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Abstract. In the case of antenna arrays, researchers usually neglect the e�ect of mutual
coupling of antennas placed in proximity to each other. The interchange of electromagnetic
energy between an antenna and a far-�eld point depends on not only the transmitting
antenna, but also its neighboring antennas. This e�ect is referred to as mutual coupling
between dipole antenna elements and is considered here in the synthesis of phase{only
recon�gurable antenna arrays. The main objective of this work is to produce the desired
side lobe level and voltage standing wave ratio, in addition to few other radiation pattern
parameters. Multi-verse Optimization algorithm is employed for the purpose of generating
voltage amplitude and discrete phase distributions in the dipole elements to generate at-
top beam/pencil beam patterns. These two patterns share common amplitude distributions
and di�er in phase distributions. Results of simulations proved that this algorithm
accomplished its task successfully and was superior to other algorithms like particle swarm
optimization, grey wolf optimization, and imperialist competitive optimization algorithms.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Recent developments in the �eld of communications
demand a more exible and convenient approach to
the provision of multi-beam patterns. In this regard,
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antenna arrays [1,2] guarantee obtaining such patterns
by providing common and di�erent excitations. These
arrays are referred to as recon�gurable arrays [1{9]
and the corresponding excitations include amplitudes,
phases, positions, etc. Literature review reports the
viability of many methods including projection ap-
proach [3], Woodward Lawson synthesis [4], and other
evolutionary algorithms [5{8] to generate the beams.

A number of concerns hinder the e�ective gener-
ation of these beams. One of these concerns is mutual
coupling [10{13], which plays a prominent role in
diminishing the radiation pattern of any antenna array.
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This mutual coupling refers to electromagnetic inter-
actions within the neighboring elements existing in an
antenna array. In simple words, it is said that the elec-
tric �eld generated by an antenna element a�ects the
neighboring elements such that the total pattern gets
deviated from the desired one. In addition, relative sep-
aration between the elements as well as the orientation
of the elements inuence the mutual coupling e�ects.

To add to the concern above, an e�ective mis-
match between an antenna and the feeding network
hinders perfect transreception. A mismatch between
the antenna and the feeder line or the subsequent
components results in return loss. Necessary care is
taken in this paper to include both the mutual coupling
e�ects as well as sustained standing wave ratio. Simu-
lations are conducted following the inclusion of ground
plane and their analysis targets the e�ect of the dis-
tance between the ground plane and the antenna array.

To implement this process, evolutionary algo-
rithms are used here to generate voltage amplitudes
that can hold values between 0 and 1 and current
amplitudes are calculated using the mutual impedance
matrix. These algorithms also generate phase excita-
tions that may vary between�180� and 180� in discrete
steps using a 6-bit phase shifter [5].

Multi-verse optimization algorithm [14{22] was
applied to the generation of required amplitudes as
well as phase excitations. The reason for choosing
multi-verse optimization algorithm lies in its immense
success in providing solutions to problems related to
antenna arrays, especially in the synthesis of large
arrays. The performance of this algorithm is in-
vestigated numerically and compared with few other
standard popular algorithms, namely Particle Swarm
Optimization (PSO) [23,24], Imperialist Competitive
Algorithm (ICA) [25{29], and Grey Wolf Optimization
(GWO) [30{33]. All the algorithms used in this paper
are run to minimize the �tness value in the weighted
�tness functions to achieve the desired pattern. The
novelty of this paper is that voltage standing wave ratio
is considered simultaneously for both at-top and pen-
cil beams. Mutual coupling e�ect is taken into account
along with the ground plane e�ects. Also, the phase
excitations are controlled by discrete phase shifters
which greatly reduce the complexity of feed networks.

2. Theory

The free space far-�eld pattern of a linear array con-
structed of N half-wave dipoles is separated from each
other by a distance d on the azimuth plane with ; being
the azimuth angle measured from the x-axis, as shown
in Figure 1. This is given by the following relation.

F (;) =
NX
n=1

Inej(n�1)kdcos; � EP (;); (1)

Figure 1. A linear array of parallel half-wavelength
dipole antennas with ground plane placed at a distance h
behind the array.

where k is the wave number, EP (;) the element
pattern, and In the complex current excitation
obtained from the combination of impedance matrix
and the voltage excitation matrix of the elements.

[I]N�1 = [Z]�1
N�N [V ]N�1;

where [Z] is the impedance matrix (size N�N) and
[V ] is the voltage excitation matrix (size N�1) of the
elements.

The element pattern of the dipole elements is
assumed to be omnidirectional in the plane consid-
ered, i.e., EP (;) = 1. From the currents calculated
using the voltage excitations as well as the impedance
matrix, a sum pattern is generated in the broadside
direction.

Since mutual coupling e�ects are included in this
paper, the customary equations related to it are shown
as follows. The mutual coupling includes both the
self-impedance of the elements as well as the mutual
impedances among elements [2]. The relationship
between the voltages V and impedances is given by:

Vp = IpZpp +
X
p6=q

IqZpq; (2)

where Zpp refers to self-impedance of dipole p and Zpq
is the mutual impedance between p and q. The active
impedance is given by:

ZAcp = Zpp +
X
p6=q

(Iq=Ip)Zpq: (3)

In case a ground plane [2] is kept at distance h
behind the array, the new active impedance is calcu-



D. Jamunaa et al./Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 1915{1924 1917

lated considering the image principles in obtaining the
impedances of the elements.

In the impedance matrix, self-impedance and
mutual impedance are replaced by (Zpp � Z�pp) and
(Zpq � Z�pq), respectively, where Z�pp is the impedance
between the pth dipole and its image and Z�pq is the
impedance between the pth dipole and image of the qth
dipole. If h is the distance between the array and the
ground plane and if the element factor is sin(kh sin ;),
then a new far-�eld expression taking the ground plane
into e�ect is given by:

F (;) =
NX
n=1

[sin(kh sin ;)]Inej(n�1)kd cos ;; (4)

Normalized absolute far-�eld =
jF (;)j

max jF (;)j : (5)

Voltage Standing Wave Ratio (VSWR) is calculated
as (1 + �)=(1� �), where � is the reection coe�cient
equal to (ZAcp �Z0)=(ZAcp +Z0). Z0 is the characteristic
impedance with a value of 50 
. The small value of
VSWR denotes a good matching condition of the array.
The weighted �tness function is given by:

F =
3X
i=1

wi(Fi)2 +
2X
j=1

wj(Fj)2: (6)

The �rst term in the Right Hand Side (RHS) of the
above equation is written below:

Fi =

(
F at
i � F at

i;d ; if F at
i > F at

i;d

0; if F at
i � F at

i;d
(7)

where Fi represents the at-top beam parameter and
i = 1; 2 and 3 represent such parameters as Side Lobe
Level (SLL) in dB, ripple in dB, and maximum VSWR
(no unit).

The second term in the RHS of Eq. (7) is written
as follows:

Fj =

(
F pen
j � F pen

j;d ; if F pen
j > F pen

j;d

0; if F pen
j � F pen

j;d
(8)

where Fj represents the pencil beam parameter and
j = 1 and 2 include such parameters as SLL in dB and
maximum VSWR (no unit).

Moreover, in the above equations, the superscript
pen represents the speci�cations of the pencil pattern
and the superscript at represents the speci�cations of
the at-top pattern. The terms Fid and Fjd represent
the expected/desired values, and Fi; and Fj represent
the obtained values for each speci�cation parameter.
The weights w are equal to 1, suggesting that equal
importance is given to all the parameters during the
optimization process.

3. Multi-verse optimization algorithm

Multi-Verse Optimization (MVO) algorithm is one of
the recently introduced algorithms that is inuenced by
the multi-verse theory concepts. As per the concepts
dealing with this algorithm, our universe may be one
of the in�nite number of universes that may exist. The
theory underlying this fact is dependent on white holes,
black holes, and wormholes. In this algorithm, the
worm holes are responsible for exploitation and the
combined white and black holes control the exploration
part. Here, a solution represents a universe; a variable
refers to an object in it; ination rate is the �tness value
of the solution; and the term time refers to the itera-
tion. The rules used in this algorithm are given below:

(i) The higher ination rate indicates the situation
having more white holes than black holes;

(ii) The universes with a higher ination rate move
the objects through the white holes and the
universes with a lower ination rate accept the
objects via the black holes;

(iii) The objects in all universes move randomly to-
wards the best universe via wormholes regardless
of the e�ect of the ination rate.

The objects travel between universes through the
white or black hole tunnels. In the creation of a tunnel
between two universes, the universe with a higher
ination rate is treated as a white hole, while another
universe is a black hole. Then, the objects are allowed
to move from the white holes of one universe to the
black holes of another. Thus, exchange of objects
can easily take place without any hassle. Moreover,
as assumed, when the ination rate is higher, the
probability of having white holes is greater.

Wormholes appear in a random manner in any of
the universes irrespective of the ination rate. This en-
sures a greater diversity of universes during iterations.
The tunnels require universes to change in an abrupt
manner, thus guaranteeing exploration of the search
within the allotted space. These changes facilitate re-
lieving any local optimum stagnation. The wormholes
also indulge in re-spanning of few variables around the
best obtained solution in a random way, thus ensuring
exploitation around the most promising region.

Mathematical modeling of the interchange of the
objects between the universes and the white and black
hole tunnels is done through roulette wheel selection.
At the end of every iteration, one universe is chosen
as the best one. Given that d and no represent the
number of variables and universes, respectively, the set
of solutions U is formulated as follows:
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xnm =

8>>>>>><>>>>>>:

8><>:Xn + TDR((Urn � Lrn)ran 4 + Lrn) ran3 < 0:5

Xn � TDR((Urn � Lrn)ran 4 + Lrn) ran3 � 0:5
ran2 < WEP

xnm ran2 �WEP

(11)

Box I

U =

266666664
x1

1 x2
1 x3

1 � � � xd1
...

...
... � � � ...

...
...

... � � � ...
...

...
... � � � ...

x1
no x2

no x3
no � � � xdno

377777775 : (9)

If Um is the mth universe, NIr(Um) is the normalized
ination rate of the mth universe; then, we have:

xnm =

(
xnk ran1 < NIr(Um)
xnm ran1 > NIr(Um)

(10)

where ran1 is a random number between 0 and 1 and
xnk is the nth parameter of the kth universe selected
through the selection method. The facility is employed
so as to make use of the changes locally for every
universe. Furthermore, to upgrade the ination rate,
the wormhole tunnels are created between a Universe
and the Best universe obtained up to that time and
Eq. (11) shown in Box I is used for the same, where
Xn is the nth parameter of the Best Universe obtained
so far, TDR is the travelling distance rate, WEP is the
probability of worm hole existence, Lrn and Urn are
the lower and upper bounds of the nth variable, xnm is
the nth parameter of the mth universe, and ran2, ran3,
and ran4 are random numbers between 0 and 1. WEP
is given as follows:

WEP = mn+ l
�
mx�mn

max Iters

�
; (12)

TDR = 1� l1=p

max Iters1=p ; (13)

where mn is set to 0.2, mx is set to 1, l is the current
iteration, maxIters refers to the maximum iterations,
and p is the accuracy of the process of exploitation
over iterations. The pseudo code is found as shown in
Figure 2.

4. Simulation results and discussion

A total of 20 elements are used in this simulation
process. Because of symmetry, it is made customary for
the algorithms to generate only 10 element excitations.
Here, the amplitudes are kept common to both of
the beams, whereas the generated discrete phases are
used to produce a at-top beam and zero phases to
produce a pencil beam. The amplitudes range from 0
to 1 and the phases range from �180� to 180�. The
algorithm is run for a maximum of 200 iterations.
The dipoles used here have a length of 0:5� and a
radius of 0:005�. The distance between the dipoles
is kept at 0:5�. The ground plane is taken into
consideration for various distances of 0:10�, 0:20�, and
0:25� for simulation purposes. The population size
and maximum number of iterations are kept the same
for all the algorithms. A total of �ve runs are used
for the algorithms and the best out of the �ve runs
based on the lowest �tness values are chosen as the �nal
generated values of excitations. Tables 1, 2, and 3 show
the parameter values for the linear array at distances
of 0:10�, 0:20�, and 0:25� from the ground plane.

Table 1. Parameter values for the linear array at a distance of 0:10� from the ground plane.

Patterns Parameters Desired
values

Obtained values
MVO GWO PSO ICA

Pencil beam SLL in dB {22 {22.0934 {22.0222 {21.8158 {22.1674
VSWR 1.3 1.2359 1.2621 1.2233 1.374

Flat-top beam

SLL in dB {22 {23.1407 {22.1199 {21.9791 {21.7364
VSWR 1.3 1.2444 1.526 1.8901 1.4504
Ripple in dB
(75� < � < 105�)

0.5 0.57652 0.73797 1.7995 1.3535



D. Jamunaa et al./Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 1915{1924 1919

Figure 2. Pseudo code for multi-verse optimization algorithm.

Table 2. Parameter values for the linear array at a distance of 0:20� from the ground plane.

Patterns Parameters Desired
values

Obtained values
MVO GWO PSO ICA

Pencil beam SLL in dB {22 {22.029 {22.0996 {21.8788 {22.1899
VSWR 1.3 1.2221 1.3269 2.0011 1.9924

Flat-top beam

SLL in dB {22 {23.3714 {22.468 {21.9851 {22.4286
VSWR 1.3 2.0504 1.2497 2.1046 2.1249
Ripple in dB
(75� < � < 105�)

0.5 0.7899 0.5378 0.97112 1.3829

Table 3. Parameter values for the linear array at a distance of 0:25� from the ground plane.

Patterns Parameters Desired
values

Obtained values
MVO GWO PSO ICA

Pencil beam SLL in dB {22 {22.2765 {22.1221 {21.843 {21.0699
VSWR 1.3 2.0704 2.1706 2.378 2.3361

Flat-top beam

SLL in dB {22 {23.6803 {24.4325 {21.5715 {20.8859
VSWR 1.3 2.1817 2.3451 3.1563 2.3944
Ripple in dB
(75� < � < 105�)

0.5 0.7977 0.5419 2.376 2.5608
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Figure 3. Normalized power in dB vs � in degrees for the
linear array placed at a distance of 0:10� from the ground
plane.

Figure 4. Normalized power in dB vs � in degrees for the
linear array placed at a distance of 0:20� from the ground
plane.

Figures 3, 4, and 5 show the normalized power pattern
in dB versus � in degrees for the linear array with
distances of 0:10�, 0:20�, and 0:25� from the ground
plane. Table 4 shows the corresponding voltage and
phase distributions. Figure 6 shows the VSWR values
for all the algorithms at di�erent distances between the
array and the plane. Table 5 shows the �tness values
and computation times. Figure 7 shows the �tness
values versus iteration numbers.

From Table 1, it is seen that the MVO exhibits
its supremacy in delivering the best excitation values to
produce the parameter values well under the expected
criteria. The values of these parameters include SLL
and VSWR in pencil beam and SLL and VSWR in
the at-top beam. A de�cit of 0.07652 dB exists in
the ripple in the at-top beam. GWO managed to
produce all the parameter values to the expected level
except VSWR and ripple in the at-top beam. Overall,

Figure 5. Normalized power in dB vs � in degrees for the
linear array placed at a distance of 0:25� from the ground
plane.

Figure 6. VSWR values versus algorithms.

Figure 7. Fitness values versus number of iterations.

PSO and ICA are not as favorable as the remaining
algorithms in terms of their outcome. Except PSO,
the expected SLL value is determined by all algorithms
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Table 4. Voltage amplitude and phase distributions (in degrees) of the elements for di�erent distances from the ground
plane.

Element
number

h = 0:10�
distribution

h = 0:20�
distribution

h = 0:25�
distribution

Voltage Phase
(degrees)

Amplitude Phase
(degrees)

Amplitude Phase
(degrees)

1 & 20 0.0007 -50.6250 0.0580 -140.625 0.0692 -180.000
2 & 19 0.1220 -28.1250 0.1322 180.0000 0.1740 174.3750
3 & 18 0.2498 -45.0000 0.2843 -174.375 0.3317 -174.375
4 & 17 0.3675 -78.7500 0.4096 135.0000 0.3884 140.6250
5 & 16 0.3206 -151.875 0.3860 67.5000 0.4583 78.7500
6 & 15 0.7274 -168.750 0.6969 50.6250 0.8557 50.6250
7 & 14 0.8189 157.500 0.9622 22.5000 0.9994 33.7500
8 & 13 0.8188 146.2500 0.7685 5.6250 0.8383 22.5000
9 & 12 0.6822 95.6250 0.7921 -39.3750 0.8501 -33.7500
10 & 11 0.8846 61.8750 0.8534 -78.7500 0.9997 -67.5000

Table 5. Fitness values and computation time details.

Distance h
Fitness values

MVO GWO PSO ICA

0.1 0.0058 0.1078 2.0711 0.8678

0.2 1.0868 1.5703 1.3754 1.9395

0.25 1.4596 1.8518 8.3029 8.6239

Distance h Computational time in seconds

0.1 18001 18507 21730 22726

0.2 18432 19421 19020 19529

0.25 18389 17777 18380 19053

for the pencil beam. Figure 3 shows the normalized
power in dB versus � in degrees for the linear array at
a distance of 0:10� from the ground plane.

From Table 2, it is seen that the MVO algorithm
succeeds in producing SLLs well within the expected
values for both of the beams. The ripple in dB is very
close to the expected value with a de�cit of 0.2899 dB.
It faces a tough competition with GWO algorithm as it
succeeds in producing the best VSWR in pencil beam,
whereas it is lost to the same in at-top beam.

From Table 3, it is found that MVO algorithm
again succeeded in producing the best outputs, es-
pecially over GWO in VSWRs of both the beams.
However, GWO slightly edged better over MVO by
0.2558 dB in the ripple portion in the at-top beam.

Table 5 shows that the �tness values of MVO algo-
rithm are quite lower than those of other algorithms for
all the values of the distance between the array and the
ground plane. It is also shown that the computational
time taken by MVO is shorter in most places over other
algorithms.

Figure 7 shows the plot between �tness values and
number of iterations. According to this �gure, MVO
algorithm performed better in terms of convergence
speed and had the lowest �tness value over other algo-
rithms. Overall, MVO outperformed other algorithms.
The algorithm's success is justi�ed given that abrupt
changes increase the exploration of the search space
and resolve the problem of the stagnation of local
optima. Since wormholes randomly re-span some of
the variables around the best optimum solution, there
is a good level of guarantee in exploitation around the
most promising region. Adaptive WEP increases the
probability of the existence of wormholes, and adaptive
TDR increases the accuracy of the local search. All the
above reasons justify the superiority of this algorithm
to other algorithms.

5. Analysis

To study the e�ect of the inter-element distance of the
array on the radiation pattern parameters, simulations
are done at di�erent inter-element distances using
the obtained excitations from MVO algorithm. The
results are shown in Table 6 at di�erent inter-element
distances.

According to Table 6, when the distances are ei-
ther more or less than 0:5�, the values of all parameters
obtained are not within the desired limit. For instance,
at d = 0:6�, it is the ripple value in dB that is a�ected;
in case of d = 0:4�, the VSWR values and the SLL in
dB in the at-top beam are a�ected.

Further, to con�rm the outputs, the whole array
is simulated using FEKO software. Through the use of
FEKO, the array is simulated with a random choice of a
distance equal to 0:10�. Figure 8 shows the normalized
power pattern in dB versus � in degrees for the linear
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Table 6. Parameter values for the linear array for di�erent inter-element distances.

Patterns Parameters Desired
values

Obtained values
MVO
d = 0:5�

MVO
d = 0:6�

MVO
d = 0:4�

Pencil beam SLL in dB {22 {22.0934 {21.664 {22.3405
VSWR 1.3 1.2359 1.1981 1.3182

Flat-top beam

SLL in dB {22 {23.1407 {21.1033 {16.743
VSWR 1.3 1.2444 1.2067 1.4087
Ripple in dB
(75� < � < 105�)

0.5 0.57652 {4.7205 0.59074

Figure 8. Normalized power in dB vs � in degrees for the
linear array placed at a distance of 0:10� from the ground
plane using MATLAB simulated outputs and FEKO
generated outputs.

array placed at a distance of 0:10� from the ground
plane using MATLAB simulated outputs and FEKO
generated outputs. Based on the outputs obtained,
the value of SLL obtained for the at-top pattern is
found as �21:8761 dB while the SLL for the pencil
beam is found as �22:0078 dB. There is a small de�cit
of 0.1239 dB of SLL in the at-top pattern from the
desired value. Otherwise, very good agreement would
be reached versus the values obtained from MATLAB
outputs using MVO algorithm.

6. Conclusion

This study investigated the application of multi-verse
optimization algorithm to recon�gurable antenna ar-
rays. The algorithm exhibited the capability to succes-
sively generate necessary excitations in the generation
of dual beams. Discrete phase shifters were used for
the purpose of reducing the complexity of the feed
networks. Mutual coupling was taken into account.
The e�ect of ground plane on the radiation pattern
was studied here. Moreover, real antennas were used

instead of isotropic ones. Simulation results proved
that MVO algorithm outperformed the compared al-
gorithms in terms of the �tness function parameters,
convergence speed, etc.
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