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Abstract. Many optimization applications require the �nal value of decision variables
to be integer. In many cases, the relaxed optimal solution does not satisfy the integrality
constraint; therefore, the problem must be solved using integer or mix-integer programming
algorithms with signi�cant computational e�ort and most likely a worsen objective function
value. The contribution of this paper is two-fold: (a) identi�cation of a type of problems in
which the relaxed optimal objective function value can be kept at the implementation phase
by modifying the planning horizon and (b) identi�cation of a multi-period-based solution
procedure. Three small instances are provided in order to illustrate the methodology as
well as the economic impact involved. In addition, a fourth industrial-scale case is included
for the bene�t of practitioners. This work shows that business pro�t can be increased
for pseudo-continuous-integer periodical linear problems by identifying optimal decision-
making periods.
© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

In a competitive business environment, practitioners
are interested in solutions that can be obtained and
implemented in a simple way. They require that the
generated solutions provide better pro�ts (or lower
costs) in order to promote business growth and com-
petitiveness.

Linear, integer, and mixed integer programming
models are a 
ourishing �eld of optimization. Nowa-
days, they are applied to an immense variety of real-
life problems in a number of disciplines [1{10]. The
development of these models has provided the ground
for enhancement of e�cient solutions over decades and
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they are still progressing quickly. For linear models,
the well-known simplex method derived in [11], the
interior point method developed in [12], and the one
later improved in [13] are used to solve this class of
problems. For integer programming models, algorithms
and methods such as branch and bound [14], cutting
planes [15], and branch and cut [16] exist. It is
important to remark that the integer and mixed integer
programming models are complex problems, many of
which are NP-hard. Therefore, the computational
complexity is high with often long computational time.

The process of obtaining the solution of integer
and mix integer models is far more complex than
that of simple linear programming ones. A particular
network problem called transshipment enjoys unique
characteristics such that if all demands are integer, all
vertexes in the feasible region are integers; therefore,
the solution of the network simplex [11,17] is integer
without considering the problem as an integer model.

Often, there is a loss in the objective function
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value when a problem is transformed from continuous
to integer (or mix-integer). Hence, the search to reduce
this loss is a continuous concern for practitioners and
academics. There is scant treatment in the operational
research academic literature in this regard; therefore,
this concern has become the main motivation of this
paper.

The contribution of this article is two-fold. The
�rst is identifying a special class of problems whose
solution must be integer while the continuous solution
is not. However, an integer solution can be obtained
by identifying special characteristics of the application.
The second contribution is providing a method to
convert the continuous solution into an integer solution
(which can be implemented) without losing value in the
objective function for these kinds of problems.

This paper is organized as follows: Section 2
presents a class of problems (to be named pseudo-
continuous-integer periodical linear problems) in which
its special characteristics are the focus of this work.
Section 3 includes the methodology to transform a
continuous solution from this class of problems into an
integer one. Section 4 presents three small numerical
instances to illustrate the functionality of the method.
An industrial size case is represented for the bene�t of
practitioners. Finally, Section 5 provides conclusions
and further research.

2. Special characteristics of pseudo-continuous
integer periodical linear problems

Let us de�ne a Pseudo-Continuous-Integer Periodical
Linear Problem (PCIPLP) as the one that satis�es the
following �ve characteristics:

1. Pure integer programming problems with no binary
variables;

2. Single period planning horizon that repeats iden-
tically over a non-limited number of consecutive
periods;

3. The time to make decisions can be transformed
from every period to once every T periods, where
T is an integer number to be determined;

4. Between two consecutive periods, fractional values
(resources, demands, etc.) can be conveyed;

5. The objective function of the problem can change
from a �xed periodical number to an average per
period.

Many special applications in practice satisfy the above
conditions including service management (public and
private), transportation, production, order accep-
tance [18] and manufacturing, among others. Some
illustrations are included in Section 4.

3. Methodology

Let us consider an integer problem that meets the
characteristics of the latter section. Let the integer
period problem be:

Opt ctx;

s.t.:

Ax = b; x 2 Zn+; (1)

where A 2 Rm�n, c 2 Rn, b 2 Rm, x 2 Zn+, and Zn+

be the n dimensional setof non-negative integers.
The relaxed linear model associated to Eq. (1) is:

Opt cty;

s.t.:

Ay = b; y � 0; (2)

where y 2 Rn. Let I = f1; � � � ; ng be the index set and
y� be the optimal solution of Eq. (2), with y�i = di=ei,
where di; ei 2 Z+ 8 i 2 I. It is important to remark
that all optimal linear programming solutions involve
rational numbers because of the computational nature
of the algorithms [19]. Let T be the minimum common
multiple of all ei's.

By multiplying both sides of the constraint Ay =
b by the scalar T in Eq. (2) and making wi = Tyi,8 i 2 I. Then, the one period model in Eq. (2) is
transformed into a T -period model as follows:

Opt ctw; (3)

s.t.

Aw = Tb; (4)

w � 0; (5)

where w 2 Rn. Relation (3) represents the objective
function value taking into account T periods and
Eq. (4) represents the technical constraints for a T -
period problem.

Notice that the model in Eq. (2) is mathematically
equivalent to Relations (3) to (5); however, the latter
happens to have integer solutions for all its variables.
Since both problems share the same A, c, and T >
0, they share the same optimal basis (basic columns
of matrix A) and the value for the dual variables.
Thus, the sensitivity linear programming tools apply
to Relations (3) to (5). Hence, sensitivity analysis
interpretations are valid on Relations (3) to (5) as long
as the resulting solution remains with all integer values.
The latter can be a challenging task.

Besides, Problems (3) to (5) have only a change in
the time horizon in Eq. (1) as long as the latter satis�es
all the characteristics listed in Section 2.
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Table 1. Method for solving the single period problem in
Eq. (1) through the multiple-period problem in
Relations (3) through (5).

Step 1: Solve to optimality the continuous linear
programming model in Eq. (2) as:
Opt cty
s.t. Ay = b, y � 0

Step 2: Let the optimal solution of Eq. (2) be y�i =
di=ei, 8 i 2 I, where di, ei 2 Z+

Step 3: Determine T as the minimum common
multiple for all ei, 8 i 2 I,
where T determines the planning horizon

Step 4: De�ne the optimal solution of the problem
in Relations (3) through (5) as:
Opt ctw
s.t.: Aw = Tb, w � 0
as w�i =

�
T
di

�
ei, where w�i 2 Z+, 8 i 2 I.

Step 5: Sensitivity analysis, since the problem in
Relations (3) through (5) is a continuous
linear programming problem with optimal
solution w�i 2 Z+, all regular sensitivity
analysis techniques are available for solving
the problem in Relations (3) through (5) as
long as the new solution remains integer

As a matter of fact, all the constraints in Eq. (4)
from Ay = b in Eq. (2) have just moved their limits
parallel-wise by a factor T .

The optimal solution of Relations (3) to (5) is
given by:

w�i =
�
T
ei

�
di; 8 i 2 I; (6)

where T
ei 2 Z+; thus, w�i 2 Z+ is an optimal solution

to Relations (3) to (5).
Notice that the problem in Relations (3) to (5) is

a regular linear programming problem that occurs to
have integer solutions for all its variables. Hence, all
sensitivity analysis techniques are applied as long as
the new solution remains integer.

In summary, a problem that satis�es the condi-
tions of a PCIPLP in Section 2 is re-formulated from
a single period to a T period planning horizon with
an optimal solution as in Eq. (6) by solving the linear
programming continuous problem in Eq. (2).

The pseudo-code in Table 1 transforms the plan-
ning horizon for decision-making from one period to T
periods for PCIPLPs.

4. Numerical illustrations

Four PCIPLP cases are presented in this section.
Three of these cases are small instances to illustrate
the methodology in simple terms, while the last one

represents an industrial size order acceptance case to
show that the methodology can be applied to larger
problems.

4.1. A public service management instance
A small city of 15,000 inhabitants consumes an average
of 1,200,000 liters of drinkable water per day. The
city obtains water from the central purifying facility
where water is treated by conventional �ltration and
chloro-hydration methods. In addition, two chemical
compounds (softener and puri�er) are included. The
city is evaluating two potential suppliers of these
chemical compounds. Supplier A o�ers packages with
4 kg of softener and 1.5 kg of puri�er for $80 a package.
Supplier B o�ers packages with 2 kg of softener and
4.5 kg of puri�er for $100 a package. In order to
keep water drinkable, the city facility requires 75 kg
of softener and 50 kg of puri�er per day. The objective
is to provide the daily levels of softener and puri�er at
a minimum cost for the city [20].

Let xA and xB be the number of packages per
day to buy from each supplier. The relaxed linear
programming model for the daily decision is:

min 80yA + 100yB ;

s.t.:

Softener: 4yA + 2yB � 75;

Puri�er: 1:5yA + 4:5yB � 50;

yA; yB � 0; (7)

with optimal continuous solution yA = 95=6 and yB =
35=6 and optimal daily cost of $1,850.00.

The city cannot buy fractional packages from the
suppliers. If the integrality constraint is added for
both variables, the solution changes to xA = 16 and
xB = 6 with an optimal solution of $1,880.00. These
values represent a $30.00 increment per day, which is
approximately 1.62% of increase in the daily cost.

Since the daily requirements of softener and puri-
�er are �xed and the minimum common multiple in the
denominator of the decision variables is T = 6, the city
can buy every six days 95 packages (w�A) from supplier
A and 35 packages (w�B) from supplier B.

Because the packages have separated containers
for every element (softener and puri�er), the city must
measure 75 kg of softener and 50 kg of puri�er every
day and apply them to the city water supply. The
comprehensive purchase will cost $11,100.00 every six
days; meanwhile, the average daily cost remains at its
minimum at $1,850.00.

The problem in Relation (7) is a numerical version
of this problem in Eq. (2), while Problem (8) is
equivalent to Relations (3) to (5):
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min 80wA + 100wB ;

s.t.:

Softener T : 4wA + 2wB � 75� 6 = 450;

Puri�er T : 1:5wA + 4:5wB � 50� 6 = 300;

wA; wB � 0: (8)

Figure 1 shows the three solutions x�, y�, and w�. One
can notice that the feasible region of Relation (8) is
limited by the constraints Softener T and Puri�er T
and has re-scaled (moved parallel-wise) the boundaries
of both constraints by a factor of T = 6 from the
initial problem in Relation (7), limited by the original
constraints softener and puri�er.

Regarding sensitivity analysis, the dual variables
of Relation (8) include softener T = �14 and puri�er
T = �16 (both integers). Thus, if one right-hand side
is moved, it must be such that the new solution remains
integer. Or, one can multiply both right-hand sides by
multiples of T = 6 and keep the same dual variables
and an integer solution.

In addition, the dual variables of Relation (7) are
Softener = �14 and Puri�er = �16 with the same
values than the ones in Relation (8).

4.2. A production mix problem
A small manufacturing facility produces two products.
Three machines are used in the manufacturing process,
each with 44 available hours per week. The single
period is considered as a week.

Table 2 shows operational information where
columns 2-4 represent the number of manufacturing
hours to produce a unit of each product. The last col-
umn in the table represents the marginal contribution
obtained per product.

Table 2. Manufacturing operational data for production
mix problem.

Product Compression
(hr)

Cut
(hr)

Polish
(hr)

Marginal
contribution

($)
1 0.5 0.49 0.21 50
2 0.9 0.7 0.39 105

The problem consists of �nding the optimal pro-
duction mix to maximize the sum of marginal contri-
butions obtained by the production plan. In practice,
it is not possible to manufacture and deliver a fraction
of a unit.

Let xi be the number of units of product i to be
produced per week, where i = 1; 2. The relaxed linear
programming model follows:

max 50y1 + 105y2;

s.t.:

Compression: 0:5y1 + 0:9y2 � 44;

Cut: 0:49y1 + 0:7y2 � 44;

Polish: 0:21y1 + 0:39y2 � 44;

y1; y2 � 0: (9)

The optimal continuous solution is y1 = a1=b1 = 0,
y2 = a2=b2 = 440=9 = 48 + 8=9 � 48:8888 � � � , with an
objective function value of $5; 133 + 1=3. Thus, T = 9.

If the integrality constrain is added to Relation
(9), the solution transforms to x1 = 1, x2 = 48,
with objective function value $5,090.00. This integer
solution translates to $43.33 less per period.

The original period of the problem is a week and

Figure 1. Geometrical representation of the three solution spaces for the illustration in Section 4.1.
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Table 3. Airline 
eet capacity and cost per route for the airline case.

Fleet Seat capacity Availability Route 1 Route 2 Route 3 Route 4
1 200 5 5 4 3 2
2 150 3 7 5 5 4
3 120 2 9 7 6 6

that the manufacturing facility works for an undeter-
mined number of weeks. A practical solution is to
manufacture 48 units of product two. At the end of the
�rst 44 hours per week, the 49-th unit will be �nished
at 8=9 � 0:8888(88:88%). Assuming that the process
can stop at no loss of any kind and resume in the next
consecutive period, the 49-th unit (needing only 1/9
of the work) at the beginning of the second period
is considered to continue the process until �nishing it
and the manufacturing process continues. In doing
so, in eight out of nine weeks, the manufacturing
process delivers 49 units of product 2 and only 48
units of product 2 will be delivered in one out of nine
weeks. Hence, in 9 weeks, 440 units of product two are
delivered, which is an integer number.

In doing so, the average production per week is
440=9 � 48:88 units of product two and the average
objective function value is $5,133.33 per week with
all the constraints met. This is possible because an
inventory of partially-�nished units could be conveyed
from one period to the next. Notice that the �ve
characteristics of PCIPLPs are met.

This process can be extended to any number of
products and resources in the same modeling.

Notice that the proposed solution is neither the
solution to Relation (9) nor the integer version of
Relation (9). It satis�es the practitioner's requirements
in nine weeks.

4.3. An airline opening route decision
An airline company is analyzing the opening of four
new routes to be assigned to their newly acquired 
eet.
Tables 3, 4, and 5 show the related data [20]. The
relaxed model is de�ned as follows:

min 250; 000y1;1 + 280; 000y1;2 + 120; 000y1;3

+ 80; 000y1;4 + 245; 000y2;1 + 400; 000y2;2

+ 125; 000y2;3 + 200; 000y2;4 + 252; 000y3;1

Table 4. Demand and opportunity cost per route for the
airline case.

Route Passenger demand
per day

Opportunity cost
per empty seat

1 2,500 2,500
2 2,000 3,000
3 2,200 2,800
4 1,800 2,950

Table 5. Operational cost per route for the airline case.

Fleet Route 1 Route 2 Route 3 Route 4

1 50,000 70,000 40,000 40,000
2 35,000 80,000 25,000 50,000
3 28,000 45,000 27,000 26,000

+ 315; 000y3;2 + 162; 000y3;3 + 156; 000y3;4

+ 2; 500nfp1 + 3; 000nfp2 + 2; 800nfp3

+ 2; 950nfp4;

s.t.:

Fleet 1 y1;1 + y1;2 + y1;3 + y1;4 � 5;

Fleet 2 y2;1 + y2;2 + y2;3 + y2;4 � 3;

Fleet 3 y3;1 + y3;2 + y3;3 + y3;4 � 2;

Seats route 1 1; 000y1;1 + 1; 050y2;1 + 1; 080y3;1

+ nfp1 � es1 = 2; 500;

Seats route 2 800y1;2 + 750y2;2 + 840y3;2

+ nfp2 � es2 = 2; 000;

Seats route 3 600y1;3 + 750y2;3 + 720y3;3

+ nfp3 � es3 = 2; 200;

Seats route 4 400y1;4 + 600y2;4 + 720y3;4

+ nfp4 � es4 = 1; 800;

yi;j ; nfpj ; esi�0; 8 i=1; 2; 3; and j=1; 2; 3; 4;

where yi;j represents the number of airplanes from 
eet
i to be assigned to 
y route j per a day; nfpj de�nes
the number of passengers (per day) under demand for
route j (passenger not 
own); and esi is equal to the
number of empty seats 
own in a day for the jth route.

The optimal continuous solution is: y1;1 = 5=2,
y1;2 = 5=2, y2;3 = 44=15, y2;4 = 1=15, y3;4 = 2,
and nfp4 = 320, as seen in Table 6, which shows the
nonzero elements of the solution. The minimum daily
cost is $2,961,000.00. If the integrality constraint is
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Table 6. Optimal continuous daily solution for the airline
case, with cost of $2,961,000.00.

Fleet Route 1 Route 2 Route 3 Route 4

1 5/2 5/2
2 44/15 1/15
3 2

nfp 320
es

Table 7. Optimal continuous solution for the airline case,
with T = 30, and average daily cost of $2,961,000.00.

Fleet Route 1 Route 2 Route 3 Route 4

1 75 75
2 88 2
3 60

nfp 9,600
es

included, the objective function rises to $4,259,000.00,
i.e., an approximate increase in the daily cost of
43.84%.

From Table 6, the minimum common multi-
ple of f2; 15g is T = 30. Considering that the

ight plan contemplates 30 days now, Table 7 shows
a solution for that period, maintaining a 30-day
cost of $88,830,000.00, i.e., an average daily cost at
$2,961,000.00.

4.4. Industrial size order acceptance case
An automotive Original Equipment Manufacturer
(OEM) is asked to quote orders (products) for a
new automotive platform. The potential contract
includes a non-determined large number of periods.
The OEM has manufacturing technical capabilities to
quote ninety-three orders (m = 93). Each order to
be quoted is expected to be manufactured on a highly
specialized manufacturing cell. For the purpose of this
case, the manufacturing cell can be considered a single
machine. This manufacturing cell works three shifts of
eight hours, each. The manufacturing cell utilization
factor is 85 percent, making 36,720 working minutes
available per month (available time, AT = 36; 720).

Table 8 shows the monthly demand for each order,
setup time (in minutes), marginal contribution of each
unit in USD, the setup cost in USD, and the manufac-
turing standard time per unit, respectively. Five main
raw materials (m = 5) are needed for every unit in each
order. The current monthly availability of these raw
materials is RM = f9; 000; 8; 000; 7; 000; 6; 000; 3; 000g.
The unitary requirement of each raw material is also
shown in Table 8.

The relaxed mathematical formulation of the
problem in a general form as follows:

max
X
i2I

MCiyi �X
i2I

SUCiai;

s.t.:

Demand: yi � aidi; 8 i 2 I;
Time availability:

X
i2I

(SUTiai + STiyi) � AT;

Row material availability:
X
i2I

ci;jyi � RMj ;

8 j 2 J;
ai 2 B; xi 2 R; 8 i 2 I; (10)

where I = f1; � � � ; ng is the set of n orders and
J = f1; � � � ;mg is the set of m raw materials, di,
MCi, SUCi, SUTi, STi represent demand, marginal
contribution, setup cost, and setup time for the ith
order, respectively; ci;j de�nes the number of units
from raw material j where each product in order i
requires, AT states the available manufacturing time
per period, and RMj contains the availability of the
jth raw material per period. The decision variable
yi de�nes the number of units to accept from the ith
order, while ai represents auxiliary variable to model
the setups.

If all orders on full demand are accepted, an
operational pro�t (marginal contribution minus setup
costs) of 328,436.00 USD is achieved, but that solution
requires 120,449 minutes per month (while only 36,700
are available) from the manufacturing cell, while the
raw material requirements for this solution are 29,330
units of raw material one (while 9,000 are available);
28,392 units of raw material two (only 8,000 available);
23,791 units of raw material three (only 7,000 avail-
able); 20,021 units of raw material four (only 6,000
available), and �nally 15,529 units of raw material �ve
(only 3,000 available).

Since accepting all orders is not feasible, the order
acceptance problem consists of maximizing the average
monthly operational pro�t by deciding what orders to
accept and what manufacturing level to run (units per
month) in the case of accepted orders.

Table 9 shows the optimal relaxed solution (up
to two digits after the decimal point), which makes
142,850.34 USD of operational pro�t, while the integer
solution makes 137,314 USD. Notice that the relaxed
solution increases the monthly operational pro�t by
5,536.34 USD (approximately 4.03% increase).

In the relaxed solution, orders 20 (14.32 units),
38 (113.26 units), and 43 (44.11 units) have no integer
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Table 8. Industrial size order acceptance problem data.

Order
(i)

Demand
(di)

Set up
(SUTi)

Marg. cont.
(MCi)

Set up
(SUCi)

Std. time
(STi)

Raw materials per unit
ci;1 ci;2 ci;3 ci;4 ci;5

1 62 86 68 66 14 1 6 3 3 1
2 129 63 26 100 14 7 1 3 4 3
3 114 82 23 84 18 3 4 2 3 2
4 94 89 15 77 17 4 3 5 1 1
5 20 52 73 70 11 2 2 1 4 1
6 27 57 25 50 23 2 4 1 4 2
7 125 67 70 98 18 1 4 1 4 1
8 95 82 7 92 20 1 4 3 2 1
9 74 80 68 95 11 1 4 5 2 3
10 143 26 29 34 20 2 6 2 4 1
11 113 61 70 10 7 3 6 2 4 3
12 20 8 79 96 21 1 1 4 1 3
13 21 20 59 95 9 4 1 5 3 3
14 130 45 28 64 23 5 2 1 1 2
15 114 64 34 91 23 3 6 4 2 1
16 100 96 25 38 12 6 5 1 2 1
17 124 87 62 23 9 5 5 2 3 1
18 136 89 77 10 7 1 2 4 4 3
19 34 61 50 46 8 4 4 1 2 2
20 70 99 56 12 8 6 4 3 2 2
21 148 24 47 82 16 7 4 5 1 2
22 88 32 82 92 13 6 5 5 3 3
23 103 56 76 31 7 6 6 2 2 2
24 132 7 65 69 10 3 6 1 2 3
25 95 73 6 61 18 3 3 4 4 3
26 42 45 19 7 19 2 6 2 2 1
27 130 35 31 51 8 2 2 4 4 3
28 143 73 29 22 19 2 3 2 4 2
29 127 25 8 40 8 6 4 5 1 2
30 33 41 16 7 13 1 5 2 4 3
31 55 34 21 90 7 3 5 1 3 1
32 52 94 25 62 9 1 4 1 1 3
33 19 35 29 19 22 7 6 1 4 3
34 138 53 27 91 22 4 3 4 4 3
35 73 49 68 38 19 3 4 1 1 1
36 76 32 59 89 12 3 1 1 3 2
37 93 58 42 66 6 3 5 3 2 1
38 116 57 48 85 22 2 6 2 4 1
39 127 35 21 44 6 4 1 3 1 2
40 63 20 67 66 14 5 1 3 4 1
41 142 50 22 59 12 4 6 2 1 3
42 96 58 13 78 18 5 6 4 1 1
43 128 53 54 62 21 7 4 5 3 1
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Table 8. Industrial size order acceptance problem data (continued).

Order
(i)

Demand
(di)

Set up
(SUTi)

Marg. cont.
(MCi)

Set up
(SUCi)

Std. time
(STi)

Raw materials per unit
ci;1 ci;2 ci;3 ci;4 ci;5

44 78 69 66 65 15 4 1 5 1 3
45 50 73 13 11 25 7 1 2 1 1
46 69 91 78 71 18 3 1 4 1 3
47 123 24 27 29 6 6 5 2 4 3
48 39 44 59 10 6 3 6 3 2 3
49 45 11 62 32 16 7 3 5 2 1
50 67 31 41 91 8 4 2 2 4 2
51 50 29 10 68 18 7 3 5 1 2
52 23 74 30 38 11 3 3 5 1 1
53 128 11 37 58 18 3 5 3 1 2
54 113 68 70 82 16 4 4 5 3 3
55 57 49 43 26 13 7 2 4 3 2
56 125 67 64 57 6 3 1 5 4 1
57 103 86 60 42 8 2 1 5 1 3
58 76 50 80 16 13 4 5 2 3 2
59 121 78 74 35 11 4 6 4 4 2
60 137 33 52 26 16 6 2 4 1 1
61 118 71 45 77 7 3 6 3 4 1
62 74 19 16 83 23 2 4 3 2 1
63 143 56 68 59 14 2 6 4 2 2
64 22 24 63 94 24 4 5 3 3 2
65 54 18 37 67 10 3 3 3 4 3
66 47 99 28 12 15 1 2 1 3 3
67 148 98 15 92 24 7 6 1 1 3
68 20 33 55 19 14 1 4 3 1 1
69 54 27 8 76 7 1 3 5 2 2
70 114 77 81 26 24 4 1 5 1 1
71 62 42 11 60 9 4 1 3 2 2
72 43 64 20 47 21 1 6 5 1 2
73 67 14 19 41 16 3 4 2 1 1
74 53 82 34 52 19 4 5 3 3 3
75 141 33 71 44 22 1 3 2 3 3
76 81 60 14 83 23 4 6 2 3 2
77 19 70 23 69 8 2 2 4 3 3
78 141 31 73 61 14 6 1 4 4 2
79 18 69 59 50 22 6 1 4 1 3
80 119 77 15 76 18 3 2 1 1 1
81 19 23 77 94 16 5 3 1 1 1
82 23 59 53 51 21 4 1 5 3 2
83 42 80 49 26 24 5 4 4 2 3
84 146 45 83 81 23 5 2 5 4 1
85 47 82 38 65 19 4 1 3 3 3
86 112 60 8 94 7 1 2 2 4 1
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Table 8. Industrial size order acceptance problem data (continued).

Order
(i)

Demand
(di)

Set up
(SUTi)

Marg. cont.
(MCi)

Set up
(SUCi)

Std. time
(STi)

Raw materials per unit
ci;1 ci;2 ci;3 ci;4 ci;5

87 46 7 76 32 23 7 3 3 2 2
88 149 84 14 28 6 7 2 2 3 3
89 29 18 80 50 10 1 1 5 4 1
90 67 41 8 20 14 1 2 1 1 3
91 36 24 49 43 19 3 3 3 4 2
92 114 60 9 80 24 2 4 4 4 2
93 83 58 28 43 10 2 6 2 1 2

Table 9. Relaxed versus integer solutions.

Op.a

pro�t
$142,850.34 $137,314.00

Order Demand (u) Relaxed Integer
1 62 62 62
5 20 20 20
7 125 125 100
15 114 0 63
17 124 124 100
18 136 0 10
20 70 14.32 70
23 103 103 100
35 73 73 73
36 76 76 75
37 93 93 93
38 116 113.26 100
40 63 63 63
43 128 44.11 100
46 69 69 69
49 45 45 45
56 125 125 100
58 76 76 76
59 121 121 100
60 137 137 100
61 118 0 98
63 143 143 100
64 22 0 22
68 20 20 20
70 114 114 100
78 141 141 100
81 19 19 19
84 146 146 100
87 46 46 46
89 29 29 29

a: Op.: Operational

production units. Therefore, order 20 will deliver 15
units in 32% of the months while 14 units in the rest;
order 38 will deliver 114 units in 26% of the months

and 113 in the rest; and �nally, order 43 will deliver 45
units in 11% of the months and 44 in the rest.

For a literature review of order acceptance, please
refer to [21].

5. Conclusions and further research

Many real-world problems require formulating and
solving an integer programming model. The inte-
ger solution generally produces a signi�cant worsened
objective function value compared with the objective
function value of the corresponding relaxed linear pro-
gramming model. Thus, it is important to explore the
possibility of generating a feasible integer solution that
maintains the objective value of the relaxed problem at
least on average per decision period.

This study shows a class of integer programming
problems named Pseudo-Continuous-Integer Periodical
Linear Problem (PCIPLP) in which the relaxed solu-
tion is used as the basis to construct a feasible integer
solution maintaining the value of the relaxed solution
by proposing a change in the problem planning horizon.
One signi�cant fact of our approach is that the provided
integer solution is not an optimal solution for neither
the original integer model proposed nor its relaxed
version given the changes in the problem planning
horizon made. The provided integer solution can be
implemented in practice and maintains the objective
function value of the relaxed problem on average (per
period).

The set of PCIPLPs consists of integer single
period problems that repeats inde�nitely, but elements
from one period can be conveyed to the next, thus
a change in the problem planning horizon from one
period to T periods is feasible, where T is computed
as the minimum common multiple of the optimum
continuous decision variable denominator values.

Further research pends ahead:

(a) Identi�cation of some other kinds of integer prob-
lems that can be treated in a similar way;
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(b) Identi�cation of a set of mix-integer problems with
similar characteristics;

(c) Search for classes of non-linear integer (or mix-
integer) programming problems that can be solved
in the same manner;

(d) Exploration of the e�ectiveness of this methodol-
ogy for solving large-scale problems;

(e) Since sensitivity analysis can be applied to Re-
lations (3) to (5) and its results are practical
as long as the resultant solution remains fully
integer, new techniques and new characteristics
must be developed and found, respectively, to
perform sensitivity analysis on a more practical
matter.
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