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Abstract. Capacitated Minimum Spanning Tree Problem (CMSTP), a well-known
combinatorial optimization problem, holds the central place in telecommunication network
design. This problem involves �nding a minimum cost spanning tree with an extra
cardinality limitation on the orders of the subtrees incident to a certain root node. The
Balanced Capacitated Minimum Spanning Tree Problem (BCMSTP) is a special case that
aims to balance the orders of the subtrees. This problem is an NP-hard one and presents
two approximation algorithms in this paper. By considering the maximum order of the
subtrees Q, a (3 � 1

Q )-approximation algorithm was provided to �nd a balanced solution.
This result was improved to a (2:5 + �) approximation algorithm (for every given � > 0)
in the 2d-Euclidean spaces. Also, a Polynomial Time Approximation Scheme (PTAS) was
presented for CMSTP.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Capacitated Minimum Spanning Tree Problem (CM-
STP) is a fundamental problem in the telecommunica-
tion network planning. In this problem, we are given an
undirected graph with non-negative costs on its edges
and non-negative weights on its nodes. Also, the given
inputs include a root node r and a capacity constraint
Q. The objective is to �nd a minimum cost spanning
tree rooted at r in which the sum of the vertex weights
in each rooted subtree (that indicates its load) is at
most Q. In the absence of any capacity constraint, the
problem is limited to �nding a minimum cost spanning
tree. A special case is when all the node weights are
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equal and known as the homogeneous demand case.
This is equivalent to the case where all the node weights
are units and usually referred to as CMSTP in the
literature [1]. In this case, the problem is limited
to �nding a rooted minimum spanning tree in which
each of the subtrees incident to the root contains at
most Q nodes. CMSTP considers the unit demands
investigated in this paper.

Many CMSTP variations are formulated depend-
ing on the type of applications (e.g., see [2{8]). A vari-
ety of CMSTPs consider additional constraints like the
balance of the number of nodes in component subtrees
(see [2,9]). Ali and Huang [2] tackled the spanning
trees and forests with a number of balanced nodes in
the component subtrees. Incel et al. [9] presented a
practical application for this problem in wireless sensor
networks. This is the problem we consider in this arti-
cle paper and refer to it as the Balanced Capacitated
Minimum Spanning Tree Problem (BCMSTP).

It can be demonstrated that BCMSTP is an NP-
hard problem and provides two approximation algo-
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rithms for this problem. An approximation algorithm
runs in time polynomial with input size and ensures
a high-quality solution [10]. The approach of Vazi-
rani [10] was used to de�ne an approximation algorithm
and approximation guarantee. For the minimization
problem, an approximation algorithm achieves the
approximation ratio � if the ratio between the cost of
the found solution by the algorithm and the cost of an
optimal solution is at most � in every instance of the
problem.

Also, a Polynomial Time Approximation Scheme
(PTAS) was provided for CMSTP. A PTAS is an
approximation algorithm whose ratio is (1+�) for every
constant � > 0.

Here, we con�ne our focus to Euclidean metrics
and mention it as the Euclidean Balanced Capacitated
Minimum Spanning Tree Problem (Euclidean BCM-
STP). From the theoretical point of view, we seek to
identify whether it is solvable and more e�cient than
BCMSTP in general metrics.

BCMSTP has practicable applications in converge
cast wireless sensor networks [9] that aim to collect
data from a set of sensors toward a common link such
that the schedule length becomes a minimum. Load
balancing in a CMSTP minimizes the largest load and
the schedule length.

In a di�erent scenario, the root is the central
processor and the other nodes are terminals that de-
mand tra�c and must be sent to the central processor
through the edges. The edge tra�c is the number of
tra�c demands passing through it; therefore, maxi-
mum tra�c appears on the gates which incident edges
to the root. Balancing the loads minimizes the maxi-
mum tra�c on the gates, thus maximizing the network
robustness in case of an unpredictable growth of tra�c
demand. In fact, it reduces the likelihood of over�lling
gates with additional load. Such a situation may arise
when new terminals move into the network, or if the
connecting network is rede�ned when modifying pre-
existing connections.

Generally, the applications of BCMSTP are in the
same �elds as those of CMSTP, e.g., in telecommunica-
tion network design, the local access network design in
computer communication networks, the design of the
local loop systems between the branch o�ces and �nal
users in telephone systems, facility location planning,
distribution, transportation, logistics, and telecommu-
nications companies building �ber-optic based local
access networks.

This problem appears in the design of bus routes
in urban transportation systems where fair distribution
of services is of importance [11]. Here, the solution
is a set of Hamiltonian paths connected to the root.
Accordingly, BCMSTP is a variant of the open vehicle
routing problem [12] that considers a fairness issue
across its distribution services.

1.1. Our results
To the best of our knowledge, we did not �nd any litera-
ture on an approximation algorithm for BCMSTP. The
�rst (3 � 1

Q )�approximation algorithm was presented
for this problem in general metrics. This result was
improved to a (2:5 + �)�approximation (for every
given � > 0), in 2�dimensional (2d) Euclidean spaces.
Also, a PTAS for CMSTP in 2d�Euclidean spaces was
provided when Q = o(lnln n) (n is the number of
nodes). This result solved the problem of obtaining a
ratio any better than 2:9 [13] for this case. As far as we
are concerned, there is no previous attempt to derive a
PTAS for CMSTP in m�dimensional Euclidean spaces
for any �xed m � 2.

1.2. Related works
BCMSTP pertains to the class of balanced combinato-
rial optimization problems, which was �rst introduced
by Martello et al. [14]. Many generalizations and
variations of these problems have been studied by
several authors, e.g. [2,15{22].

For CMSTP with unit demands, Gavish and
Altinkemer in [23] presented a factor 4� 1=(2dlogQe�1)
approximation algorithm. Then, Altinkemer and Gav-
ish [24] improved this ratio to 3 � 2

Q and 4 for the
unit and non-unit demands, respectively. Later, Jothi
and Raghavachari [13] improved the ratio of 4 to

 + 2 in the non-unit demand case, where 
 is the
inverse Steiner ratio. The Steiner ratio is the topmost
proportion of the costs for the minimum Steiner tree
against the Minimum Spanning Tree (MST) for the
same instance. In graphs 
 = 2 and in Euclidean and
rectilinear metrics, it is 2=

p
3 and 3=2, respectively.

Moreover, they obtained a 2:9�approximation for the
unit demand CMSTP on the Lp�metric plane, and
a 2�approximation for this problem in the general
metrics when Q 2 f3; 4g.

Exact solution methods for CMSTP (unit or non-
unit demands) were developed by Gavish [25] and
Kershenbaum and Boorstyn [26]. There are several
algorithms and mathematical formulations [4,27{30]
available for solving this problem. Gamvros et al. [31]
studied a Multi-Level Capacitated Minimum Spanning
Tree (MLCMST) problem with unit demands on tree
topology networks. In their paper, the authors assume
that there are multiple types of a facility (maybe a
cable) with di�erent capacities and costs which can be
used to be installed between two nodes to carry the
tra�c. In comparison to our problem, we assume that
there is a single facility type with capacity of Q. Also,
we assume that the graph is complete and one facility
could be installed between any two nodes at most.

The local access network design problem (see
[32{34]) is one relevant problem that deals with mul-
tiple facility types. However, in this problem, the
topology of the network is not a tree. A related
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problem dealing with multiple facility types is the
Single Sink Buy-at-Bulk (SSBB) problem [35]. Hassin
et al. [5] provided algorithms for the single facility
SSBB problem which is a special variant of CMSTP
known as the network loading problem in the literature
and where multiple copies of the facility might be
installed on a graph edge. Hassin et al. [5] prepared
approximations of factor 2 for unit demand and 3 for
non-unit demand problems. A variation of CMSTP
with the connectivity constraint was considered by
Jothi and Raghavachari [36].

The rest of the paper is structured as follows. Sec-
tion 2 presents the notations, de�nitions, and impor-
tant assumptions. Section 3 analyzes the complexity of
the problem. Section 4 discusses the balanced solution.
Section 5 addresses BCMSTP (general metrics) and
provides a (3� 1

Q )�approximation algorithm. Section 6
addresses this problem in 2d�Euclidean metric spaces.
An improved (2:5 + �)�approximation is prepared for
every given � > 0. Also, a PTAS is presented
for CMSTP. The conclusion section summarizes the
results. An integer programing model is given for the
problem in the Appendix.

2. Notations, assumptions, and problem
de�nition

BCMSTP can be described in the following. Assume
that G = (V;E) is a complete graph where V =
fr; v1; v2; :::; vng is a set of nodes and E is a set of
edges. Here, r 2 V is the root node. Each edge
(i; j) 2 E has the weight of cij > 0 that denotes its
length/cost. The weights on the edges are symmetric
(i.e. cij = cji, for each (i; j) 2 E) and follow the
triangle inequality. Each node v 2 V nfrg has unit
demand. We will interchangeably use such terms as
vertices, nodes, and terminals. Let Tv be a subtree
dangling from v and the cost C(Tv) indicates the sum
of the edge costs incident in Tv. Moreover, the load
d(Tv) is the number of nodes (except root) incident in
Tv that indicates its order. We seek to �nd a minimum
cost spanning tree of G, so that order of each subtree
dangling from the root does not surpass the capacity
Q and orders of the subtrees are balanced. At least,
dn=Qe number of subtrees is required.

The number of subtrees may be a �xed parameter
K, given by the user. However, it would be a decision
variable that must be determined. When K is �xed,
we seek to �nd K subtrees exactly. In the rest of the
paper, we assume that K is �xed, except where noted.

A solution S = fT1; T2; :::; TKg of BCMSTP
corresponds to a capacitated partition P1; P2; :::; PK
which satis�es the following relations:

Pi 6= ;;8i; [
1�i�K

Pi = V nfrg;

Pi \ Pj = ;; i 6= j;
X

v2Pi 1 � Q; i 2 [K]:

Indeed, for each Ti 2 S, we have Pi = fv : v 6= r; v 2
Tig. We say the nodes in Pi are allocated to the ith
subtree.

To avoid ambiguity, we notice that the notation
Tv (where v is a terminal node) denotes a subtree
dangling from v, while the notation like Ti (where the
index i is not a terminal node) is used to denote a
subtree dangling from the root r.

Let LS = (d(T1); d(T2); :::; d(TK)) be the loads of
the subtrees in S that specify the \allocated loads" of
S. In the next section, a \balanced load allocation"
and a \balanced solution" are de�ned.

A mathematical programing model for BCMSTP
is suggested in the Appendix. The model shows that
BCMSTP is indeed CMSTP with extra limitations for
the balance condition. The problem is NP-hard (see
Section 3) and �nding an approximation algorithm
does not seem to be an easy task [37,38]. We prepare
two approximation algorithms. The �rst algorithm =
relies on a tour partitioning heuristic and is valid in any
metric space. The second algorithm A(=) is applicable
in the 2d�Euclidean spaces. It separates the nodes into
two parts: in the interior part, it employs =, and in the
exterior part, it �nds an optimal solution. The main
idea is to separate the nodes such that the optimal
solution in the exterior part could be found within the
polynomial time with respect to n (i.e. the number of
nodes). We will employ the following basic de�nition.

De�nition 1. Let � be an approximation algorithm
that �nds a solution S� with cost C(S�) to the
minimization problem. Let OPT be an optimal value.
The relative error of � is de�ned by the equation:

e� =
C(S�)�OPT

OPT
:

The approximation ratio of � is �(�) = C(S�)
OPT .

2.1. The balance criteria
The equity measure is an indicator that evaluates the
fairness of an allocated load vector. One of the accepted
formulations for the notion of fairness in the load
balancing domain is the range fairness that calculates
the maximum distinction between the loads (e.g., see
[39]). Another equity measure is the ratio fairness
that calculates the maximum ratio between the loads
[40,21].

Both the range and the ratio criteria comply with
the weak Pigou-Dalton (PD) principle which is a widely
accepted property of equity measures [41]. For an
allocated load vector x and an equity function I(x),
let the vector x0 be organized as follows: x0j = xj + �,
x0i = xi��, x0h = xh for all h =2 fj; ig. The PD principle
(weak version) declares that I(x0) � I(x) when 0 � � <
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xj�xi is chosen. According to the strong PD principle,
the inequality is strict (I(x0) < I(x)), implying that
the new allocation must be more equitable. The PD
principle can be used in situations where the sum of
allocation outcomes and their number are identical.

The range fairness is used to evaluate the balance
of allocated loads, although the ratio fairness can also
be used. Given a real parameter � � 0 and the number
of subtreesK, a partition of the nodes ofG intoK parts
fPi : i 2 [K]g is ��balanced if and only if j 2 [K] for
each i:

jLoad(Pi)� Load(Pj)j � �;
where Load(Pi) =

P
v2Pi 1 and jxj is the absolute value

of x. This condition results in the following inequality:

maxfLoad(Pi) : i 2 [K]g �minfLoad(Pi) :

i 2 [K]g � �: (1)

Inequality (1) is the \balanced condition". Evidently,
an �1�balanced partition is indeed �2�balanced for
each �2 � �1. The balanced range of the set fPi : i 2
[K]g is the smallest � satisfying the balanced condition.
Hence, maxfLoad(Pi) : i 2 [K]g �minfLoad(Pi) : i 2
[K]g is the balanced range of the set fPi : i 2 [K]g.
De�nition 2. A solution S of BCMSTP with the re-
lated partition P is ��balanced (for a given parameter
� � 0) if and only if P is ��balanced. The solution S is
balanced if the balanced range of P is the least possible
among the balanced ranges of the other capacitated
partitions into K parts.

When the ratio measure is used, the partition
fPi : i 2 [K]g is said to be ��balanced (for a given
parameter 0 � � � 1) if j 2 [K] for each i:

1� � � Load(Pi)
Load(Pj)

� 1 + �;

which simply results in the following inequality:

maxfLoad(Pi) : i 2 [K]g
minfLoad(Pi) : i 2 [K]g � 1 + �: (2)

Let � (0 � � � Q) be a given load deviation and let
� � �=Q be chosen. A ��balanced set fPi : i 2 [K]g
is also ��balanced: we see � �

Q � �� � Load(Pi)
Load(Pj) �1 �

� � �
Q , so �� � Q

Load(Pj) (Load(Pi)� Load(Pj)) � �:
If Load(Pi) � Load(Pj) we have:

�� � 0 � Load(Pi)� Load(Pj)

� Q
Load(Pj)

(Load(Pi)� Load(Pj)) � �:
If Load(Pi) � Load(Pj), we have:

�� � Q
Load(Pj)

(Load(Pi)� Load(Pj))

� Load(Pi)� Load(Pj) � 0 � �:
The role of � and � (in De�nition 2) is exchanged, when
the ratio measure is used.

In the rest of the paper, S denotes a set of
solutions to the considered problem, S� denotes an
optimal solution, L is the load of the subtrees, L� is
the load of an optimal solution, Ti denotes a subtree, C
denotes the traveling cost, and K indicates the number
of subtrees.

3. Complexity analysis

It can be shown that BCMSTP is NP-hard for Q � 3
and any given � � 0. Its NP-hardness can be proven by
a reduction in CMSTP, which itself is NP-hard [42,43].
The complexity of CMSTP depends on the capacity Q.
This problem is solvable in polynomial time if Q = 2
[42]. Also, it is solvable in polynomial time if vertices
have 0; 1 demands and Q = 1 [42]. Although it is NP-
hard if vertices have 0; 1 demands, Q = 2 and all edge
weights are 0 or 1 [42]. Also, it remains NP-hard for
any Q � 3 [42]. Moreover, its geometric version, in
which the metric space at the edges is the Euclidean
metric, remains NP-hard [43]. Camerini et al. [44,45]
illustrated that many variants of this problem had the
same complexity.

To demonstrate the NP-hardness of BCMSTP,
its decision version is shown to be NP-complete [42].
Assume that I� for � � 0 is a decision problem that
decides whether a feasible solution to the considered
problem exists whose cost is at most a given bound
D. Theorem 1 shows that I� is NP-complete for each
� � 0 and Q � 3. The results are true when the ratio
measure (Inequality (2) with 0 � � � 1) is used instead
of the range measure.

Theorem 1. For every � � 0 and Q � 3, I� is NP-
complete.

Proof. We show NP-completeness of I� by a reduction
from CMSTP. As mentioned in the last section, CM-
STP is NP-hard for Q � 3. Let I 0 be an instance of
this problem (with capacity constraint Q, cost cij > 0
on each edge (i; j), number of terminals n, number of
subtrees K 0 =

l
n
Q

m
, and a bound D) which decides

whether a feasible solution exists whose cost is at most
D. Clearly, I 0 is NP-complete.

Let � = maxfcij : i; j 2 f0; 1; :::; ngg. We de�ne
an instance I� of BCMSTP with capacity constraint Q,
number of terminals n0 = K 0Q, number of subtrees K 0,
cost c0ij = cij on each edge (i; j) where i; j 2 f0; 1; :::; ng
and cost c0ij = c0ji = � on each edge where i 2 fn +
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1; :::; n0g, and a bound D + �(n0 � n). Indeed, n0 � n
auxiliary nodes are added to the set of terminals in I 0
that are at the distance � from each other and the
others. Evidently, the weights on the edges obey the
triangle inequality.

Let x = fT1; T2; :::; TK0g be a solution for I 0
with loads L1; L2; :::; LK0 whose cost is lower than D.
We add Q � Li nodes to the ith subtree. Since the
augmented nodes are at the distance � from each other
and the others and the augmented length is �(n0�n).
Therefore, a solution is obtained for I�. Now, let x be
a solution for I� whose cost is lower than D+�(n0�n).
The augmented nodes are removed; therefore a feasible
solution is obtained for I 0 whose cost is lower than D.
This proves the NP-completeness of I�, for each � � 0.

4. Load balancing

In BCMSTP, a set of capacitated subtrees dangling
from the root is required. Thus, a solution has two
portions: the number of nodes that each subtree
receives and the choice of them. The number of the
allocated nodes should be balanced. A solution is
balanced if its balanced range is the least possible
among the balanced ranges of all feasible solutions (see
De�nition 2). An algorithm has been constructed to
�nd a balanced allocation of the nodes to the subtrees.
We show that this allocation is the fairest in a sense.
First, the fairest solution is de�ned.

We describe a partial order (identi�ed with �)
on the class of the allocated load vectors. For the
sorted (in non-decreasing order) load vectors l0 =
(l01; l02; :::; l0K) and l = (l1; l2; :::; lK), we assume Rl0 =
(l0K � l01; :::; l02 � l01; 0), Rl = (lK � l1; :::; l2 � l1; 0). We
say l0 � l, i� Rl0 is smaller than Rl in lexicographical
order, that is, Rl = Rl0 or there is an index j for which
(l0j � l01) < (lj � l1) and l0i � l01 = li � l1 for all i < j.
If l0 � l and l � l0, the vectors l and l0 are called
equivalent. Thus, the equivalence classes admit a total
order. The minimal equivalence class under � contains
the fairest allocations.

De�nition 3. A solution S for BCMSTP with the
allocated loads LS is the fairest solution if and only if
LS is the fairest load vector.

De�nition 3 reveals that the fairest solution is

indeed balanced since its balanced range is the least
possible among the balanced ranges of all the feasible
solutions. However, in general, the balanced solution
is not the fairest. Here, we restate the algorithm
proposed by the authors in [40] to �nd balanced loads
(see Algorithm 1).

Assume that each terminal corresponds to an
object (with a volume of 1) in the set O = fo1; :::; ong
and each subtree corresponds to a bin (with capacity
Q) in the set M = fM1; :::;MKg. Each object
is assigned to a bin, and the found solution L� =
(L�1; :::; L�K) determines the number of objects each bin
receives. Indeed, L� is the allocated load to the K
subtrees. An assignment is a function L : O ! M so
that L assigns each object oj to a bin in M . In the
assignment L, the degree of each bin is the number of
objects assigned to it.

Lemma 1. Algorithm 1 obtains the balanced loads in
polynomial time.

Proof. The proof is the same to the proof of Lemma
1 in [40].

In the rest of the paper, the sequence L�1 � L�2 �
::: � L�K denotes the balanced loads. Two possible
cases are: L�K = L�1 + 1, or L�K = L�1. We suppose
L�K � 3 and search for a set of subtrees with balanced
loads.

5. BCMSTP equipped with general metrics

Our algorithm for BCMSTP relies on a method called
route �rst-cluster second [46,24]. A special partitioning
procedure that obtains the fairest solution is proposed
in this case. Algorithm 2 presents this procedure in
detail, referred to as =.

Let CBCMSTP be the cost of an optimal solution
for BCMSTP. A lower bound for CBCMSTP is given
in Lemma 2. Note that crv is the edge cost between r
and v.

Lemma 2. CBCMSTP �
P
v2V crv
L�K

:

Proof. Suppose S� := fT �1 ; T �2 ; :::; T �Kg is an optimal
solution for BCMSTP and T �i 2 S� is a subtree with
cost C(T �i ) and let cmax

rv = maxfcrv : v 2 T �i g. Since

Algorithm 1. Load balancing algorithm.
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Algorithm 2. Approximation algorithm for the balanced capacitated minimum spanning tree problem =.

d(T �i ) =
P
v(6=r)2T�i 1 � L�K , we have:

C(T �i ) � cmax
rv =

P
v( 6=r)2T�i 1P
v( 6=r)2T�i 1

cmax
rv

�
P
v(6=r)2T�i 1
L�K

cmax
rv �

P
v2T�i crv
L�K

:

Summing over all the subtrees in S�, we obtain:

CBCMSTP =
i=KX
i=1

C(T �i ) �
P
v2V crv
L�K

:

Theorem 2. The total traveling cost of Sp satis�es
C(Sp) � (3� 1

L�1
)CBCMSTP .

Proof. Assume that C(�) is the cost of the Eulerian
tour � of the MST. We observe that each vertex v 2
V nfrg emerges at most once as the initial node of a
subtree in all the iterations. Thus, every edge (r; v)
emerges at most once during the iterations. When v 2
� emerges as the initial node of a subtree, the edge
(u; v) 2 � does not appear in that solution. If v 2 � is
not the initial node of any subtree, (u; v) 2 � appears
in all the iterations. An upper bound for the total cost
of the found solutions is:XL�1

j=1

XK

i=1
C(T ji ) � (L�1 � 1)C(�) +

X
v2V crv:(3)

The right side of Inequality (3) is an upper bound for
the total cost since we have added cru + crv � cuv to
the right-hand side when the edge (u; v) 2 � emerges
in all the iterations. Based on the triangle inequality
cru + crv � cuv � 0.

Since Sp is the cheapest among the others, we
obtain:

L�1C(Sp) �XL�1
j=1

XK

i=1
C(T ji ) � (L�1 � 1)C(�)

+
X

v2V crv:

Suppose that L�K = L�1. Thus, we have:

C(Sp) � (1� 1
L�1

)C(�) +
P
v2V crv
L�1� (1� 1

L�1
)C(�) +

P
v2V crv
L�K� (2� 2

L�1
+ 1)CBCMSTP

= (3� 2
L�1

)CBCMSTP :

The third inequality was derived from Lemma 2.
Now, suppose L�K = L�1 + 1. Thus:

C(Sp) � (1� 1
L�1

)C(�) +
P
v2V crv
L�1� (2� 2

L�1
)CBCMSTP + L�K

L�1
(
P
v2V crv
L�K

)
� (3� 1

L�1
)CBCMSTP :

where Lemma 2 was used.�
In addition, 3 � 1

L�1
� 3 � 1

Q since L�1 � Q.
Therefore, the proposed algorithm provides 3� 1

Q factor
of approximation for BCMSTP. In the following, BCM-
STP was considered in the 2d�Euclidean metric spaces
and a better approximation algorithm was produced.

6. BCMSTP equipped with 2d�Euclidean
metrics

First, CMSTP is studied in the plane and a PTAS
is provided to solve this problem. Then, a similar
technique is used to provide a factor 2 + 1

L�1
+ �

approximation algorithm for BCMSTP for every given
� > 0. To prove the performance ratios of the
algorithms, it is required to �nd an upper bound for
the MST in the plane. This matter is elaborated in the
next section.

6.1. Approximation of MST in R2

A technique similar to that of given in [47] has
been used to �nd an upper bound for the MST. Let
C(MST (V )) be the cost of the MST of a complete
graph de�ned on the set V , cmax

rv = maxfcrv : v 2 V g,
and �Crv =

P
v2V crv
n ; thus, we have the following

theorem.

Theorem 3. C(MST (V )) � 2
p
�ncmax

rv
�Crv:
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Proof. We partition the circle of radius cmax
rv into 4h

equal sectors. The boundaries of the sectors are used to
construct two star-shaped trees partitioning the circle
(see Figure 1). Each tree is converted into a spanning
tree by a double connection of minimal length from
each point; the sum of these double connections is less
than 2(2�=4h)crvi = �crvi=h due to a � crvi sin � �
crvi� (see Figure 1). Hence, the sum of the costs of the
trees is less than:

�n �Crv
1
h

+ 4hcmax
rv

and we conclude that:

C(MST (V )) � �n �Crv
1

2h
+ 2hcmax

rv :

By taking h equal to the minimized value on the
right-hand side and rounding it up, i.e., h =lp

�n �Crv=4cmax
rv

m
, the desired result can be achieved.�

6.2. PTAS for CMSTP equipped with
2d�Euclidean metrics

The tour partitioning heuristic proposed was used in
[24] (see Lemma 3), as represented below by �.

Lemma 3. There exists an approximation algorithm
for CMSTP with performance ratio of 3� 2

Q .
Proof. See the proof in [24].

Using the algorithm �, we construct PTAS for

Figure 1. Approximation of Minimum Spanning Tree
(MST) in R2.

the 2d�Euclidean CMSTP and refer to it as A(�). The
main objective of the algorithm is to separate the nodes
into two parts: in the interior part, it employs � and in
the exterior part, it �nds an optimal solution. The idea
is to separate the nodes such that the optimal solution
in the exterior part could be found in polynomial time
with respect to n (number of nodes). Khachay and
Dubinin [48] used a similar technique to �nd PTAS
for the capacitated vehicle routing problem in the
Euclidean space.

Let S�CMST := fT �CMST
1 ; T �CMST

2 ; :::; T �CMST
k g

be a set of optimal subtrees for CMSTP with optimal
cost C(S�CMST ). Haimovich and Rinnooy Kan [47]
proved that n

Q
�Crv =

P
v2V crv
Q was a lower bound

for the optimal cost: n
Q

�Crv � C(S�CMST ). Altinke-
mer and Gavish [24] developed an upper bound of
2C(MST (V ))+ n

Q
�Crv for the optimal cost and derived

(3� 2
Q )�approximation ratio using this upper bound.

Based on the results of the authors in [24,47] the
following inequalities were achieved:

n
Q

�Crv � C(S�CMST ) =
kX
i=1

C(T �CMST
i )

� 2C(MST (V )) +
n
Q

�Crv: (4)

The algorithm A(�) is presented in Algorithm 3.

Theorem 4. The algorithm A(�) is a PTAS for the
Euclidean CMSTP.

Proof. It can be illustrated that for any � > 0, the
relative error eA(�)(V ) satis�es eA(�)(V ) � �. First, we
�nd an upper bound for eA(�)(V ).

Let I be a given instance of CMSTP with an
optimal solution S�CMST (V ). Consider the circle with
radius cl = crvl centered at the root (we will later
determine l). We connect the nodes in V (l) incident to
the edges between V (l) and V nV (l) directly to the root
(see Figure 2). Let S�CMST (V (l)); S�CMST (V nV (l)) be
the optimal solutions of the problems de�ned on the

Algorithm 3. PTAS for the capacitated minimum spanning tree problem A(�).
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Figure 2. An optimal solution of the Capacitated
Minimum Spanning Tree Problem (CMSTP) de�ned on
the set of nodes V which can be transformed into a
solution for CMSTP de�ned on the set of nodes V (l) [ frg
and a solution for CMSTP de�ned on the set V=V (l) by
deleting and adding some edges.

sets V (l) [ frg; V nV (l) [ frg, respectively, and let
C(S�CMST (V (l))); C(S�CMST (V nV (l))) be their respec-
tive costs. We have:

C(S�CMST (V (l))) + C(S�CMST (V nV (l)))

� C(S�CMST (V )) + (l � 1)cl:

From the A(�) algorithm:

C(SCMST (V )) = C(S�CMST (V (l)))

+C(SCMST (V nV (l))):

Since C(S�CMST (V nV (l))) � Pn
i=l

crvi
Q (see Inequality

(4)), we get:

C(SCMST (V )) � C(S�CMST (V (l)))

+C(S�CMST (V nV (l)))

+

 
C(SCMST (V nV (l)))�

nX
i=l

crvi
Q

!
:

Thus, we obtain the equation shown in Box I. From

Inequality (4) and Theorem 3, we have:

C(S�CMST (V )) � n
Q

�Crv;

and:

C(SCMST (V nV (l))) � 2C(MST (V nV (l)))

+
n
Q

�Crv(V nV (l)) � 4
q
�ncmax

rv
�Crv

+
Pn
i=l crvi
Q

:

Thus, we obtain:

eA(�)(V ) � (l � 1)cl
n
Q

�Crv

+
C(SCMST (V nV (l)))� Pn

i=l crvi
Q

n
Q

�Crv

� Q(l � 1)clPn
i=1 crvi

+Q

0@4
p
�ncmax

rv
�Crv +

Pn
i=l crvi
Q � Pn

i=l crvi
QPn

i=1 crvi

1A
� Q(l � 1)clPn

i=1 crvi
+Q

4
p
�ncl �CrvPn
i=1 crvi

� Ql clPn
i=1 crvi

+ 4Q
p
�
r clPn

i=1 crvi
: (5)

Now, we choose l such that Inequality (5) is less
than �. For large values of l, the right-hand side of
Inequality (5) is smaller than � since the algorithm �nds
an optimal solution in the exterior part. However, its
running time is exponential concerning l. We need to
choose l such that CMSTP de�ned on the set of outside
nodes could be solved in polynomial time concerning
n. Suppose that l is selected to be the smallest number
(from n to 1) for which Inequality (5) is less than �,

eA(�)(V ) =
C(SCMST (V ))� C(S�CMST (V ))

C(S�CMST (V ))

� C(S�CMST (V (l))) + C(S�CMST (V nV (l))) + C(SCMST (V nV (l)))� Pn
i=l crvi
Q � C(S�CMST (V ))

C(S�CMST (V ))

� (l � 1)cl + C(SCMST (V nV (l)))� Pn
i=l crvi
Q

C(S�CMST (V ))
:

Box I



H. Fallah et al./Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 1479{1492 1487

for some �xed � > 0 or, in the other direction, without
loss of generality, assume l is selected to be the largest
number (from 1 to n) for which Inequality (5) is larger
than �. We obtain an upper bound on l independent
of n. To do so, we put sh =

q
clPn

i=1 crvi
, A = Q, 2B =

4Q
p
� and investigate the lower bound of inequality

solutions:

Ahs2
h + 2Bsh � " > 0; (h = 1; :::; l � 1): (6)

Hence, sh must be larger than the positive root of
the quadratic equation de�ned by the left-hand side
of Inequality (6) for h = 1; :::; l � 1:

sh >
�2B +

p
4B2 + 4Ah"

2Ah
; (h = 1; :::; l � 1):

Thus:

s2
h >

 �2B +
p

4B2 + 4Ah"
2Ah

!2

; (h = 1; :::; l � 1);

s2
h =

clPn
i=1 crvi

=

 �2B +
p

4B2 + 4Ah"
2Ah

!2

� "
Ah

+ 2
B2

A2h2 � 4
B
p

4B2 + 4Ah"
4A2h2

� "
Ah
� 4B

p
"

2
p
A3h3

; (h = 1; :::; l � 1):

Consequently:

1 �
l�1X
h=1

s2
h =

l�1X
h=1

crvhPn
i=1 crvi

� "Xl�1

h=1

1
Ah

�4B
p
"

2

Xl�1

h=1

1p
A3h3

:

Note that:
l�1X
h=1

1
h
>
Z l�1

1

1
z
dz = ln(l � 1);

and:
l�1X
h=1

1p
A3h3

<
1

A3=2

Z l

1

1
z3=2 dz <

2
A3=2 :

We conclude that:

"
A

ln(l � 1)� 4B
p
"

A3=2 < 1;

i.e.:

l < e
A
"

�
1+ 4B

p
"

A3=2

�
+ 1:

It follows that the computational e�ort for seeking an

optimal set of subtrees for the l � 1 outside nodes
does not rely on n. Moreover, the other steps of the
algorithm can be done in polynomial time. Thus, we
prove that A(�) is PTAS for CMSTP. Its running time
relies on algorithm solving MST.�

Since A and B are �(Q), the algorithm A(�)
is PTAS for CMSTP and Q = o(lnln n). Indeed,
the running time of the algorithm is exponential with
respect to l. Since l is exponential with respect to Q,
the running time will be polynomial (concerning n) for
Q = o(lnln n).

6.3. BCMSTP equipped with 2d�Euclidean
metrics

In this section, a similar technique is used to �nd a
factor 2+ 1

L�1
+� approximation algorithm for BCMSTP

for every given � > 0. The algorithm given in Section 5
is used and represented by =. As we have seen, =
provides a solution Sp with an approximation factor of
3� 1

L�1
. We see that:

C(Sp) =
i=KX
i=1

C(THi ) � 2C(MST (V )) + Crv

= 2C(MST (V )) +
Pi=n
i=1 crvi
L�1

= 2C(MST (V )) +
n
L�1

�Crv;

where �Crv =
Pi=n
i=1 crvi
n , and n is the number of terminal

nodes. Furthermore, it follows from Lemma 2 that each
optimal solution S�V = fT �1 ; T �2 ; :::; T �Kg of BCMSTP
satis�es:

C(S�V ) =
i=KX
i=1

C(T �i ) �
Pi=n
i=1 crvi
L�K

=
n
L�K

�Crv:

Thus, S�V satis�es the following relation:
n
L�K

�Crv � C(S�V ) � 2C(MST (V )) +
n
L�1

�Crv:

These inequalities are valid in any metric space, espe-
cially in Euclidean metrics. Algorithm 4 presents our
algorithm referred to as A(=) below.

Theorem 5. The algorithm A(=) achieves 2 + 1
L�1

+ �
factor of approximation for the Euclidean BCMSTP.

Proof. To prove the theorem, we show for any � >
0, the relative error eA(=)(V ) of A(=) satis�es the
inequality eA(=)(V ) � 1 + 1

L�1
+ �. First, we �nd an

upper bound for eA(=)(V ).
We provide a solution for BCMSTP on the set

V (l0) [ frg using the loads L�K ; L�K�1; :::; L�k, and also
obtain a solution to this problem on the set V nV (l0) [
frg using the loads L�1; L�2; :::; L�k�1. Let I be an
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Algorithm 4. Approximation algorithm for the balanced capacitated minimum spanning tree problem in Euclidean metrics
A(=).

Figure 3. An optimal solution of the Balanced Capacitated Minimum Spanning Tree Problem (BCMSTP) de�ned on the
set of nodes V which can be transformed into a solution for BCMSTP de�ned on the set of nodes V (l0) [ frg.

instance of BCMSTP and S�V be an optimal solution.
Consider the circle with radius cl = crvl centered at
the root (we will later determine l).

To provide a solution for BCMSTP on the set
V (l0) [ frg, the following steps need to be taken:

1. Remove the edges between the nodes in V (l) =
fv1; v2; :::; vlg and V nV (l).

2. S0V (l0) = ;. If the load/order of a subtree T 0 (in
V (l)) is L�K , take S0V (l0) = S0V (l0) [ T 0. Without
loss of generality, we assume loads of the subtrees
in V (l) are at most L�1.

3. Connect the nodes in V (l) incident to the re-
moved edges (i.e., the edges between V (l) and
V nV (l)) to the ith node in the set V 0(l0) =
fvl+1; vl+2; :::; v2l; :::; vl0g. Some of the nodes in
V 0(l0) may not be connected to any subtree in V (l)
(see Figure 3(b)). We see cvivj � crvi+crvj � crvi+
cl for vi 2 fv1; :::; vlg and vj 2 fvl+1; vl+2; :::; vl0g.
Since crvi � cvivm + cl (see Figure 3(c)), we get
cvivj � cvivm + 2cl.

4. Connect the nodes in V 0(l0) to each other, as shown

in Figure 3(b). We see cvg vh � 2cl for g; h 2 fl +
1; l + 2; :::; l0g.

5. Find an Eulerian tour �V (l0) spanning the vertices
in the found tree by doubling and shortcutting the
edges. Note that, there are smaller than L�1 nodes
of V (l) between two consecutive nodes of V 0(l0) in
�V (l0), since loads of the subtrees in V (l) are at most
L�1.

6. Let (v01; v02; :::; v0l0) be an order of the nodes in �V (l0);
we obtain subtrees with loads L�K ; L�K�1; :::; L�k as
follows:

TV (l0)
1 := fv01; v02; :::; v0L�Kg; TV (l0)

2 :

= fv0L�K+1; v
0
L�K+2; :::; v

0
L�K+L�K�1

g; :::;

TV (l0)
K�k+1 := fv0l0�L�k+1; :::; v

0
l0g:

7. Connect each subtree TV (l0)
i to the root using one

of the nodes in V 0(l0) and incident on it. This can
be done, since there are smaller than L�1 nodes (of
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V (l)) between two consecutive nodes of V 0(l0) in
�V (l0).

Thus, we obtain a solution S0V (l0) of the problem
on the set V (l0) whose cost is at most 2C(S�(V ))jV (l0)+
9lcl.

To provide a solution for the problem on the set
V nV (l0), remove the edges between V (l0) and V nV (l0).
There are at most K subtrees dangling from the root
and inside the circle with radius cl0 whose loads are
L1; L2; :::; LK . Without loss of generality, we assume
that L1 � L2 � ::: � LK . To construct a solution
to the problem on V nV (l0), we act in the following
manner. We choose the k � 1 largest subtrees and
connect the nodes of the other trees to the ith subtree
(1 � i � k � 1) until its load becomes L�i (see
Figure 4). The sum of the length of these edges
is at most 6lcl, since l0 < 3l. Let S�V (l0), S

�
V nV (l0)

be the optimal solutions for the problems de�ned on
the sets V (l0); V nV (l0), respectively and let C(S�V (l0)),
C(S�V nV (l0)) be their respective costs. We have:

C(S�V (l0)) + C(S�V nV (l0)) � 2C(S�V ) + 15lcl:

Let C(SV ), C(SV nV (l0)) be the costs of the solutions
SV , SV nV (l0), respectively. By construction, for any

Figure 4. An optimal solution of the Balanced
Capacitated Minimum Spanning Tree Problem
(BCMSTP) de�ned on the set of nodes V which can be
transformed into a solution for Balanced Capacitated
Minimum Spanning Tree Problem (BCMSTP) de�ned on
the set of nodes V=V (l0).

A(=)-based approximation algorithm:

C(SV ) = C(S�V (l0)) + C(SV nV (l0)):

Since C(S�V nV (l0)) �Pn
i=l0+1

crvi
L�K

(from Lemma 2), we
get:

C(SV ) � C(S�V (l0)) + C(S�V nV (l0))

+

 
C(SV nV (l0))�

nX
i=l0+1

crvi
L�K

!
:

Thus, we have the equation shown in Box II. Since
C(S�V ) � n

L�K
�Crv, C(SV nV (l0)) � 2C(MST (V )) +Pn

i=l0+1 crvi
L�1

, and C(MST (V )) � 2
p
�ncmax

rv
�Crv, we

obtain Eqs. (7) and (8) as shown in Box III. Due to
L�K = L�1 + 1, Inequality (7) holds. In the case that
L�K = L�1, the term 1

L�1
would be removed from Eq. (8).

Now, we choose l such that Eq. (8) is less than 1+
1
L�1

+ �. We obtain an upper bound on l independent of

n. To do so, we put sh =
q

clPn
i=1 crvi

, A = 15L�K , 2B =

4L�K
p
� and investigate the lower bound of inequality

solutions:
Ahs2

h + 2Bsh � " > 0; (h = 1; :::; l):

A similar method as it is given in the proof of Theo-
rem 4 shows that:

l < e
A
"

�
1+ 4B

p
"

A3=2

�
:

We choose the smallest l0, 2l � l0 < 3l, so thatPK
i=k L

�
i = l0, 1 � k � K. It follows that �nding

an optimal set of subtrees for the l0 outside nodes does
not depend on n. Moreover, the other steps of A(=)
can be done in polynomial time concerning n. We
conclude that the heuristic A(=) is a polynomial time
approximation algorithm for BCMSTP.�

Since L�K � Q and A and B are �(L�K), the
algorithm A(=) is an approximation algorithm for
BCMSTP and Q = o(ln ln n).

7. Conclusion

In this paper, the Balanced Capacitated Minimum
Spanning Tree Problem (BCMSTP) was considered
and an attempt was made to design two approximation

eA(=)(V ) =
C(SV )� C(S�V )

C(S�V )
� C(S�V (l0)) + C(S�V nV (l0)) + C(SV nV (l0))�

Pn
i=l0+1 crvi
L�K

� C(S�V )

C(S�V )

� 2C(S�V ) + 15lcl + C(SV nV (l0))�
Pn
i=l0+1 crvi
L�K

� C(S�V )

C(S�V )
� C(S�V ) + 15lcl + C(SV nV (l0))�

Pn
i=l0+1 crvi
L�K

C(S�V )
:

Box II
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eA(=)(V ) � 1 +
15lcl
n
L�K

�Crv
+
C(SV nV (l0))�

Pn
i=l0+1 crvi
L�K

n
L�K

�Crv
� 1 +

L�K15lclPn
i=1 crvi

+L�K

0@4
p
�ncmax

rv
�Crv +

Pn
i=l0+1 crvi
L�1

�
Pn
i=l0+1 crvi
L�KPn

i=1 crvi

1A � 1 +
L�K15lclPn
i=1 crvi

+ L�K

 
4
p
�ncl �CrvPn
i=1 crvi

!
+

1
L�1

(7)

= 1 +
1
L�1

+ L�K15l
clPn

i=1 crvi
+ 4L�K

p
�
r clPn

i=1 crvi
: (8)

Box III

algorithms. A factor 3 � 1
L�1

approximation algorithm
that could �nd the fairest solution was proposed. In the
Euclidean metrics, we provided an improved algorithm
that achieved 2 + 1

L�1
+ � factor of approximation. In

addition to its applications, BCMSTP on Euclidean
metrics is compelling theoretically. Most of the geomet-
ric problems accept Polynomial Time Approximation
Scheme (PTAS) in Euclidean metrics; therefore, an
interesting question is whether the Euclidean Balanced
Capacitated Minimum Spanning Tree Problem (Eu-
clidean BCMSTP) has PTAS, which remains an open
problem. This paper presented PTAS for the 2d-
Euclidean CMSTP. Future work could be to improve
this algorithm.
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Appendix A

We present a mathematical programing model for
BCMSTP. We presume that the root node corresponds
to the node 0 and N = f1; 2; :::; ng is the set of
terminals. Moreover, we assume that demand of the
root is zero. Let xkij be the binary variables on the
edges (i; j) 2 E that decide whether the edge (i; j) is
presented in the kth subtree. An edge (i; j) is presented
in the kth subtree, i� xkij = 1 and is not presented,
otherwise. Let ykij be the quantity that is carrying
through i to j along the kth subtree. The following
is an integer programing formulation of BCMSTP:

Copt = min
KX
k=1

nX
i=0

nX
j=1

cijxkij ;

XK

k=1

Xn

i=0
xkij = 1 j := 1; : : : ; n; (A.1)XK

k=1

Xn

i=0
ykij �

XK

k=1

Xn

i=1
ykji = 1

j := 1; : : : ; n; (A.2)������ nXj=1

yk0j �
nX
j=1

yl0j

������ < � k; l := 1; : : : ;K; (A.3)

xkij � ykij � Qxkij
j := 1; : : : ; n; i := 0; : : : ; n; k := 1; : : : ;K (A.4)

nX
j=1

xk0j = 1; k := 1; : : : ;K; (A.5)

ykij � 0; xkij 2 f0; 1g
j := 1; : : : ; n; i := 0; : : : ; n; k := 1; : : : ;K: (A.6)

The constraints of Eq. (A.1) ensure that each node
j 2 N is sourced by exactly one edge (i; j) from some
node i 2 N [ f0g. Constraint set (A.2) implies that

the cumulative 
ow going into every node j is one unit
more than the cumulative 
ow coming out of that node.
The loads of the subtrees should satisfy the balanced
condition (1) (or (2)) for a parameter � (or �), speci�ed
by the user. This is guaranteed by the constraints
(A.3). Constraint set (A.4) implies that the 
ow on an
activated (or used) edge will not exceed the capacity
Q. In this formulation, for a certain k, there can be
more than one subtree dangling from the root. In other
words, what the model considers as a subtree dangling
from the root would be the union of several such trees.
Constraint set (A.5) is to �x this bug. Constraint set
(A.6) implies that 
ows on all edges are nonnegative
and it can be implied that an edge is either used or
not. The cost of using an edge is �xed regardless of the
volume of 
ow on the edge.
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