
at some hours are lower than those found using SWM
mechanism. This leads to the reduction of consumer
payment. Also, as can be seen, because of load shifting
capability, some loads of peak hours are shifted to light
load hours. This leads to lower electricity prices at
these hours. To gain a better perspective of demand

Figure 4. Electricity prices for LPF = 0.

Figure 5. Electricity prices for LPF = 0:02.

shifting e�ects from the economic point of view, the
index of E�ective Cost (EC) is used based on Eq.
(76). This index represents the average marginal cost
of consumers.



H. Jafarirad et al./Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 2450{2464 2459

Table 3. The results of PCM and SWM mechanisms.

PCM with DR SWM with DR PCM without DR SWM without DR

Payment ($) 605453 649308 633130 655153
Social welfare ($) �311129 �310228 �346561 �345028
EC ($/MWh) 12.91 14.09 13.53 14.14

EC =

P
t2T

MCPt � (Dz
t + P dt )P

t2T
(Dz

t + P dt )
: (76)

Table 3 shows that at an equal consumption level,
the total payments of consumers in PCM auction with
DR and e�ective cost are 6.76% and 8.37% lower than
those obtained under SWM maximization mechanism,
while the social welfare is reduced by 0.29% under
PCM mechanism. As mentioned before, consumers'
bene�t of price taking is considered zero. This leads to
negative social welfare quantities.

The economic viability of the proposed auction is
evaluated next at di�erent amounts of LPFs. As can be
seen in Figure 6 and 7, increasing the load participation
makes the total load pro�le smoother. This, in turn,
implies that some amount of load shifts from peak
to light load periods and subsequently reduces the
electrical energy price at peak load hours.

In [28], with the application of price-volume

Figure 6. Load pro�le resulting from the proposed
method with di�erent LPF.

Figure 7. Electricity price resulting from the proposed
method with di�erent LPF.

Figure 8. Load-shifting DR versus price-volume DR with
PCM auction.

Table 4. Load shifting DR versus price-volume DR for
LPF = 0:1.

Total daily
load (MW)

Total consumers
payment($)

Load-shifting DR 40392 566852
Price-volume DR 40263 642606

bidding DR, some bids were rejected and energy re-
quirement remained unsatis�ed. According to Figure 8
and Table 4, for LPF = 0:1 in the proposed method,
the total load is unchanged and equal to the total
forecasted load.

It should be mentioned that at higher LPF
levels, some demand shifting bids may be rejected.
Nevertheless, the total unsatis�ed demand with the
demand shifting bidding mechanism is not greater than
the case with price-volume bids.

5.2. 118-Bus System
The second case study is proposed based on the IEEE
118-bus system [41,42] and comprises 54 generating
units and 91 consumers over a 24-hour timespan.
Generation and load data were found in [42]. Similar to
the RTS-based case, o�ers and bids were not modi�ed
throughout the scheduling horizon. Three-block energy
o�ers were obtained from the linearization of the
quadratic production costs. It should be noted that
generation data, o�ers, and bids remain unchanged
over the timespan. For this case study, LPF = 0:05
and K = 91. Table 5 provides the problem size in
terms of the numbers of constraints, binary variables,
and real variables.

As can be seen in Table 6, by using a stopping
criterion of 0% optimality gap, the proposed approach
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Figure 9. Market-clearing prices and system demand for 118-bus system with and without DR.

Figure 10. System demand and market-clearing prices for 118-bus system with and without DR.

Table 5. Problem dimensions.

No of real
variables

No of binary
variables

No of
constraints

118-bus 73107 3480 82814

24-bus RTS

case
26573 1008 31270

Table 6. Optimal solution time comparison.

PCM with DR
method(s)

SWM with DR
method(s)

118-bus 22.32 1.61

24-bus RTS

case
46.64 6.18

required 22.32 s to attain the optimal solution for the
118-bus case, while SWM method needed 1.61 s. It
is worth mentioning that the computing time duration
required to attain such an optimal solution is shorter
than that required for the RTS-based case. This
is an indication of the case-dependent behavior of

Table 7. E�ective cost index for 118-bus system.

PCM with DR PCM without DR

EC ($) 19.01 19.38

the branch-and-cut algorithm. Hourly market-clearing
prices associated with and without LSDR are depicted
in Figures 9 and 10. These �gures also show the
hourly system demand. Note that market-clearing
prices follow the shape of the demand curve based on
Figure 9.

As mentioned before, DR reduces the consumer
payment as seen in Table 7.

6. Conclusion

In this paper, a framework was presented to incorpo-
rate the Load Shifting Demand Response (LSDR) as
part of load in the day-ahead pool-based electricity
market based on consumers' payment minimization
auction. The e�ects of such Demand Response (DR)
modeling on daily load pro�le, total consumption of
consumers, and energy prices based on Payment Cost
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Minimization (PCM) auction mechanism were ana-
lyzed. The resulting bi-level mixed integer nonlinear
problem with bilinear terms was converted into a
single-level mixed integer linear form and was e�ec-
tively solved with zero optimality gap in an acceptable
time. Compared to the previous works, the proposed
modeling approach reduced the risks of consumers
going unbalanced after the closure of the gate and ben-
e�ted all consumers, even those that do not participate
in the load shifting activities. The next step is to
develop a mathematical formulation for the proposed
approach considering network and revenue constraints.
Further research will also be devoted to the analysis of
joint energy and spinning reserve PCM markets as a
crucial ancillary service.

Nomenclature

PCM Payment Cost Minimization
OCM O�er Cost Minimization
MCP Market-Clearing Price
LSDR Load Shifting Demand Response
EDRP Emergency Demand Response Program
LPF Load Participation Factor
SWM Social Welfare Maximization

Indices
i Generating unit
j Demand
t Time
b Demand bid block
o Generation o�er block

Sets
I Generation unit indices
J Consumer indices
T Time period indices
�j Demand bid block indices of consumer

j
Oi Generation o�er block indices of unit i

Continuous variables
�t Dual variable of power balance

equation
P git Power output of unit i in period t

P djt Power consumption of consumer j in
period t

P goit Generation level awarded to unit i of
block o

P dbjt Consumption level awarded to
consumer j of block b

SUit Payment for the start-up of unit i in
period t

SDit Payment for the shut-down of unit i in
period t

�loit Dual variable of minimum power
generation of unit i constraint

�upit Dual variable of maximum power
generation of unit i constraint

�looit Dual variable of minimum power
generation of unit i of block o

�upoit Dual variable of maximum power
generation of unit i of block o

Constants
P gitmin Minimum generation power
P gitmax Maximum generation power

P djtmin Minimum consumption power

P djtmax Maximum consumption power

P dbjtmax Maximum consumption of bidded
block

P goitmax Maximum generation of o�ered block

Cdbjt Price of bidded block b of consumer j

Cgoit Price of o�ered block o of unit i
RUi Ramp-up rate of unit i
RDi Ramp-down rate of unit i
UTi Up time of unit i
DTi Down time of unit i
UT 0

i Up time of unit i at end of last period

DT 0
i Down time of unit i at end of last

period
Osuit Start up o�er of unit i

Osdit Shut down o�er of unit i

ONLit No-load o�er of unit i

Dtotal
t Total forcasted demand

LPF Load Participation Factor
K Number of consumers
Ej Total energy consumption of consumer

j
nT Number of time periods
ni Number of generating units
n�j Cardinality of �j
noi Cardinality of Oi
�loitmax Upper bound for �loit
�upitmax Upper bound for �upit
�itmax Upper bound for �it
�itmax Upper bound for �it
"itmax Upper bound for "it
�lojtmax Upper bound for �lojt
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�upjtmax Upper bound for �upjt
�it Dual variable of ramp-up and start-up

ramp rate constraint of unit i
�it Dual variable of ramp-down rate

constraint of unit i
"it Dual variable of shut-down ramp rate

constraint of unit i

it Dual variable associated with the

de�nition of P git
#jt Dual variable associated with the

de�nition of P djt

�lojt Dual variable of minimum power
consumption of consumer j

�upjt Dual variable of maximum power
consumption of consumer j

�lobjt Dual variable of minimum power
consumption of consumer j of block b

�upbjt Dual variable of maximum power
consumption of consumer j of block b

�loj Dual variable of minimum daily energy
requirement constraint of unit j

�upj Dual variable of maximum daily energy
requirement constraint of unit j

ait Auxiliary variable equal to the product
�loitmaxVit

bit Auxiliary variable equal to the product
�upitmaxVit

cit Auxiliary variable equal to the product
�itmaxVit

dit Auxiliary variable equal to the product
�itmaxVit

eit Auxiliary variable equal to the product
"itmaxVit

fit Auxiliary variable equal to the product
"itmaxVit+1

git Auxiliary variable equal to the product
�lojtmaxVjt

hit Auxiliary variable equal to the product
�upjtmaxVjt

kjt Auxiliary variable equal to the product
�lojtmaxVjt

Ljt Auxiliary variable equal to the product
�upjtmaxVjt

Binary variables
Vit On-o� statues of unit i at time t
Vjt On-o� statues of consumer j o�er

acceptance at time t
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