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Abstract. In this paper, we focus on the matrices representing the inverse fuzzy soft
sets over both the universal object set and the universal parameter set. Some basic
operations and properties of these inverse fuzzy soft matrices were investigated. Moreover,
two adjustable approaches to Multi-Criteria Group Decision Making (MCGDM), namely
Inverse Fuzzy Soft Sum-Product Decision Making (IFSSPDM) and Inverse Fuzzy Soft
Distributive If-di�erence Decision Making (IFSDIf-dDM), were developed. The IFSSPDM
approach achieved the optimal choice for the MCGDM problem based on the inverse fuzzy
soft structures consisting of multiple-discrete parameter sets and common universal object
sets. The objective of IFSDIf-dDM approach was to present a solution to the MCGDM
problem based on the inverse fuzzy soft structures consisting of a common universal
parameter set and two discrete universal object sets. Thus, the solutions could be obtained
using the practicality of inverse fuzzy soft matrices for two di�erent types of decision making
problems. Besides, the comparisons made showed that the proposed approaches produced
more convincing outputs than the current fuzzy soft approaches.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

To deal with the foremost necessary origin background
of problems containing uncertainty and obscurity, the
fuzzy and soft sets were introduced by Zadeh [1] in
1965 and Molodtsov [2] in 1999, respectively. The
authors in [3{6] concentrated on the soft sets and their
operations to solve day-to-day life decision making
problems, which involved di�erent kinds of uncertain-
ties. Especially, C�a~gman and Engino~glu [7] rede�ned
the operations of Molodtsov's soft sets to make it more
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functional and then, adapted them to the soft matrices
in [8]. The soft matrix theory was further improved
by the researchers [9{14] towards the applications of
decision making problems.

In 2001, Maji et al. [15] introduced a fuzzy soft set
by combining Molodtsov's soft set and Zadeh's fuzzy
set. This set can be considered as a hybridization of
a soft set and fuzzy set. The theory of fuzzy soft set
has turned into a center of attraction among research
scholars because it can be applied more e�ectively
to decision making, game theory, pattern recognition,
medical diagnosis, etc. Many researchers endeavored to
develop outstanding algorithms/methods/procedures
to deal with decision making problems [16{22], med-
ical diagnosis problems [23{26], and job requirement
problems [27] under fuzzy soft environment. In 2012,
C�a~gman and Engino~glu [28] derived the matrix repre-
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sentations matching the fuzzy soft sets and discussed
their natural implementations. The fuzzy soft matrix,
a new way of approaching the fuzzy soft set, is more
practical and useful. Therefore, some authors [29{32]
adopted these matrix notations to formulate methods
that aim to �nd optimal solutions to Multi-Criteria
Group Decision Making (MCGDM) problems.

In recent years, two studies have been presented
on the inverse structure of fuzzy soft sets from di�erent
perspectives. In 2016, C�etkin et al. [33] initiated the
idea of inverse fuzzy soft sets on the common universal
set and then, Khalil and Hassan [34] introduced the
inverse fuzzy soft sets on the common parameter set in
2019. They focused on the advantages of these inverse
fuzzy soft sets in practice and endeavored to reinforce
this argument for decision making. It is known that
the matrices corresponding to the fuzzy soft sets are
both more practical and time-saving. Relatedly, it is
important to represent both types of inverse structures
of fuzzy soft sets through matrices.

The main objective of this study is to create the
matrix representations of inverse fuzzy soft sets intro-
duced by C�etkin et al. [33] and Khalil and Hassan [34].
Besides, it is aimed to propose new approaches to the
MCGDM based on (inverse) fuzzy soft information
and to create an outstanding decision making model
that can achieve optimal choice when the number of
universal object sets is two. The contributions of this
paper are detailed as follows:

� The inverse fuzzy soft matrices are theorized. These
matrices o�er the opportunity to represent both
the concept of inverse fuzzy soft set proposed by
C�etkin et al. [33] and the concept of inverse fuzzy
soft set proposed by Khalil and Hassan [34], thereby
to perform two-way evaluations. Moreover, some
inverse fuzzy soft matrix r-products and c-products
such as and, or, exclusive or, di�erence, if, and i�
are derived. The properties and relations of these
products are itemized;

� An adjustable approach to MCGDM is proposed
under the (inverse) fuzzy soft environment. The
evaluation bases of the new approach are multiple.
This model is compared with some of the existing
fuzzy soft decision making models and thus, its
advantages are revealed;

� The number of parameter sets in decision mak-
ing can be multiple and many fuzzy soft decision
making models have been proposed to deal with
such problems. However, all the existing models
become insu�cient as the number of universal sets
increases. Algorithm 2 is proposed to eliminate the
restriction on the number of universal object sets in
decision making. This o�ers a di�erent perspective
to (inverse) fuzzy soft decision making.

The remainder of this paper is organized as follows.
In the second section, some preliminary fundamental
de�nitions are stated. The third section introduces the
matrices matching the inverse fuzzy soft sets and their
related operations. In the fourth section, an MCGDM
model is organized to obtain an optimum universal
object set concerning the multiple-discrete parameter
sets under the inverse fuzzy soft environment. Besides,
the e�ciency and performance of the proposed model
are analyzed with examples and comparisons. The �fth
section is devoted to solving the MCGDM problem
based on the inverse fuzzy soft structures consisting
of a common universal parameter set and two discrete
universal object sets. The last section consists of the
conclusion of the paper.

2. Preliminaries

In this section, we �rstly retrospect the notions of fuzzy
set, fuzzy soft set, and inverse fuzzy soft set.

De�nition 1 [1]. Let O be a set of objects. A fuzzy
set A in O is de�ned as:

A = f(oj ; �A(oj))=oj 2 Og; (1)

where �A : O ! [0; 1] is a function. Also, the function
�A is called the membership function and �A(oj) is
called the membership value for each oj 2 O.

De�nition 2 [15]. Let O be a set of objects and X be
a set of parameters. Also, let P(O) denote the set of
all fuzzy sets over O. Then, the following set of ordered
pairs:

	O
X = f(xi;  (xi)) : xi 2 X; (xi) 2P(O)g; (2)

is called a fuzzy soft set over O, where  : X !P(O)
is a set-valued mapping.

In the above de�nition, we remark that  (xi) is
a fuzzy set for each xi 2 X. Assume that  xi is the
membership function for the fuzzy set  (xi). Clearly,
 xi(oj) is the membership value for each oj 2 O.
Therefore, for each xi 2 X, the corresponding fuzzy set
 (xi) can be written as  (xi) = f(oj ;  xi(oj))=oj 2 Og.
Example 1. Let O = fo1; o2; o3; o4g be a set of objects
and X = fx1; x2; x3g be a set of parameters. If we
de�ne:

 : X !P(O) by

 (x1) = f(o1; 1); (o2; 0:6); (o3; 0:8); (o4; 0:2)g;
 (x2) = f(o1; 0:1); (o2; 0:5); (o3; 0); (o4; 0:1)g;
 (x3) = f(o1; 0:4); (o2; 0:6); (o3; 0); (o4; 0)g;

then we have the following fuzzy soft set:
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	O
X =

8>>>><>>>>:
(x1; f(o1; 1); (o2; 0:6); (o3; 0:8); (o4; 0:2)g);
(x2; f(o1; 0:1); (o2; 0:5); (o3; 0); (o4; 0:1)g);
(x3; f(o1; 0:4); (o2; 0:6); (o3; 0); (o4; 0)g)

9>>>>=>>>>; :

In the literature, there are two di�erent types of inverse
fuzzy soft sets. The �rst of these is the concept of
inverse fuzzy soft set on the universal object set O,
which was de�ned by C�etkin et al. [33] in 2016, and
the other one is the idea of the inverse fuzzy soft set on
the universal parameter set X, which was introduced
by Khalil and Hassan [34] in 2019. These emerging
approaches are di�erent from each other. Also, the
operations derived from these inverse fuzzy soft sets
have di�erent characteristics.

De�nition 3 [33]. Let O be a set of objects and Xc
be a set of parameters. Also, let P(Xc) denote the set
of all fuzzy sets over Xc. Then, the following set of
ordered pairs:e	O

Xc =
n�
oj ; e (oj)

�
: oj 2 O; e (oj) 2P(Xc)

o
; (3)

is called an inverse fuzzy soft set over O, where  :
O !P(Xc) is a set-valued mapping.

De�nition 4 [34]. Let Or be a set of objects and X be
a set of parameters. Also, let P(X) denote the power
set of X. Then, the following set of ordered pairs:e	X

Or =
n�
orj ; e (orj)

�
: orj 2 Or; e (orj) 2P(X)

o
; (4)

is called an inverse fuzzy soft set over X, where e :
Or !P(X) is a set-valued mapping.

To understand the di�erence between fuzzy soft
set on O and inverse fuzzy soft set on O, we can
consider the following example.

Assume that a company plans to recruit personnel
for an empty position. Suppose that there are �ve can-
didate men who have applied for this empty position.
For this purpose, the company management determines
an expert team E1 (consisting of men) and wants the
team to evaluate these candidates according to some
parameters. The expert team E1 interviews each of
the candidates and, as a result, can create a fuzzy
soft set. In other words, the expert team E1 thinks
\which candidates have the attribute (parameter) x?"
If the number of candidates (men) is 90, then it is
very di�cult for the expert team E1 to achieve an
answer to this question. For instance, it is di�cult to
determine candidates (with fuzzy values) having the
parameter \x-proper diction" from 90 candidates in
a snap. However, the expert team E1 interviewing a
candidate can determine all attributes (parameters) in
the (fuzzy) parameter set for this candidate. In other

words, the expert team E1 thinks that \what are the
attributes (parameters) in the universal parameter set
for each candidate o?" and then, they can create an
inverse fuzzy soft set.

The above problem reveals the di�erence between
inverse fuzzy soft set over the universal set O and
inverse soft set over the parameter X.

Now, suppose that four female candidates have
applied for this empty position. There is an expert
team E2 (consisting of women) to evaluate these
candidates according to the parameters. The expert
team E2 can create an inverse fuzzy soft set for the
four female candidates. The inverse fuzzy soft sets
formed by the two expert teams E1 and E2 include
the evaluation of candidates in two di�erent universal
sets (one of which is a set of �ve male candidates and
the other is a set of four female candidates) under the
same parameter set X. Consequently, an inverse fuzzy
soft set is obtained for �ve male candidates and an
inverse fuzzy soft set for four female candidates over
the parameter set X.

The following example better explains this di�er-
ence.

Example 2.

(i) Let O1 = fo1
1; o1

2; o1
3g be a set of objects. Also,

let us take the parameter sets as X1 = fx1
1; x1

2g
and X2 = fx2

1; x2
2; x2

3g. Then, we can write two
inverse fuzzy soft sets over O1 with respect to the
sets X1 and X2 as follows:

e	O1
X1

=
��
o1

1;
��
x1

1; 0:5
�
;
�
x1

2; 0:6
�	�

;�
o1

2;
��
x1

1; 0:9
�
;
�
x1

2; 1
�	�

;�
o1

3;
��
x1

1; 0:4
�
;
�
x1

2; 0:7
�	�	

;

e	O1
X2

=
��
o1

1;
��
x2

1; 0:6
�
;
�
x2

2; 0:3
�
;
�
x2

3; 0:4
�	�

;�
o1

2;
��
x2

1; 0:8
�
;
�
x2

2; 0:9
�
;
�
x2

3; 0:4
�	�

;�
o1

3;
��
x2

1; 0:1
�
;
�
x2

2; 0:2
�
;
�
x2

3; 0:7
�	�	

:

(ii) Let O1 = fo1
1; o1

2; o1
3g, O2 = fo2

1; o2
2; o2

3g, and O3 =
fo3

1; o3
2g be three di�erent sets of objects. Also, let

us take the parameter set as X1 = fx1
1; x1

2g. Then,
we can write three inverse fuzzy soft sets over X
with respect to the sets O1, O2, and O3 as follows:

e	X1
O1

=
��
o1

1;
��
x1

1; 0:4
�
;
�
x1

2; 0:6
�	�

;�
o1

2;
��
x1

1; 0:9
�
;
�
x1

2; 0:7
�	�

;�
o1

3;
��
x1

1; 0:3
�
;
�
x1

2; 0:5
�	�	

;
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e	X1
O2

=
��
o2

1;
��
x1

1; 0:4
�
;
�
x1

2; 0:6
�	�

;�
o2

2;
��
x1

1; 0:8
�
;
�
x1

20:6
�	�

;�
o2

3;
��
x1

1; 0:3
�
;
�
x1

2; 0:5
�	�	

;e	X1
O3

=
��
o3

1;
��
x1

1; 0:2
�
;
�
x1

2; 0:7
�	�

;�
o3

2;
��
x1

1; 0:3
�
;
�
x1

2; 0:1
�	�	

:

In Example 2, the parameter sets X1, X2 and
universal (object) sets O1, O2, and O3 can be discrete
sets.

3. Inverse fuzzy soft matrices with operations

Up to the present, many researchers have been inter-
ested in matrix representations of fuzzy soft sets on
O. In this section, we de�ne the inverse fuzzy soft
sets (given in De�nitions 3 and 4) representing the
inverse fuzzy soft sets on O and X. Thereby, we will
address the matrices matching the inverse fuzzy soft
sets described not only on O, but also on X.

De�nition 5. Let Or = forj : j 2 Jg and Xc = fxci :
i 2 Ig, where I and J are the index sets. Then, the
inverse fuzzy soft matrix for the inverse fuzzy soft set
(e	Or

Xc or e	Xc
Or ) is [a(c;r)

ij ], where for all i and j:

a(c;r)
ij =

(e orj (xci ); if
�
xci ; e orj (xci )� 2 e (orj)

0; otherwise
(5)

Example 3. The inverse fuzzy soft matrices represent-
ing the inverse fuzzy soft sets e	O1

X1
and e	O1

X2
given in

Example 2 (i) are respectively:h
a(1;1)
ij

i
=
�
0:5 0:9 0:4
0:6 1 0:7

�
andh

a(2;1)
mj

i
=

240:6 0:8 0:1
0:3 0:9 0:2
0:4 0:4 0:7

35 :
The inverse fuzzy soft matrices representing the inverse
fuzzy soft sets e	X1

O1
, e	X1

O2
, and e	X1

O3
given in Example 2

(ii) are respectively:h
b(1;1)
ij

i
=
�
0:4 0:9 0:3
0:6 0:7 0:5

�
;h

b(1;2)
ik

i
=
�
0:4 0:8 0:3
0:6 0:6 0:5

�
;

andh
b(1;3)
il

i
=
�
0:2 0:3
0:7 0:1

�
:

Notation 1. There is an exact matching between
the inverse fuzzy soft matrices and the inverse fuzzy
soft sets. IFSM(O) indicates the set of all inverse
fuzzy soft matrices on the common universal set O.
Likewise, IFSM(X) indicates the set of all inverse fuzzy
soft matrices on the common parameter set X.

Notation 2. If jXj = t and jOj = v, then the set
of all t � v inverse fuzzy soft matrices on O and X is
characterized by IFSMt�v.

Considering Example 3, it is seen that [a(1;1)
ij ],

[a(2;1)
mj ] 2 IFSM(O1) and [b(1;1)

ij ], [b(1;2)
ik ], [b(1;3)

il ] 2
IFSM(X1). On the other hand, it is clear that [a(1;1)

ij ];
[b(1;1)
ij ]; [b(1;2)

ik ] 2 IFSM2�3, [a(2;1)
mj ] 2 IFSM3�3 and

[b(1;3)
il ] 2 IFSM2�2. We have [a(1;1)

ij ]; [b(1;1)
ij ] 2 IFSM2�3

while [a(1;1)
ij ] 2 IFSM(O1) and [b(1;1)

ij ] 2 IFSM(X1).
The result is evident because these two matrices are
constructed using the sets O1 and X1. However, it is
worth mentioning that [a(1;1)

ij ]; [b(1;2)
ik ] 2 IFSM2�3 while

[a(1;1)
ij ] 2 IFSM(O1) and [b(1;3)

ik ] 2 IFSM(X1).

De�nition 6. Let [a(c1;r1)
ij ], [b(c2;r2)

ij ] 2 IFSMt�v:

a) If c1 = c2 = c and a(c;r1)
ij � b(c;r2)

ij for all i, j,
then the matrix [a(c;r1)

ij ] is termed a column-inverse
fuzzy submatrix (c-inverse fuzzy soft submatrix)
of [b(c;r2)

ij ]. This is symbolically represented by
[a(c;r1)
ij ] vc [b(c;r2)

ij ];

b) If r1 = r2 = r and a(c1;r)
ij � b(c2;r)ij for all i, j, then

the matrix [a(c1;r)
ij ] is termed a row-inverse fuzzy

soft submatrix (r-inverse fuzzy soft submatrix)
of [b(c2;r)ij ]. This is symbolically represented by
[a(c1;r)
ij ] vr [b(c2;r)ij ];

c) If c1 = c2 = c, r1 = r2 = r and a(c;r)
ij � b(c;r)ij for

all i, j, then the matrix [a(c;r)
ij ] is termed an inverse

fuzzy soft submatrix of [b(c;r)ij ]. This is symbolically
represented by [a(c;r)

ij ] v [b(c;r)ij ].

De�nition 7. Let [a(c1;r1)
ij ]; [b(c2;r2)

ij ] 2 IFSMt�v:

a) If c1 = c2 = c and a(c;r1)
ij = b(c;r2)

ij for all i, j,
then the matrices [a(c;r1)

ij ] and [b(c;r2)
ij ] are termed

column-inverse fuzzy soft equal matrices (c-inverse
fuzzy soft equal matrices). This is symbolically
represented by [a(c;r1)

ij ] =c [b(c;r2)
ij ];

b) If r1 = r2 = r and a(c1;r)
ij = b(c2;r)ij for all i, j,

then the matrices [a(c1;r)
ij ] and [b(c2;r)ij ] are termed

row-inverse fuzzy soft equal matrices (r-inverse
fuzzy soft equal matrices). This is symbolically
represented by [a(c1;r)

ij ] =r [b(c2;r)ij ];
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c) If c1 = c2 = c, r1 = r2 = r and a(c;r)
ij = b(c;r)ij

for all i, j, then the matrices [a(c;r)
ij ] and [b(c;r)ij ] are

termed to be inverse fuzzy soft equal matrices. This
is symbolically represented by [a(c;r)

ij ] = [b(c;r)ij ].

De�nition 8. Let [a(c;r)
ij ] 2 IFSMt�v. Then, the

complement to inverse fuzzy soft matrix [a(c;r)
ij ] is

de�ned as [a(c;r)
ij ]� = [d(c;r)

ij ], where d(c;r)
ij = 1 � a(c;r)

ij
for all i and j.

Example 4. Let us consider the inverse fuzzy soft
matrices given in Example 3. Then, we have [b(1;1)

ij ] v
[a(1;1)
ij ], [b(1;2)

ik ] vc [b(1;1)
ij ] and [b(1;2)

ik ] vc [a(1;1)
ij ]. Also,

we obtain:h
a(2;1)
mj

i�
=

240:4 0:2 0:9
0:7 0:1 0:8
0:6 0:6 0:3

35 ;
h
b(1;1)
ij

i�
=
�
0:6 0:1 0:7
0:4 0:3 0:5

�
;

h
b(1;3)
il

i�
=
�
0:8 0:7
0:3 0:9

�
:

De�nition 9. Let [a(c1;r1)
ij ], [b(c2;r2)

ij ]2IFSMt�v. Then:

a) The column-intersection (c-intersection) of inverse
fuzzy soft matrices [a(c;r1)

ij ] and [b(c;r2)
ij ] for c1 = c2 =

c is de�ned as [a(c;r1)
ij ]uc [b(c;r2)

ij ] = [dij ] 2 IFSMt�v
where dij = minfa(c;r1)

ij ; b(c;r2)
ij g for all i and j;

(b) The row-intersection (r-intersection) of inverse
fuzzy soft matrices [a(c1;r)

ij ] and [b(c2;r)ij ] for r1 = r2

= r is de�ned as [a(c1;r)
ij ] ur [b(c2;r)ij ] = [dij ] 2

IFSMt�v where dij = minfa(c1;r)
ij ; b(c2;r)ij g for all i

and j;
(c) The intersection of inverse fuzzy soft matrices

[a(c;r)
ij ] and [b(c;r)ij ] for c1 = c2 = c and r1 = r2 = r is

de�ned as [a(c;r)
ij ]u [b(c;r)ij ] = [dij ] 2 IFSMt�v where

dij = minfa(c;r)
ij ; b(c;r)ij g for all i and j.

De�nition 10. Let [a(c1;r1)
ij ]; [b(c2;r2)

ij ] 2 ISFMt�v:

a) The column-union (c-union) of inverse fuzzy soft
matrices [a(c;r1)

ij ] and [b(c;r2)
ij ] for c1 = c2 = c is

de�ned as [a(c;r1)
ij ] tc [b(c;r2)

ij ] = [dij ] 2 ISFMt�v
where dij = maxfa(c;r1)

ij ; b(c;r2)
ij g for all i and j;

b) The row-union (r-union) of inverse fuzzy soft ma-
trices [a(c1;r)

ij ] and [b(c2;r)ij ] for r1 = r2 = r is de�ned
as [a(c1;r)

ij ] tr [b(c2;r)ij ] = [dij ] 2 ISFMt�v where
dij = maxfa(c1;r)

ij ; b(c2;r)ij g for all i and j;

c) The union of inverse fuzzy soft matrices [a(c;r)
ij ] and

[b(c;r)ij ] for c1 = c2 = c and r1 = r2 = r is de�ned
as [a(c;r)

ij ] t [b(c;r)ij ] = [dij ] 2 ISFMt�v where dij =
maxfa(c;r)

ij ; b(c;r)ij g for all i and j.

We can give the following example to show the
authentic-life applications of c-operations.

Example 5. Assume that a bridegroom wants
to compare the three brides from North India and
South India to get married under the parameter set
X1 = fx1

1; x1
2; x1

3; x1
4g, where x1

1 represents x1
1-Good

character, x1
2-Beauty, x1

3-Finance awareness, and x1
4-

Excellent culture. Suppose that the brides of North
India and South India are O1 = fo1

1; o1
2; o1

3g and O2 =
fo2

1; o2
2; o2

3g, respectively. Then, it is seen that O1\O2 =
;. According to the data, if the bridegroom constructs
the following inverse fuzzy soft matrices:h

a(1;1)
ij

i
=

26640:6 0:5 0:4
0:2 1 0:3
0:8 0:1 0:9
0 0:7 0:6

3775 ;
h
b(1;2)
ik

i
=

26640:7 0:8 0:6
0:3 1 0:5
0:9 0:5 1
1 0:8 0:7

3775 ;
then he asserts that the South Indian brides are better
than North Indian brides in all parameters, since
[a(1;1)
ij ] vc [b(1;2)

ik ].
If the bridegroom creates the following inverse

fuzzy soft matrices:h
a(1;1)
ij

i
=

26640:6 0:8 0:9
0:5 1 0:7
1 0:7 0:4

0:6 0:4 1

3775 ;
h
b(1;2)
ik

i
=

26640:7 0:5 0:6
0:4 1 0:6
0:8 0:2 1
1 0:7 1

3775 ;
then he has the c-intersection of inverse fuzzy soft
matrices [a(1;1)

ij ] and [b(1;2)
ik ] as follows:

h
a(1;1)
ij

i uc hb(1;2)
ik

i
=

26640:6 0:5 0:6
0:4 1 0:6
0:8 0:2 0:4
0:6 0:4 1

3775 :
Thus, the bridegroom asserts that there is a girl from
both North India and South India who is beautiful and
has an excellent culture.

Moreover, many problems can be resolved by
using the r-operations of inverse fuzzy soft matrices
in authentic-life.
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De�nition 11. Let [a(c1;r)
mj ] 2 ISMt1�v and [b(c2;r)nj ] 2

ISMt2�v:

a) The And row-product (And r-product) of inverse
fuzzy soft matrices [a(c1;r)

mj ] and [b(c2;r)nj ] is de�ned
as [a(c1;r)

mj ] ^r [b(c2;r)nj ] = [gsj ] 2 ISMt1t2�v, where:

gsj = min
n
a(c1;r)
mj ; b(c2;r)nj

o
; (6)

for s = (m� 1)t2 + n.

b) The Or row-product (Or r-product) of inverse fuzzy
soft matrices [a(c1;r)

mj ] and [b(c2;r)nj ] is de�ned as
[a(c1;r)
mj ] _r [b(c2;r)nj ] = [hsj ] 2 ISMt1t2�v, where:

hsj = max
n
a(c1;r)
mj ; b(c2;r)nj

o
; (7)

for s = (m� 1)t2 + n.

c) The exclusive Or row-product (exclusive Or r-
product) of inverse fuzzy soft matrices [a(c1;r)

mj ] and
[b(c2;r)nj ] is de�ned as [a(c1;r)

mj ] Yr [b(c2;r)nj ] = [hsj ] 2
ISMt1t2�v, where:

hsj =

(
max

n
a(c1;r)
mj ; b(c2;r)nj

o
; if a(c1;r)

mj 6=b(c2;r)nj

0; if a(c1;r)
mj =b(c2;r)nj (8)

for s = (m� 1)t2 + n.

Proposition 1. Let [a(c1;r)
mj ] 2 IFSMt1�v, [b(c2;r)nj ] 2

IFSMt2�v and [c(c3;r)pj ] 2 IFSMt3�v. Also, [1]1�v
represents the 1 � v inverse fuzzy soft matrix with all
components 1 and [0]1�v represents the 1 � v inverse
fuzzy soft matrix with all components 0.

(i) [a(c1;r)
mj ] ^r [1]1�v = [1]1�v ^r [a(c1;r)

mj ] = [a(c1;r)
mj ];

(ii) [a(c1;r)
mj ] _r [0]1�v = [0]1�v _r [a(c1;r)

mj ] = [a(c1;r)
mj ];

(iii) [a(c1;r)
mj ] Yr [0]1�v = [0]1�v Yr [a(c1;r)

mj ] = [a(c1;r)
mj ];

(iv) ([a(c1;r)
mj ] � [b(c2;r)nj ]) � [c(c3;r)pj ] = [a(c1;r)

mj ] � ([b(c2;r)nj ] �
[c(c3;r)pj ]) for each � 2 f^r;_rg.

Remark that it is usually [a(c1;r)
mj ] � [b(c2;r)nj ] 6= [b(c2;r)nj ] �

[a(c1;r)
mj ] for each � 2 f^r;_r;Yrg.

Proof. The proofs of (i){(iii) are obvious in De�nition
13. Therefore, they are omitted. Now, we achieve the
proof of (iv) for the Or r-product _r.

Let [a(c1;r)
mj ] 2 IFSMt1�v, [b(c2;r)nj ] 2 IFSMt2�v and

[c(c3;r)pj ] 2 IFSMt3�v. By De�nition 13 (b), we can
write [a(c1;r)

mj ] _r [b(c2;r)nj ] = [e(hc1;c2i;r)
qj ] 2 IFSMt1t2�v

where e(hc1;c2i;r)
qj = maxfa(c1;r)

mj ; b(c2;r)nj g for q = (m �

1)t2 + n. Besides, we have [e(hc1;c2i;r)
qj ] _r [c(c3;r)pj ] =

[f (hc1;c2;c3i;r)
sj ] 2 IFSMt1t2t3�v where:

f (hc1;c2;c3i;r)
sj = max

n
e(hc1;c2i;r)
qj ; c(c3;r)pj

o
= max

n
max

n
a(c1;r)
mj ; b(c2;r)nj

o
; c(c3;r)pj

o
= max

n
a(c1;r)
mj ; b(c2;r)nj ; c(c3;r)pj

o
; (9)

for
s = (q � 1)t3 + p = ((m� 1)t2 + n� 1)t3 + p

= (m� 1)t2t3 + (n� 1)t3 + p: (10)

Similarly, we can write:

[b(c2;r)nj ] _r [c(c3;r)pj ] = [g(hc2;c3i;r)
q0j ] 2 IFSMt2t3�v

where g(hc2;c3i;r)
q0j = maxfb(c2;r)nj ; c(c3;r)pj g for q0 = (n �

1)t3 + p. Besides, we have:

[a(c1;r)
mj ] _r [g(hc2;c3i;r)

q0j ]=[h(hc1;c2;c3i;r)
s0j ]2IFSMt1t2t3�v

where:

h(hc1;c2;c3i;r)
s0j = maxfa(c1;r)

mj ; g(hc2;c3i;r)
q0j g

= maxfa(c1;r)
mj ;maxfb(c2;r)nj ; c(c3;r)pj gg

= maxfa(c1;r)
mj ; b(c2;r)nj ; c(c3;r)pj g; (11)

for
s0=(m�1)t2t3+q0=(m�1)t2t3+(n�1)t3+p: (12)

By Eqs. (9), (10), (11), and (12), it is obtained that
[f (hc1;c2;c3i;r)
sj ] = [h(hc1;c2;c3i;r)

s0j ]. This completes the
proof for the Or r-product _r.

It can be proven in a similar way for the And r-
product ^r. �
Note: If ([a(c1;r)

mj ], [b(c2;r)nj ]), and [c(c3;r)pj ] are the inverse
fuzzy soft matrices such that:

a(c1;r)
mj ; b(c2;r)nj ; c(c3;r)pj 2 f0; 1g;

for all 1 � m � t1, 1 � n � t2, 1 � p � t3, 1 � j � v,
then:

([a(c1;r)
mj ] Yr [b(c2;r)nj ]) Yr [c(c3;r)pj ] =

[a(c1;r)
mj ] Yr ([b(c2;r)nj ] Yr [c(c3;r)pj ]):

Otherwise, generally:

([a(c1;r)
mj ] Yr [b(c2;r)nj ]) Yr [c(c3;r)pj ] 6=

[a(c1;r)
mj ] Yr ([b(c2;r)nj ] Yr [c(c3;r)pj ]):

For this situation, we consider the following example.
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Example 6. We take the inverse fuzzy soft matrices
[a(1;1)
mj ] 2 IFSM2�2, [b(2;1)

nj ] 2 IFSM2�1 and [c(3;1)
pj ] 2

IFSM2�2 as follows:h
a(1;1)
mj

i
=
�
0:4 0:2
0:5 1

�
;

h
b(2;1)
nj

i
=
�
0:5
0:4

�
;

h
c(3;1)
pj

i
=
�
0:5 0:7
0:1 0

�
:

Then, we have:h
a(c1;r)
mj

i
Yr
h
b(c2;r)nj

i�
Yr
h
c(c3;r)pj

i
=
�
0 1
0 0:5

�
;

h
a(c1;r)
mj

i
Yr
�h
b(c2;r)nj

i
Yr
h
c(c3;r)pj

i
=
�
0:4 1
0 0:5

�
:

Thus, we have ([a(c1;r)
mj ] Yr [b(c2;r)nj ]) Yr [c(c3;r)pj ] 6=

[a(c1;r)
mj ] Yr ([b(c2;r)nj ] Yr [c(c3;r)pj ]).

Theorem 1. According to each of the operations And
r-product (^r) and Or r-product (_r), IFSMt�v is a
monoid.

Proof. The proof is obvious by Proposition 1. �

De�nition 12. Let [a(c;r1)
ij ] 2 ISMt�v1 and [b(c;r2)

ik ] 2
ISMt�v2 :

a) The And column-product (And c-product) of in-
verse fuzzy soft matrices [a(c;r1)

ij ] and [b(c;r2)
ik ] is

de�ned as [a(c;r1)
ij ] ^c [b(c;r2)

ik ] = [gil] 2 ISMt�v1v2 ,
where:

gil = min
n
a(c;r1)
ij ; b(c;r2)

ik

o
; (13)

for l = (j � 1)v2 + k.
b) The Or column-product (Or c-product) of inverse

fuzzy soft matrices [a(c;r1)
ij ] and [b(c;r2)

ik ] is de�ned as
[a(c;r1)
ij ] _c [b(c;r2)

ik ] = [hil] 2 ISMt�v1v2 , where:

hil = max
n
a(c;r1)
ij ; b(c;r2)

ik

o
; (14)

for l = (j � 1)v2 + k.
c) The exclusive Or column-product (exclusive Or c-

product) of inverse fuzzy soft matrices [a(c;r1)
ij ] and

[b(c;r2)
ik ] is de�ned as [a(c;r1)

ij ] Yc [b(c;r2)
ik ] = [hil] 2

ISMt�v1v2 , where:

hil=

8>><>>:
max

n
a(c;r1)
ij ; b(c;r2)

ik

o
; if a(c;r1)

ij 6=b(c;r2)
ik

0; if a(c;r1)
ij =b(c;r2)

ik
(15)

for l = (j � 1)v2 + k.

Proposition 2. Let [a(c;r1)
ij ] 2 IFSMt�v1 , [b(c;r2)

ik ] 2
IFSMt�v2 and [c(c;r3)

il ] 2 IFSMt�v3 . Also, [1]t�1
represents the t � 1 inverse fuzzy soft matrix with all
components 1 and [0]t�1 represents the t � 1 inverse
fuzzy soft matrix with all components 0.

(i) [a(c;r1)
ij ] ^c [1]t�1 = [1]t�1 ^c [a(c;r1)

ij ] = [a(c;r1)
ij ];

(ii) [a(c;r1)
ij ] _c [0]t�1 = [0]t�1 _c [a(c;r1)

ij ] = [a(c;r1)
ij ];

iii) [a(c;r1)
ij ] Yc [0]t�1 = [0]t�1 Yc [a(c;r1)

ij ] = [a(c;r1)
ij ];

iv) ([a(c;r1)
ij ] � [b(c;r2)

ik ]) � [c(c;r3)
il ] = [a(c;r1)

ij ] � ([b(c;r2)
ik ] �

[c(c;r3)
il ]) for each � 2 f^c;_cg.

Remark that it is usually [a(c;r1)
ij ] � [b(c;r2)

ik ] 6=
[b(c;r2)
ik ] � [a(c;r1)

ij ] for each � 2 f^c;_c;Ycg.
Proof. The proof is similar to that of Proposition 2.
�

Note: If ([a(c;r1)
ij ], [b(c;r2)

ik ]) and [c(c;r3)
il ] are the inverse

fuzzy soft matrices such that a(c;r1)
ij ; b(c;r2)

ik ; c(c;r3)
il 2

f0; 1g for all 1 � i � t, 1 � j � v1, 1 � k � v2,
1 � l � v3, then:

([a(c;r1)
ij ] Yc [b(c;r2)

ik ]) Yc [c(c;r3)
il ] =

[a(c;r1)
ij ] Yc ([b(c;r2)

ik ] Yc [c(c;r3)
il ]):

Otherwise, generally:

([a(c;r1)
ij ] Yc [b(c;r2)

ik ]) Yc [c(c;r3)
il ] 6=

[a(c;r1)
ij ] Yc ([b(c;r2)

ik ] Yc [c(c;r3)
il ]):

This can be exempli�ed in a similar way to the idea for
Example 6.

Theorem 2. According to each of the operations And
c-product (^c) and Or c-product (_c), IFSMt�v is a
monoid.

Proof. The proof is obvious by Proposition 2. �

Example 7. Let us consider the inverse fuzzy soft
matrices [a(1;1)

ij ]; [b(1;1)
ij ]; [b(1;2)

ik ] 2 IFSM2�3, [a(2;1)
mj ] 2

IFSM3�3 and [b(1;3)
il ] 2 IFSM2�2 given in Example 3.

Then, we obtain:h
a(1;1)
ij

i^rhb(1;1)
ij

i
=

26640:4 0:9 0:3
0:5 0:7 0:4
0:4 0:9 0:3
0:6 0:7 0:5

3775 ;
h
a(1;1)
ij

i^chb(1;3)
il

i
=
�
0:4 0:9 0:3 0:2 0:4 0:9 0:3 0:2
0:4 0:9 0:3 0:2 0:4 0:9 0:3 0:2

�
;



S. Petchimuthu and H. Kamac�/Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 2166{2190 2173

h
b(1;1)
ij

i_rha(2;1)
mj

i
=

26666664
0:6 0:9 0:3
0:6 0:8 0:5
0:4 0:9 0:3
0:6 0:9 0:5
0:4 0:9 0:7
0:6 0:7 0:7

37777775 ;
h
b(1;1)
ij

i
Yc
h
b(1;2)
il

i
=
�
0 0:8 0:4 0:9 0:9 0:9 0:4 0:8 0
0 0 0:6 0:7 0:7 0:7 0:5 0:6 0

�
:

De�nition 13. Let [a(c1;r)
mj ] 2 ISMt1�v and [b(c2;r)nj ] 2

ISMt2�v:
a) The di�erence row-product (di�erence r-product)

of inverse fuzzy soft matrices [a(c1;r)
mj ] and [b(c2;r)nj ] is

de�ned as [a(c1;r)
mj ] ar [b(c2;r)nj ] = [fsj ] 2 ISMt1t2�v,

where:

fsj =

8><>:a
(c1;r)
mj � b(c2;r)nj ; if a(c1;r)

mj � b(c2;r)nj

0; if a(c1;r)
mj < b(c2;r)nj

(16)

for s = (m� 1)t2 + n.
b) The symmetric di�erence row-product (symmetric

di�erence r-product) of inverse fuzzy soft matri-
ces [a(c1;r)

mj ] and [b(c2;r)nj ] is de�ned as [a(c1;r)
mj ] �r

[b(c2;r)nj ] = [fsj ] 2 ISMt1t2�v, where:

fsj =
���a(c1;r)
mj � b(c2;r)nj

��� ; (17)

for s = (m� 1)t2 + n.

Proposition 3. Let [a(c1;r)
mj ] 2 IFSMt1�v and [b(c2;r)nj ] 2

IFSMt2�v. Also, [1]t1�v represents the t1 � v inverse
fuzzy soft matrix with all components 1 and [0]t1�v
represents the t1 � v inverse fuzzy soft matrix with all
components 0.

(i) [a(c1;r)
mj ]� [a(c1;r)

mj ] = [0]t1�v for each � 2 far;�rg;
(ii) [1]1�v � [a(c1;r)

mj ] = [a(c1;r)
mj ]� for each � 2 far;�rg;

(iii) [a(c1;r)
mj ] � [0]1�v = [a(c1;r)

mj ] for each � 2 far;�rg.
Note that usually [a(c1;r)

mj ] � [b(c2;r)nj ] 6= [b(c2;r)nj ] � [a(c1;r)
mj ]

for each � 2 far;�rg.
Proof. It is clear by De�nition 13. �

De�nition 14. Let [a(c;r1)
ij ] 2 ISMt�v1 and [b(c;r2)

ik ] 2
ISMt�v2 :

a) The di�erence column-product (di�erence c-
product) of inverse fuzzy soft matrices [a(c;r1)

ij ] and
[b(c;r2)
ik ] is de�ned as [a(c;r1)

ij ] ac [b(c;r2)
ik ] = [fil] 2

ISMt�v1v2 , where:

fil =

(
a(c;r1)
ij � b(c;r2)

ik ; if a(c;r1)
ij � b(c;r2)

ik

0; if a(c;r1)
ij < b(c;r2)

ik
(18)

for l = (j � 1)v2 + k.
b) The symmetric di�erence column-product (sym-

metric di�erence c-product) of inverse fuzzy
soft matrices [a(c;r1)

ij ] and [b(c;r2)
ik ] is de�ned as

[a(c;r1)
ij ] �c [b(c;r2)

ik ] = [fil] 2 ISMt�v1v2 , where:

fil =
���a(c;r1)
ij � b(c;r2)

ik

��� ; (19)

for l = (j � 1)v2 + k.

Proposition 4. Let [a(c;r1)
ij ] 2 IFSMt�v1 and [b(c;r2)

ik ] 2
IFSMt�v2 . Also, [1]t�v1 represents the t � v1 inverse
fuzzy soft matrix with all components 1 and [0]t�v1

represents the t � v1 inverse fuzzy soft matrix with all
components 0.

(i) [a(c;r1)
ij ] � [a(c;r1)

ij ] = [0]t�v1 for each � 2 fac;�cg;
(ii) [1]t�1 � [a(c;r1)

ij ] = [a(c;r1)
ij ]� for each � 2 fac;�cg;

(iii) [a(c;r1)
ij ] � [0]t�1 = [a(c;r1)

ij ] for each � 2 fac;�cg.
Note that usually [a(c;r1)

ij ] � [b(c;r2)
ik ] 6= [b(c;r2)

ik ] � [a(c;r1)
ij ]

for each � 2 fac;�cg.
Proof. It is clear by De�nition 14. �

Example 8. Let us consider the inverse fuzzy soft
matrices [a(1;1)

ij ]; [b(1;1)
ij ] 2 IFSM2�3, [a(2;1)

mj ] 2 IFSM3�3

and [b(1;3)
il ] 2 IFSM2�2 given in Example 3. Then, we

obtain:h
a(1;1)
ij

i
ac
h
b(1;3)
il

i
=
�
0:3 0:2 0:7 0:6 0:2 0:1
0 0:5 0:3 0:9 0 0:6

�
;

and

h
b(1;1)
ij

i �r ha(2;1)
mj

i
=

26666664
0:2 0:1 0:2
0:1 0 0:1
0 0:5 0:4
0 0:1 0:4

0:3 0:2 0:3
0:2 0:3 0:2

37777775 :
De�nition 15. Let [a(c1;r)

mj ] 2 ISMt1�v and [b(c2;r)nj ] 2
ISMt2�v:
a) The right-If row-product (right-If r-product) of

inverse fuzzy soft matrices [a(c1;r)
mj ] and [b(c2;r)nj ] is

de�ned as [a(c1;r)
mj ] )r [b(c2;r)nj ] = [fsj ] 2 ISMt1t2�v,

where:

fsj =

(
1; if a(c1;r)

mj � b(c2;r)nj

0; otherwise
(20)

for s = (m� 1)t2 + n.
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b) The left-If row-product (left-If r-product) of inverse
fuzzy soft matrices [a(c1;r)

mj ] and [b(c2;r)nj ] is de�ned as
[a(c1;r)
mj ](r [b(c2;r)nj ] = [gsj ] 2 ISMt1t2�v, where:

gsj =

(
1; if a(c1;r)

mj � b(c2;r)nj

0; otherwise
(21)

for s = (m� 1)t2 + n.
c) The I� row-product (I� r-product) of inverse fuzzy

soft matrices [a(c1;r)
mj ] and [b(c2;r)nj ] is de�ned as

[a(c1;r)
mj ],r [b(c2;r)nj ] = [hsj ] 2 ISMt1t2�v, where:

hsj =

(
1; if a(c1;r)

mj = b(c2;r)nj

0; otherwise
(22)

for s = (m� 1)t2 + n.

Proposition 5. Let [a(c1;r)
mj ] 2 IFSMt1�v and [b(c2;r)nj ] 2

IFSMt2�v. Then, ([a(c1;r)
mj ] )r [b(c2;r)nj ]) u ([b(c2;r)nj ] (r

[a(c1;r)
mj ]) = [a(c1;r)

mj ],r [b(c2;r)nj ].

Proof. We consider that [fsj ] = [a(c1;r)
mj ] )r [b(c2;r)nj ]

and [gsj ] = [b(c2;r)nj ](r [a(c1;r)
mj ]. Then, by De�nition 15

(a) and (b), we have for all m, n, and j:

fsj =

(
1; if a(c1;r)

mj � b(c2;r)nj

0; if a(c1;r)
mj > b(c2;r)nj

and

gsj =

(
1; if a(c1;r)

mj � b(c2;r)nj

0; if a(c1;r)
mj < b(c2;r)nj

Thus, we can write [esj ] = ([a(c1;r)
mj ] )r [b(c2;r)nj ]) u

([a(c1;r)
mj ](r [b(c2;r)nj ]) such that for all m, n, and j:

esj =

8><>:minf1; 1g; if a(c1;r)
mj = b(c2;r)nj

minf1; 0g; if a(c1;r)
mj < b(c2;r)nj

minf0; 1g; if a(c1;r)
mj > b(c2;r)nj

=

(
1; if a(c1;r)

mj = b(c2;r)nj

0; if a(c1;r)
mj 6= b(c2;r)nj

From De�nition 15(c), it can be easily seen that
([a(c1;r)

mj ] )r [b(c2;r)nj ]) u ([b(c2;r)nj ] (r [a(c1;r)
mj ]) =

[a(c1;r)
mj ],r [b(c2;r)nj ]. �

De�nition 16. Let [a(c;r1)
ij ] 2 ISMt�v1 and [b(c;r2)

ik ] 2
ISMt�v2 :

a) The right-If column-product (right-If c-product) of
inverse fuzzy soft matrices [a(c;r1)

ij ] and [b(c;r2)
ik ] is

de�ned as [a(c;r1)
ij ] )c [b(c;r2)

ik ] = [fil] 2 ISMt�v1v2 ,
where:

fil =

(
1; if a(c;r1)

ij � b(c;r2)
ik

0; otherwise
(23)

for l = (j � 1)v2 + k.
b) The left-If column-product (left-If c-product) of

inverse fuzzy soft matrices [a(c;r1)
ij ] and [b(c;r2)

ik ] is
de�ned as [a(c;r1)

ij ] (c [b(c;r2)
ik ] = [gil] 2 ISMt�v1v2 ,

where:

gil =

(
1; if a(c;r1)

ij � b(c;r2)
ik

0; otherwise
(24)

for l = (j � 1)v2 + k.
c) The I� column-product (I� c-product) of inverse

fuzzy soft matrices [a(c;r1)
ij ] and [b(c;r2)

ik ] is de�ned
as [a(c;r1)

ij ],c [b(c;r2)
ik ] = [hil] 2 ISMt�v1v2 , where:

hil =

(
1; if a(c;r1)

ij = b(c;r2)
ik

0; otherwise
(25)

for l = (j � 1)v2 + k.

Proposition 6. Let [a(c;r1)
ij ] 2 IFSMt�v1 and [b(c;r2)

ik ] 2
IFSMt�v2 . Then, ([a(c;r1)

ij ] )c [b(c;r2)
ik ]) u ([b(c;r2)

ik ] (c

[a(c;r1)
ij ]) = [a(c;r1)

ij ],c [b(c;r2)
ik ].

Proof. This proof is similar to the proof for Proposi-
tion 5, so it is omitted. �

Example 9. Let us consider the inverse fuzzy soft ma-
trices [b(1;1)

ij ]; [b(1;2)
ik ] 2 IFSM2�3, [a(2;1)

mj ] 2 IFSM3�3,
and [b(1;3)

il ] 2 IFSM2�2 given in Example 3. Then, we
have the following inverse fuzzy soft matrices:

h
a(2;1)
mj

i(r [b(1;1)
ij ] =

26666664
1 0 0
1 1 0
0 1 0
0 1 0
1 0 1
0 0 1

37777775 ;

h
b(1;1)
ij

i(r

h
a(2;1)
mj

i
=

26666664
0 1 1
1 1 1
1 1 0
1 0 1
1 0 1
1 1 0

37777775 ;
h
b(1;2)
ik

i)c

h
b(1;3)
il

i
=
�
0 0 0 0 0 1
1 0 1 0 1 0

�
;
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h
b(1;3)
il

i)c

h
b(1;2)
ik

i
=
�
1 1 1 1 1 1
0 0 0 1 1 1

�
;h

b(1;2)
ik

i(c

h
b(1;3)
il

i
=
�
1 1 1 1 1 1
0 1 0 1 0 1

�
;

andh
b(1;2)
ik

i,c

h
b(1;3)
il

i
=
�
0 0 0 0 0 1
0 0 0 0 0 0

�
:

Thus, it is seen that ([b(1;2)
ik ] )c [b(1;3)

il ]) u ([b(1;2)
ik ] (c

[b(1;3)
il ]) = [b(1;2)

ik ] ,c [b(1;3)
il ]. Also, by the above

example, it is obvious that ([b(1;2)
ik ] )c [b(1;3)

il ]) 6=
[b(1;3)
il ])c [b(1;2)

ik ].

4. The IFSSPDM method

In this section, the And sum-product, Or sum-product,
mean sum-product, and aggregate mean sum-product
decision inverse fuzzy soft matrices are introduced.
Later on, we DEVELOP an MCGDM algorithm called
Inverse Fuzzy Soft Sum-Product Decision Making (IF-
SSPDM) algorithm (Algorithm 1) to �nd an optimum
universal object set O according to the multiple-
discrete parameter sets. To apprehend Algorithm
1 more clearly, a 
ow diagram (Figure 1) is given.
The implementation of the elaborated algorithm is a
decision to appoint a new vice-chancellor at a university
in India.

4.1. The algorithm of IFSSPDM and its
application

De�nition 17. Let [a(c1;r)
mj ] 2 IFSMt1�v and [b(c2;r)nj ] 2

IFSMt2�v. If [a(c1;r)
mj ] ^r [b(c2;r)nj ] = [gsj ] 2 IFSMt1t2�v,

then the matrix [y1j ] is called an And sum-product
decision inverse fuzzy soft matrix, where for each j =
1; 2; � � � ; v:

y1j =
1

t1(t2 + 1)

t1X̀
=1

�`j ; (0 � y1j � 1); (26)

such that for each ` = 1; 2; � � � ; t1:

�`j =
`t2X

s=(`�1)t2+1

gsj +
`t2Y

s=(`�1)t2+1

gsj : (27)

De�nition 18. Let [a(c1;r)
mj ] 2 IFSMt1�v and [b(c2;r)nj ] 2

IFSMt2�v. If [a(c1;r)
mj ] _r [b(c2;r)nj ] = [hs0j ] 2 IFSMt1t2�v,

then the matrix [z1j ] is called an Or sum-product
decision inverse fuzzy soft matrix, where for each j =
1; 2; � � � ; v:

z1j =
1

t1(t2 + 1)

t1X̀
=1


`j ; (0 � z1j � 1): (28)

such that for each ` = 1; 2; � � � ; t1:


`j =
`t2X

s0=(`�1)t2+1

hs0j +
`t2Y

s0=(`�1)t2+1

hs0j : (29)

De�nition 19. Let [y1j ] 2 IFSM1�v and [z1j ] 2
IFSM1�v be the And and Or product-sum decision
inverse fuzzy soft matrices, respectively. Then, the
matrix [v1j ] is called a mean sum-product decision
inverse fuzzy soft matrix, where for each j = 1; 2; � � � ; v:

v1j =
y1j + z1j

2
; (0 � v1j � 1): (30)

De�nition 20. Let [v1
1j ]; [v2

1j ]; � � � ; [vk1j ] 2 IFSM1�v
be the mean product-sum decision inverse fuzzy soft
matrices. Then, the matrix [w1j ] is called an aggregate
mean sum-product decision inverse fuzzy soft matrix,
where for each j = 1; 2; � � � ; v:

w1j =
1
k

kX
i=1

vi1j ; (0 � w1j � 1): (31)

De�nition 21. Let O1 = fo1
1; o1

2; � � � ; o1
vg be a

universal set. By using the aggregate mean sum-
product decision inverse fuzzy soft matrix [w1j ], we get
the ranking order of objects as follows:

o1
j1>o

1
j2> � � �>o1

jv if w1j1>w1j2> � � �>w1jn : (32)

Then, the optimum set of O is obtained as follows:

Sopt[w1j ](O1) =
�
o1
j : o1

j 2 O1 and w1j > w1j0

for 8 j0 6= j
	
: (33)

By using the decision inverse fuzzy soft matrices
described above, the following adjustable algorithm
emerges. This algorithm can be successfully applied
to the MCGDM based on the four inverse fuzzy soft
sets over a common universal set O.

Algorithm 1.

Step 1. Create the inverse fuzzy soft matrices (rep-
resented as A=[a(c1;r)

mj ],B=[b(c2;r)nj ],C=[c(c3;r)pj ], and
D = [d(c4;r)

qj ]) from the given four inverse fuzzy soft
sets;
Step 2. Obtain the And r-products:

[a(c1;r)
mj ] ^r [b(c2;r)nj ]; [a(c1;r)

mj ] ^r [c(c3;r)pj ];

[a(c1;r)
mj ] ^r [d(c4;r)

qj ]; [b(c2;r)nj ] ^r [c(c3;r)pj ];

[b(c2;r)nj ] ^r [d(c4;r)
qj ]; [c(c3;r)pj ] ^r [d(c4;r)

qj ]:

Step 3. Obtain the Or r-products:
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Figure 1. The 
ow diagram of Algorithm 1.

[a(c1;r)
mj ] _r [b(c2;r)nj ]; [a(c1;r)

mj ] _r [c(c3;r)pj ];

[a(c1;r)
mj ] _r [d(c4;r)

qj ]; [b(c2;r)nj ] _r [c(c3;r)pj ];

[b(c2;r)nj ] _r [d(c4;r)
qj ]; [c(c3;r)pj ] _r [d(c4;r)

qj ]:

Step 4. Find the And sum-product decision inverse
fuzzy soft matrices [yi1j ] i 2 f1; 2; � � � ; 6g as follows:

[y1
1j ] for [a(c1;r)

mj ] ^r [b(c2;r)nj ];

[y2
1j ] for [a(c1;r)

mj ] ^r [c(c3;r)pj ];

[y3
1j ] for [a(c1;r)

mj ] ^r [d(c4;r)
qj ];

[y4
1j ] for [b(c2;r)nj ] ^r [c(c3;r)pj ];

[y5
1j ] for [b(c2;r)nj ] ^r [d(c4;r)

qj ];

[y6
1j ] for [c(c3;r)pj ] ^r [d(c4;r)

qj ]:

Step 5. Find the Or sum-product decision inverse
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fuzzy soft matrices [yi1j ] for all i 2 f1; 2; � � � ; 6g as
follows:

[z1
1j ] for [a(c1;r)

mj ] _r [b(c2;r)nj ];

[z2
1j ] for [a(c1;r)

mj ] _r [c(c3;r)pj ];

[z3
1j ] for [a(c1;r)

mj ] _r [d(c4;r)
qj ];

[z4
1j ] for [b(c2;r)nj ] _r [c(c3;r)pj ];

[z5
1j ] for [b(c2;r)nj ] _r [d(c4;r)

qj ];

[z6
1j ] for [c(c3;r)pj ] _r [d(c4;r)

qj ]:

Step 6. Find the mean sum-product decision inverse
fuzzy soft matrices [vi1j ] for all i 2 f1; 2; � � � ; 6g,
where:

vi1j =
yi1j + zi1j

2
; (34)

for each i = 1; 2; � � � ; 6.
Step 7. Find the aggregate mean sum-product
decision inverse fuzzy soft matrix [w1j ], where

w1j =
1
6

6X
i=1

vi1j ; (35)

for each j = 1; 2; � � � ; 6.
Step 8. Obtain an optimum set Sopt

[w1j ](O1) consider-
ing the aggregate mean sum-product decision inverse
fuzzy soft matrix.

Now let us visualize Algorithm 1 with an extraor-
dinary example of MCGDM.

Example 10. Suppose that the Government of
Tamilnadu in India decides to appoint a new vice-
chancellor at Anna University, Chennai. For that
purpose, the state governor forms a committee of expert
members under the head of a retired justice. The
committee identi�es four types of parameters which the
next vice-chancellor can possess. The �rst parame-
ter set, named \Personalities," is X1 = fx1

1; x1
2; x1

3g
with x1

1 persons of the highest level of competence,
x1

2 persons of the highest level of integrity, and x1
3

persons of the highest level of morality. The second
parameter set, named \Essential Criteria," is X2 =
fx2

1; x2
2; x2

3; x2
4; x2

5; x2
6g with x2

1 people having a terminal
degree from a reputed institution, x2

2 people having
outstanding academic record with a minimum of 15
years of experience in teaching and research, x2

3 peo-
ple having as many years of experience as a princi-
pal/dean/director in a developed institution, x2

4 persons
having participated in/organized national and interna-
tional seminars/conferences/workshops, x2

5 people with

publications of quality research papers/books, and x2
6

persons having demonstrated academic leadership in
higher education. The third parameter set, named
\Desirable Attributes," is X3 = fx3

1; x3
2; x3

3; x3
4; x3

5g with
x3

1 having experience of guiding doctoral scholars and
executing funded research projects, x3

2 having experi-
ence as a visiting professor in foreign countries, x3

3
involved in youth and women development activities,
x3

4 involved in students assessments and counseling,
and x3

5 having any awards/patent rights/other recogni-
tion. The fourth parameter set, named \Administrative
Skills," is X4 = fx4

1; x4
2; x4

3; x4
4; x4

5g, where x4
1 have

the vision to prove the leadership qualities; x4
2 have a

mission to develop the institution into world standard;
x4

3 are quick and perfect decision makers; x4
4 have

the skills to motivate, encourage, and inspire others;
and x4

5 are coordinated with government departments
and statutory bodies at the state and national levels.
The above selection parameters were partially framed
by E. Balagurusamy, The former Tamilnadu Planning
Commission's Member (Education), which was pub-
lished in the newspaper \The Hindu" on 03.04.2012
(ref:https://bit.ly/2Mx9weh). The committee received
about 170 application forms from all over the country
after advertising through news channels and others.
They eliminated 140 applications by three rounds of
basic screening test and ranked the remaining can-
didates based on their quali�cations. Following the
ranking process, they short-listed 6 candidates O1 =
fo1

1; o1
2; o1

3; o1
4; o1

5; o1
6g and prepared the following ques-

tionnaire by giving marks between 0 to 1 for the �nal
selection. It was very di�cult and time consuming
for the committee to select the most suitable �nal
candidate. This is while the IFSSP MCGDM algorithm
(Algorithm 1) could help them achieve their task quickly
and wisely.

To use the IFSSP MCGDM algorithm, we must
construct the inverse fuzzy soft matrices from the
questionnaire (Table 1). Therefore, we �rst generate
the inverse fuzzy soft sets as shown in Box I. Now we
can use Algorithm 1.

Step 1. The inverse fuzzy soft matrices of the inverse
fuzzy soft sets ~	O1

X1
, ~	O1

X2
, ~	O1

X3
, and ~	O1

X4
are respec-

tively:

[a(1;1)
mj ] =

240:5 0:3 0:5 0 0 0:2
0 0:4 0:6 0:7 0:5 0

0:7 0:8 0:8 0 0:8 0:9

35 ;

[b(2;1)
nj ] =

26666664
1 0:7 1 1 0:1 0
0 1 0:5 0:5 0:5 0:5

0:3 0:3 0:8 0:2 0:3 0:2
0:7 0 0:9 0:6 0:7 0:7
1 0:2 1 0 0:1 1

0:1 0:1 0:1 0:2 0 0:8

37777775 ;
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Table 1. Evaluation questionnaire of candidates by the committee to select the vice-chancellor.

Personalities Essential criteria Desirable attributes Administrative skills
x1

1 x1
2 x1

3 x2
1 x2

2 x2
3 x2

4 x2
5 x2

6 x3
1 x3

2 x3
3 x3

4 x3
5 x4

1 x4
2 x4

3 x4
4 x4

5

Candidates

o1
1 0.5 0 0.7 1 0 0.3 0.7 1 0.1 0 0.6 1 0.3 0.5 0 0.3 1 0.6 0.6
o1

2 0.3 0.4 0.8 0.7 1 0.3 0 0.2 0.1 0.9 0.7 1 0 0.2 0.9 0.9 1 0.7 0.2
o1

3 0.5 0.6 0.8 1 0.5 0 0.9 1 0.1 0.1 0.3 0.7 0.3 0.4 0.1 0.8 0.7 0 0.4
o1

4 0 0.7 0 1 0.5 0.2 0.6 0 0.2 0.2 0.4 0.5 0.8 0.5 0.2 0.7 0.5 0.9 0.5
o1

5 0 0.5 0.8 0.1 0.5 0.3 0.7 0.1 0 0.1 0.3 0.7 0.3 0.4 0.1 0.5 0.6 0.5 0
o1

6 0.2 0 0.9 0 0.5 0.2 0.7 1 0.8 0.4 0.5 0.7 0 0.2 0.4 0.5 0.8 0.8 0.3

~	O1
X1

=

8>>>>>>>>>><>>>>>>>>>>:

(o1
1; f(x1

1; 0:5); (x1
2; 0); (x1

3; 0:7)g);
(o1

2; f(x1
1; 0:3); (x1

2; 0:4); (x1
3; 0:8)g);

(o1
3; f(x1

1; 0:5); (x1
2; 0:6); (x1

3; 0:8)g);
(o1

4; f(x1
1; 0); (x1

2; 0:7); (x1
3; 0)g);

(o1
5; f(x1

1; 0); (x1
2; 0:5); (x1

3; 0:8)g);
(o1

6; f(x1
1; 0:2); (x1

2; 0); (x1
3; 0:9)g)

9>>>>>>>>>>=>>>>>>>>>>;
;

~	O1
X2

=

8>>>>>>>>>><>>>>>>>>>>:

(o1
1; f(x2

1; 1); (x2
2; 0); (x2

3; 0:3); (x2
4; 0:7); (x2

5; 1); (x2
6; 0:1)g);

(o1
2; f(x2

1; 0:7); (x2
2; 1); (x2

3; 0:3); (x2
4; 0); (x2

5; 0:2); (x2
6; 0:1)g);

(o1
3; f(x2

1; 1); (x2
2; 0:5); (x2

3; 0); (x2
4; 0:9); (x2

5; 1); (x2
6; 0:1)g);

(o1
4; f(x2

1; 1); (x2
2; 0:5); (x2

3; 0:2); (x2
4; 0:6); (x2

5; 0); (x2
6; 0:2)g);

(o1
5; f(x2

1; 0:1); (x2
2; 0:5); (x2

3; 0:3); (x2
4; 0:7); (x2

5; 0:1); (x2
6; 0)g);

(o1
6; f(x2

1; 0); (x2
2; 0:5); (x2

3; 0:2); (x2
4; 0:7); (x2

5; 1); (x2
6; 0:8)g)

9>>>>>>>>>>=>>>>>>>>>>;
;

~	O1
X3

=

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

(o1
1; f(x3

1; 0); (x3
2; 0:6); (x3

3; 1); (x3
4; 0:3); (x3

5; 0:5)g);
(o1

2; f(x3
1; 0:9); (x3

2; 0:7); (x3
3; 1); (x3

4; 0); (x3
5; 0:2)g);

(o1
3; f(x3

1; 0:1); (x3
2; 0:3); (x3

3; 0:7); (x3
4; 0:3); (x3

5; 0:4)g);
(o1

4; f(x3
1; 0:2); (x3

2; 0:4); (x3
3; 0:5); (x3

4; 0:8); (x3
5; 0:5)g);

(o1
5; f(x3

1; 0:1); (x3
2; 0:3); (x3

3; 0:7); (x3
4; 0:3); (x3

5; 0:4)g);
(o1

6; f(x3
1; 0:4); (x3

2; 0:5); (x3
3; 0:7); (x3

4; 0); (x3
5; 0:2)g)

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;
;

~	O1
X4

=

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

(o1
1; f(x4

1; 0); (x4
2; 0:3); (x4

3; 1); (x4
4; 0:6); (x4

5; 0:6)g);
(o1

2; f(x4
1; 0:9); (x4

2; 0:9); (x4
3; 1); (x4

4; 0:7); (x4
5; 0:2)g);

(o1
3; f(x4

1; 0:1); (x4
2; 0:8); (x4

3; 0:7); (x4
4; 0); (x4

5; 0:4)g);
(o1

4; f(x4
1; 0:2); (x4

2; 0:7); (x4
3; 0:5); (x4

4; 0:9); (x4
5; 0:5)g);

(o1
5; f(x4

1; 0:1); (x4
2; 0:5); (x4

3; 0:6); (x4
4; 0:5); (x4

5; 0)g);
(o1

6; f(x4
1; 0:4); (x4

2; 0:5); (x4
3; 0:8); (x4

4; 0:8); (x4
5; 0:3)g)

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;
:

Box I
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[c(3;1)
pj ] =

266664
0 0:9 0:1 0:2 0:1 0:4

0:6 0:7 0:3 0:4 0:3 0:5
1 1 0:7 0:5 0:7 0:7

0:3 0 0:3 0:8 0:3 0
0:5 0:2 0:4 0:5 0:4 0:2

377775 ;

[d(4;1)
qj ] =

266664
0 0:9 0:1 0:2 0:1 0:4

0:3 0:9 0:8 0:7 0:5 0:5
1 1 0:7 0:5 0:6 0:8

0:6 0:7 0:5 0:9 0:5 0:8
0:6 0:2 0:4 0:5 0 0:3

377775 :
Step 2{3. Since the dimensions of these inverse
soft matrices are large, we can obtain And-products
and Or-products using the Scilab codes in Appendix.
Hence, these steps are omitted;
Step 4. The And sum-product decision inverse soft
matrices are found as follows:

[y1
1j ] =�
0:2095 0:223 0:449 0:1047 0:1523 0:1952

�
;

[y2
1j ] =�
0:2166 0:2777 0:2836 0:1285 0:1891 0:1444

�
;

[y3
1j ] =�
0:2222 0:3654 0:3735 0:1458 0:1833 0:2132

�
;

[y4
1j ] =�
0:2361 0:2055 0:2586 0:2427 0:1584 0:2166

�
;

[y5
1j ] =�
0:2444 0:2712 0:3486 0:2628 0:1416 0:32

�
;

[y6
1j ] =�
0:2533 0:3854 0:2404 0:3319 0:18 0:2584

�
:

Step 5. The Or sum-product decision inverse soft
matrices are found as follows:

[z1
1j ] =�
0:5917 0:55 0:7523 0:4603 0:4754 0:6048

�
;

[z2
1j ] =�
0:5341 0:639 0:5701 0:4791 0:4929 0:4942

�
;

[z3
1j ] =�
0:5461 0:723 0:601 0:5321 0:4813 0:5981

�
;

[z4
1j ] =�
0:6576 0:6195 0:7212 0:5389 0:384 0:5706

�
;

[z5
1j ] =�
0:6662 0:7224 0:7499 0:5891 0:3839 0:6417

�
;

[z6
1j ] =�
0:605 0:7826 0:4871 0:5573 0:4106 0:5242

�
:

Step 6. The mean sum-product decision inverse soft
matrices are found as follows:

[v1
1j ] =�
0:4006 0:3865 0:6006 0:2825 0:3138 0:4

�
;

[v2
1j ] =�
0:3753 0:4583 0:4268 0:3038 0:341 0:3193

�
;

[v3
1j ] =�
0:3841 0:5442 0:4872 0:3389 0:3323 0:4056

�
;

[v4
1j ] =�
0:4468 0:4125 0:4899 0:3908 0:2712 0:3936

�
;

[v5
1j ] =�

0:4553 0:4968 0:5492 0:4259 0:2627 0:4808
�
;

[v6
1j ] =�
0:4291 0:584 0:3637 0:4446 0:2953 0:3913

�
:

Step 7. The aggregate mean sum-product decision
inverse soft matrix is found as:

[w1j ] =�
0:4152 0:4803 0:4862 0:3644 0:3027 0:3984

�
:

Step 8. Then, we achieve the ranking order of objects
as o1

3 � o1
2 � o1

1 � o1
6 � o1

4 � o1
5. Thus, the

optimum set of O1 is Sopt
[w1j ](O1) = fo1

3g. Accordingly,
we suggest the committee to choose candidate o1

3, as
the most suitable (optimum) candidate for the post of
vice-chancellor as per their identi�ed parameters.

4.2. Advantages of the IFSSPDM method
(Algorithm 1) in comparison

A fuzzy soft set can be uniquely represented as an
inverse fuzzy soft set and vice versa. Here, the outputs
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Table 2. Comparison of the IFSSPDM method (Algorithm 1) with other methods.

Problem Method Ranking order Ranking order of
proposed Algorithm 1

Example 6 in [8] C�a~gman and Engino~glu [8] fu1g u2 � u1 � u3 � u5 � u4

Example 5.6 in [9] Atag�un et al. [9] fu1; u3g u3 � u1 � u4 � u5 � u2

Example 5.1 in [28] C�a~gman and Engino~glu [28] fu1g u3 � u1 � u2 � u5 � u4

Example 4.4 in [31] Inthumathi et al. [31] fu1g u1 � u4 � u5 � u2 � u3

Example 6.4 in [13] Kamac� et al. [13] l1 � l3 � l4 � l2 l1 � l4 � l3 � l2
Case study in [18] Das and Borgohain [18] fc3g c2 � c3 � c1
Problem in Section 2
in [19]

Gogoi et al. [19] e � c � m � p � h e � m � c � p � h
Numerical Example
in [27]

Sandhiya and
Selvakumari [27]

p4 � p3 � p1 � p2 p4 � p3 � p1 � p2

Problem in
Section 5 in [29]

Borah et al. [29] c4 � c3 � c5 � c2 � c1 c4 � c3 � c5 � c2 � c1
Problem in
Section 4.1.1 in [30]

Razak and Mohamad [30] m6�m5�m1�m2=m4�m3=m7 m5�m7�m6�m3�m1�m4�m2

Table 3. Advantages of the IFSSPDM method (Algorithm 1).

Method/ Algorithm
Number of

criteria
used

Each
decision
maker

can have
di�erent
criteria

Calculation
strategic

Possible to
increase

number of
criteria

Number of
decision
makers

C�a~gman and Engino~glu [8] 4 No Manual Yes� 2
Atag�un et al. [9] 6 Yes Manual & Scilab codes Yes 2
C�a~gman and Engino~glu [28] 4 No Manual Yes� 2
Inthumathi et al. [31] 4 No Manual Yes� 2
Kamac� et al. [13] 24 Yes Manual & Scilab codes Yes Finitely many
Das and Borgohain [18] 3 No Manual Yes� Finitely many�

Gogoi et al. [19] 6 No Manual Yes� Finitely many�

Sandhiya and Selvakumari [27] 4 No Manual Yes� Finitely many�

Borah et al. [29] 3 No Manual Yes� Finitely many�

Razak and Mohamad [30] 8 No Manual Yes� 3
Proposed Algorithm 1/Example 10 19 Yes Manual & Scilab codes Yes Finitely many
�: The number that can be calculated manually.

of Algorithm 1 are compared with those of the previous
fuzzy soft decision making algorithms. In Table 2,
we indicate that Algorithm 1 gives more satisfactory
results than other decision making algorithms.

Note: During the calculations given in Table 2, in
case of the presence of the weighted fuzzy soft sets, the
inverse (weighted) fuzzy soft matrices corresponding to
the respective sets were considered.

We present Tables 2 and 3 to demonstrate the
advantages of IFSSPDM method (Algorithm 1).

Algorithm 1 also provides a solution for the deci-
sion making problems based on soft sets. Hence, we can
compare our algorithm with the existing soft decision
algorithms. In 2010, C�a~gman and Engino~glu [8] pro-
posed the algorithms of SMmDM, SmMDM, SmmDM,
and SMMDM to deal with a soft set based decision
making. In 2018, Atag�un et al. [9] stated that the
products in these algorithms should be distributed
in two directions. Thus, they introduced the al-
gorithms of SDMmDM, SDmMDM, SDmmDM, and
SDMMDM by revising the algorithms of C�a~gman and
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Engino~glu [8]. By solving the problem of decision
making in Example 6 of C�a~gman and Engino~glu [8]
using the SDMmDM algorithm, the optimum set is
obtained as fu1; u2g. When the algorithms of FSM-
mDM, FSmMDM, FSMmDM-cw (see [28,31]), which
are proposed to deal with the (weighted) fuzzy soft set
based decision making, are recreated according to the
idea of two- sided distribution of Atag�un et al. [9], it
is seen that the outputs of the recreated algorithms
support the results of Algorithm 1. As the number
of decision makers increases, it becomes di�cult to
produce an output with the manual steps of the
algorithm proposed by Razak and Mohamad [30]. The
optimum sets obtained using the SSRDM algorithm
in [13] and Algorithm 1 coincide. Also, SSRDM
algorithm has Scilab codes. However, the SSRDM
is only proposed for MCGDM based on inverse soft
sets (i.e., f0; 1g instead of [0; 1]). The algorithms
proposed in [18,19,27,29] are insu�cient to address the
decision making problems involving di�erent criterion
sets and the calculations are performed manually. In
summary, it can be said from Table 3 that each
method compared to Algorithm 1 has its restrictions
such as the number of decision makers, calculation
strategy, and con�guration of criteria. Algorithm 1
tackles to shortcomings of the existing methods and
allows decision makers to freely choose without any
restrictions.

5. The IFSDIf-dDM method

In this section, we propose a decision making algo-
rithm called the Inverse Fuzzy Soft Distributive If-
di�erence Decision Making (IFSDIf-dDM) algorithm
(Algorithm 2), which produces a ranking order for the
selection of objects of two discrete universal sets O1
and O2 concerning the parameter set X. To apprehend
Algorithm 2 precisely, a 
ow diagram (Figure 2) has
been given. Also, we compare the results of the
emerging algorithm with some of the existing fuzzy soft
decision making algorithms.

5.1. The algorithm of IFSDIf-dDM and its
application

De�nition 22. Let [a(c;r1)
ij ] 2 IFSMt�v1 and [b(c;r2)

ik ] 2
IFSMt�v2 . Also, let [a(c;r1)

ij ] �c [b(c;r2)
ik ] = [cil] 2

IFSMt�v1v2 :

(a) If [a(c;r1)
ij ] (c [b(c;r2)

ik ] = [gil] 2 IFSMt�v1v2 and
[gil] u [cil] = [eil] 2 IFSMt�v1v2 , then the matrix
[}1

1s] is called a left-distributive left-if-di�erence
decision inverse fuzzy soft matrix, where for each
s = 1; 2; � � � ; v1:

}1
1s =

1
v2

sv2X
q=(s�1)v2+1

�1q; (0 � }1
1s � 1);

(36)

such that:

�1q =
1

t+ 1

 
1
t

tX
i=1

giq +
tX
i=1

eiq

!
: (37)

(b) If [a(c;r1)
ij ] )c [b(c;r2)

ik ] = [hil] 2 IFSMt�v1v2 and
[hil] u [cil] = [fil] 2 IFSMt�v1v2 , then the matrix
[�1

1s] is called a left-distributive right-if-di�erence
decision inverse fuzzy soft matrix, where for each
s = 1; 2; � � � ; v1:

�1
1s =

1
v2

sv2X
q=(s�1)v2+1

�1q; (0 � �1
1s � 1);

(38)

such that:

�1q =
1

t+ 1

 
1
t

tX
i=1

hiq +
tX
i=1

fiq

!
: (39)

De�nition 23. Let [a(c;r1)
ij ] 2 IFSMt�v1 and [b(c;r2)

ik ] 2
IFSMt�v2 . Also, let [b(c;r2)

ik ] �c [a(c;r1)
ij ] = [dil] 2

IFSMt�v1v2 :

(a) If [b(c;r2)
ik ] (c [a(c;r1)

ij ] = [g0il] 2 IFSMt�v2v1 and
[g0il] u [dil] = [e0il] 2 IFSMt�v2v1 , then the matrix
[}2

1s] is called a right-distributive left-if-di�erence
decision inverse fuzzy soft matrix, where for each
s = 1; 2; � � � ; v2:

}2
1s =

1
v1

sv1X
p=(s�1)v1+1

�1p; (0 � }2
1s � 1);

(40)

such that:

�1p =
1

t+ 1

 
1
t

tX
i=1

g0ip +
tX
i=1

e0ip

!
: (41)

(b) If [b(c;r2)
ik ] )c [a(c;r1)

ij ] = [h0il] 2 IFSMt�v2v1 and
[h0il] u [dil] = [f 0il] 2 IFSMt�v2v1 , then the matrix
[�2

1s] is called a right-distributive right-if-di�erence
decision inverse fuzzy soft matrix, where for each
s = 1; 2; � � � ; v2:

�2
1s =

1
v1

sv1X
p=(s�1)v1+1

�1p; (0 � �2
1s � 1);

(42)

such that:

�1p =
1

t+ 1

 
1
t

tX
i=1

h0ip +
tX
i=1

f 0ip

!
: (43)

De�nition 24. Let [}1
1s], [�1

1s] be left-distributive
left and right-If-di�erence decision inverse fuzzy soft
matrices and [}2

1s], [�2
1s] be right-distributive left and
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Figure 2. The 
ow diagram of Algorithm 2.

right-If-di�erence decision inverse fuzzy soft matri-
ces,respectively. Then, the decision score of the sth
object (ors) of the universal set Or (r = 1; 2) is de�ned
and denoted by:

Dr
s = }r1s � �r1s: (44)

De�nition 25. Let O1 = fo1
1; o1

2; � � � ; o1
v1
g and O2 =

fo2
1; o2

2; � � � ; o2
v2
g be two discrete universal object sets.

By using decision scores of objects of these universal
sets, we get the ranking order of two objects or1s1 and
or2s2 as follows:

or1s1 � or2s2 if Dr1
s1 > Dr2

s2 ; (45)

where it can be r1 = r2 or r1 6= r2, and s1 = s2 or s1 6=
s2. Then, the optimum set of O1 and O2 is obtained
as follows:

OptD(O1; O2) =
�
or1j : or1j 2 O1 or or1j 2 O2

and Dr1
j > Dr1

j0 for 8 j0 6= j

and Dr1
j > Dr2

j0 for 8 j0o : (46)
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Using the above concepts, we create the subsequent
algorithm to search out the optimal choice for two
inverse fuzzy soft sets over the discrete universal object
set O1, O2 and a common parameter set X.

Algorithm 2.

Step 1. The experts create the inverse fuzzy soft
matrices (represented as [a(c;r1)

ij ] and [b(c;r2)
ik ]) corre-

sponding to their inverse soft sets.
Step 2. Obtain the symmetric di�erence c-products
[cil] = [a(c;r1)

ij ] �c [b(c;r2)
ik ] and [dil] = [b(c;r2)

ik ] �c
[a(c;r1)
ij ].

Step 3. Obtain the If c-products [gil], [hil], [g0il], and
[h0il] as follows:

[gil] = [a(c;r1)
ij ](c [b(c;r2)

ik ];

[hil] = [a(c;r1)
ij ])c [b(c;r2)

ik ];

[g0il] = [b(c;r2)
ik ](c [a(c;r1)

ij ];

[h0il] = [b(c;r2)
ik ])c [a(c;r1)

ij ]:

Step 4. Obtain the inverse fuzzy soft matrices [eil],
[fil], [e0il], and [f 0il] as follows:

[eil] = [gil] u [cil]; [fil] = [hil] u [cil];

[e0il] = [g0il] u [dil]; [f 0il] = [h0il] u [dil]:

Step 5. Find the left-distributive left and right-If-
di�erence decision inverse fuzzy soft matrices [}1

1`]
and [�1

1`],and the right-distributive left and right-If-
di�erence decision inverse fuzzy soft matrices [}2

1`]
and [�2

1`], respectively.
Step 6. Calculate decision scores D1

s and D2
s for each

object in the discrete universal sets O1 and O2.
Step 7. Obtain an optimum set OptD(O1; O2)
concerning the decision scores for the objects.

We give a �ctitious example to illustrate the possible
application of Algorithm 2.

Example 11. Suppose that a local food company
operating in Turkey wants to get into a partnership
with a selection of the best companies in the same
industry in Spain or Italy. There are two discrete
universal sets, each involving possible options to get
into a partnership: O1 = fo1

1; o1
2g is a set of food

companies in Spain and O2 = fo2
1; o2

2; o2
3g is a set

of a food companies in Italy. A decision committee
consisting of two experts is composed of the members
E1 and E2. E1 is a well-informed (Spanish) expert
of the existing food companies in Spain. E2 is a well-
informed (Italian) expert of the existing food companies
in Italy. Therefore, the management of a food company
in Turkey proposes that expert E1 should evaluate the
food companies in O1 and expert E2 should evaluate the
food companies in O2 according to the parameters in the
set X1 = fx1

1�environmental risks; x1
2{social risks x1

3�political risks; x1
4{�nancial 
uctuations x1

5{exchange
ratefluctuations; x1

6{cyclical 
uctuationsg. After the
experts create the inverse fuzzy soft sets, we are ready to
apply Algorithm 2 to determining the optimal company
in order to get into a partnership with the food company
in Turkey.

Assume that the inverse fuzzy soft sets of the
experts E1 and E2 are, respectively, shown in Box II.
Now, we can use Algorithm 2.

Step 1. The inverse fuzzy soft matrices correspond-
ing to the inverse fuzzy soft sets of experts E1 and E2
are respectively created as follows:

h
a(1;1)
ij

i
=

26666664
0:4 0:9
0:6 0:7
0:4 0:5
0:3 0:6
0:9 0:5
0:1 0:8

37777775 ;

h
b(1;2)
ik

i
=

26666664
0:1 0:9 0:1
0:4 0:8 0:3
0:2 0:8 0:2
0:3 0 0:8
0:2 0:7 0:3
0:5 0:8 1

37777775 :

~	X1
O1

=

(
(o1

1; f(x1
1; 0:4); (x1

2; 0:6); (x1
3; 0:4); (x1

4; 0:3); (x1
5; 0:9); (x1

6; 0:1)g);
(o1

2; f(x1
1; 0:9); (x1

2; 0:7); (x1
3; 0:5); (x1

4; 0:6); (x1
5; 0:5); (x1

6; 0:8)g)
)
;

~	X1
O2

=

8>><>>:
(o2

1; f(x1
1; 0:1); (x1

2; 0:4); (x1
3; 0:2); (x1

4; 0:3); (x1
5; 0:2); (x1

6; 0:5)g);
(o2

2; f(x1
1; 0:9); (x1

2; 0:8); (x1
3; 0:8); (x1

4; 0); (x1
5; 0:7); (x1

6; 0:8)g);
(o2

3; f(x1
1; 0:1); (x1

2; 0:3); (x1
3; 0:2); (x1

4; 0:8); (x1
5; 0:3); (x1

6; 1)g)

9>>=>>;
Box II
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Step 2. By using the symmetric di�erence c-products
of inverse fuzzy soft matrices, we obtain:

[cil] =
h
a(1;1)
ij

i �c hb(1;2)
ik

i

=

26666664
0:3 0:5 0:3 0:8 0 0:8
0:2 0:2 0:3 0:3 0:1 0:4
0:2 0:4 0:2 0:3 0:3 0:3
0 0:3 0:5 0:3 0:6 0:2

0:7 0:2 0:6 0:3 0:2 0:2
0:4 0:7 0:9 0:3 0 0:2

37777775 ;
[dil] =

h
b(1;2)
ik

i �c ha(1;1)
ij

i

=

26666664
0:3 0:8 0:5 0 0:3 0:8
0:2 0:3 0:2 0:1 0:3 0:4
0:2 0:3 0:4 0:3 0:2 0:3
0 0:3 0:3 0:6 0:5 0:2

0:7 0:3 0:2 0:2 0:6 0:2
0:4 0:3 0:7 0 0:9 0:2

37777775 :
Step 3. By employing the If c-products of inverse
fuzzy soft matrices, the inverse fuzzy soft matrices
are obtained. [gil] = [a(1;1)

ij ] (c [b(1;2)
ik ], [hil] =

[a(1;1)
ij ] )c [b(1;2)

ik ] and [g0il] = [b(1;2)
ik ] (c [a(1;1)

ij ],
[h0il] = [b(1;2)

ik ] )c [a(1;1)
ij ] are respectively obtained as

follows:

[gil] =

26666664
1 0 1 1 1 1
1 0 1 1 0 1
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 1 0 1
0 0 0 1 1 0

37777775 ;

[hil] =

26666664
0 1 0 0 1 0
0 1 0 0 1 0
0 1 0 0 1 0
1 0 1 0 0 1
0 0 0 0 1 0
1 1 1 0 1 1

37777775 ;
and

[g0il] =

26666664
0 0 1 1 0 0
0 0 1 1 0 0
0 0 1 1 0 0
1 0 0 0 1 1
0 0 0 1 0 0
1 0 1 1 1 1

37777775 ;

[h0il] =

26666664
1 1 0 1 1 1
1 1 0 0 1 1
1 1 0 0 1 1
1 1 1 1 0 0
1 1 1 0 1 1
0 1 0 1 0 0

37777775 :

Step 4. Through the intersection operation, the
following inverse fuzzy soft matrices are obtained:

[eil] = [gil] u [cil]

=

26666664
0:3 0 0:3 0:8 0 0:8
0:2 0 0:3 0:3 0 0:4
0:2 0 0:2 0:3 0 0:3
0 0:3 0 0:3 0:6 0

0:7 0:2 0:6 0:3 0 0:2
0 0 0 0:3 0 0

37777775 ;
[fil] = [hil] u [cil]

=

26666664
0 0:5 0 0 0 0
0 0:2 0 0 0:1 0
0 0:4 0 0 0:3 0
0 0 0:5 0 0 0:2
0 0 0 0 0:2 0

0:4 0:7 0:9 0 0 0:2

37777775 ;
and

[e0il] = [g0il] u [dil]

=

26666664
0 0 0:5 0 0 0
0 0 0:2 0:1 0 0
0 0 0:4 0:3 0 0
0 0 0 0 0:5 0:2
0 0 0 0:2 0 0

0:4 0 0:7 0 0:9 0:2

37777775 ;
[f 0il] = [h0il] u [dil]

=

26666664
0:3 0:8 0 0 0:3 0:8
0:2 0:3 0 0 0:3 0:4
0:2 0:3 0 0 0:2 0:3
0 0:3 0:3 0:6 0 0

0:7 0:3 0:2 0 0:6 0:2
0 0:3 0 0 0 0

37777775 :
Step 5. The left-distributive left and right-If-
di�erence decision inverse fuzzy soft matrices are:

[}1
1s] =

�
0:2444 0:3222

�
;

and

[�1
1s] =

�
0:2349 0:1031

�
:

The right-distributive left and right-If-di�erence deci-
sion inverse fuzzy soft matrices are:

[}2
1s] =

�
0:0523 0:2785 0:1761

�
;

and

[�2
1s] =

�
0:3952 0:1380 0:3166

�
:
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Step 6. The decision score for each object in the
discrete universal sets O1 and O2 is calculated as
follows:

D1
1 =0:0095; D1

2 =0:2191; D2
1 =�0:3429;

D2
2 = 0:1405; and D2

3 = �0:1405:

Step 7. Then, we obtain the ranking order of objects
in O1 and O2 as:

o1
2 � o2

2 � o1
1 � o2

3 � o2
1;

since:

D1
2 > D2

2 > D1
1 > D2

3 > D2
1:

So, the optimum set of O1 and O1 is OptD(O1; O2) =
fo1

2g.
Therefore, according to the data presented by

the experts E1 and E2, the food company in Turkey
can get into apartnership with the food company o1

2
(in Spain).

5.2. Advantages and limitations of the
IFSDIf-dDM method (Algorithm 2) in
comparison

Consider any two inverse fuzzy soft matrices consisting
of two disjoint discrete universal sets with a common
parameter set. By nature, these two inverse fuzzy soft
matrices can be merged to form a brand new inverse
fuzzy soft matrix. It lets us �nd the optimal choice for
Example 11 by the existing Multi-Criteria Decision
Making (MCDM) strategies on fuzzy soft sets after
converting the inverse fuzzy soft matrix into to fuzzy
soft matrix. On the other hand, any inverse fuzzy
soft matrix, which has more than one column, can be
bifurcated.

Hence, we can apply our proposed IFSDIf-dDM
(Algorithm 2) method in order to �nd the optimal pref-
erence for the MCDM problems under the surroundings
fuzzy soft sets after remodeling the fuzzy soft matrix
into the inverse fuzzy soft matrix. The herbal merging
and bifurcation lead us to compare our proposed
IFSDIf-dDM method (Algorithm 2) with some existing
MCDM strategies for fuzzy soft sets. Moreover, since
fuzzy soft sets are the generalized shape of soft sets,
we will examine our proposed IFSDIf-dDM approach
(Algorithm 2) with some current MCDM techniques on
soft sets. Example 12 illustrated the ideas of merging
and bifurcation of inverse fuzzy soft matrices.

Example 12. Consider the inverse fuzzy soft matrices
[a(1;1)
ij ] and [b(1;2)

ik ] given in Example 11. Note that those
two inverse fuzzy soft matrices are produced from the
two discrete universal sets O1 and O2 respectively over
a commonplace parameter set X. Therefore, they can
be merged evidently to form a brand new inverse fuzzy
soft matrix as follows:

Merge
�h
a(1;1)
ij

i
;
h
b(1;2)
ik

i�
=

26666664
0:4 0:9 0:1 0:9 0:1
0:6 0:7 0:4 0:8 0:3
0:4 0:5 0:2 0:8 0:2
0:3 0:6 0:3 0 0:8
0:9 0:5 0:2 0:7 0:3
0:1 0:8 0:5 0:8 1

37777775
=e	merge(O1;O2)

X :

Moreover, the merged inverse fuzzy matrix, i.e.,e	merge(O1;O2)
X can be bifurcated as follows:26666664

0:4 0:9 0:1
0:6 0:7 0:4
0:4 0:5 0:2
0:3 0:6 0:3
0:9 0:5 0:2
0:1 0:8 0:5

37777775 and

26666664
0:9 0:1
0:8 0:3
0:8 0:2
0 0:8

0:7 0:3
0:8 1

37777775 :
We report that the number of bifurcations of an inverse
fuzzy soft matrix with n columns is n � 1. It leads
to de�ning the Order of Bifurcation (OB) and the
Ordinate's Di�erence from the Order of Bifurcation
(ODOB) as follows.

De�nition 26. Let A = [aij ]m�n be an inverse fuzzy
soft matrix. Assume that A is bifurcated as B =
[bij ]m�n1 and C = [cij ]m�n2 . Then, OB = (n1; n2)
and ODOB = n1 � n2. For instance, in Example 12,
OB = (3; 2) and ODOB = 1.

Suppose that the number of columns of an inverse
fuzzy soft matrix is an odd (even) number, then the
di�erent values of ODOB are odd (even) numbers.
Di�erent values of ODOB (either odd or even numbers)
in
uence the ranking order of our proposed IFSDIf-
dDM method (Algorithm 2). To show this, we consider
the inverse fuzzy soft matrix e	merge(O1;O2)

X (Exam-
ple 12) in Table 4 and the inverse fuzzy soft matrix
[a(1;1)
mj ] (Example 10) in Table 5.

Maji et al. [35] proposed the choice value method
and Roy and Maji [16] proposed the comparison value

Table 4. The in
uence of ODOB (odd numbers) on the ranking of the IFSDIf-dDM method (Algorithm 2).

OB ODOB Decision score Ranking order
(1,4) {3 {0.0630952 0.2809524 {0.2142857 0.2333333 {0.047619 o1

2 � o2
2 � o2

3 � o1
1 � o2

1

(2,3) {1 0.0095238 0.2190476 {0.3428571 0.1404762 {0.1404762 o1
2 � o2

2 � o1
1 � o2

3 � o2
1

(3,2) 1 {0.0928571 0.0928571 {0.3071429 0.2349206 {0.0301587 o2
2 � o1

2 � o2
3 � o1

1 � o2
1

(4,1) 3 0.047619 0.2333333 {0.1904762 0.2333333 {0.0809524 o1
2 = o2

2 � o1
1 � o2

3 � o2
1
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Table 5. The in
uence of ODOB (even numbers) on the ranking of IFSDIf-dDM method (Algorithm 2).

OB ODOB Decision score Ranking order

(1,5) {4 {0.075 0.1583333 0.3416667 {0.2083333 0.1083333 {0.025 o1
3 � o1

2 � o1
5 � o1

6 � o1
1 � o1

4

(2,4) {2 {0.0541667 0.0625 0.3041667 {0.2458333 0.0291667 {0.1041667 o1
3 � o1

2 � o1
5 � o1

1 � o1
6 � o1

4

(3,3) 0 0.0416667 0.1722222 0.3277778 {0.2916667 {0.0861111 {0.1638889 o1
3 � o1

2 � o1
1 � o1

5 � o1
6 � o1

4

(4,2) 2 {0.0416667 0.1166667 0.3 {0.1666667 {0.0270833 {0.0770833 o1
3 � o1

2 � o1
5 � o1

1 � o1
6 � o1

4

(5,1) 4 0.025 0.1833333 0.2833333 {0.1833333 {0.0333333 {0.055 o1
3 � o1

2 � o1
1 � o1

5 � o1
6 � o1

4

technique to sort the alternatives under the environ-
ment of soft sets and fuzzy soft sets, respectively. Kong
et al. [17] commented on and revised the comparison
value technique of Roy and Maji [16]. Liu et al. [22]
proposed the hamming distance value approach for
fuzzy soft sets. Our proposed IFSDIf-dDM approach
(Algorithm 2) dominates these techniques: choice
value, comparison value, revised comparison value, and
hamming distance value. Petchimuthu and Kamac� [36]
proposed the inverse soft distributive If-sum decision
making method to handle the problem consisting of two
disjoint universal sets with a common parameter set
under the environment of inverse soft sets. It produced
equal e�ects in examination with the proposed IFSDIf-
dDM method (Algorithm 2). In comparison with
the MCDM strategies of Xiao [26] (belief entropy
with Dempster- Shafer (D-S) evidence theory), Li et
al. [24] (grey relational analysis and D-S theory of
evidence), Wang et al. [25] (ambiguity measure and D-S
theory of evidence), Basu et al. [23] (mean potentiality
approach), our proposed IFSDIf-dDM technique (Al-
gorithm 2) produces the same or better outcomes. The
whole discussion of the comparisons is given in Table 6.

5.2.1. The advantages of the IFSDIf-dDM method
(Algorithm 2)

(i) Our proposed IFSDIf-dDM approach (Algo-
rithm 2) may be applied in order to �nd the
ranking order of MCGDM problems consisting
of two discrete universal sets over a common
parameter set;

(ii) Since a soft set may be considered as a fuzzy soft
set or a fuzzy soft set may be considered as an
inverse fuzzy soft set, our proposed IFSDIf-dDM
approach (Algorithm 2) can be employed to solve
MCDM issues in an environment of soft sets and
fuzzy soft sets through a bifurcation of inverse
fuzzy soft sets. It produces more convincing
results than most of the present MCDM methods.
It is shown in Table 6;

(iii) By employing the Scilab codes created for our
proposed IFSDIf-dDM technique (Algorithm 2),

satisfactory results can be achieved quickly with-
out human error.

5.2.2. Limitations of the IFSDIf-dDM method
(Algorithm 2)

When making a bifurcation of a matrix corresponding
to a soft set, fuzzy soft set, or inverse fuzzy soft set
(i.e., creating two new matrices from one matrix by
separating its columns), ODOB has to be selected
carefully; because ODOB a�ects the ranking order
of objects, as shown in Tables 4 and 5. The
maximum preferable consideration of ODOB is that
ODOB = �1(ODOB = �2) for odd (even) numbers of
ODOB. It is shown in Table 6.

6. Conclusion

In this study, we introduced the concepts of inverse
fuzzy soft matrices and addressed various products
on them. We proved some propositions including
associative commutative laws for the emerging prod-
ucts. Also, we constructed two di�erent Multi-Criteria
Group Decision Making (MCGDM) models employing
the inverse fuzzy soft matrix products. We stated that
these models could achieve more precise calculations
and produce more accurate results than some of the
current fuzzy soft decision models.

The inverse fuzzy soft matrices representing two
di�erent types of inverse fuzzy soft sets provided a
two-way progress, practicality, and e�ciency during
calculations. The adaptability of matrix operations to
programming languages greatly a�ected the computa-
tion time and thereby, the practicality of the logical op-
erations was supported. Another advantage of inverse
fuzzy soft matrices was producing solutions for decision
making problems that involved both multiple-discrete
parameter sets and two discrete universal object sets.
By considering the practicality and usefulness of inverse
fuzzy soft matrices, we hope that new uses can be
introduced for them so that the approaches to dealing
with decision making involving multiple-discrete uni-
versal object sets can be proposed. Also, the �ndings
about the operations of the inverse fuzzy soft matrices
and their algebraic structures can be enhanced. The
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Table 6. Comparison of the IFSDIf-dDM method (Algorithm 2) with other methods.

Problem Method Ranking order Proposed
method

Ranking order
of proposed

method

Example 12 (e	merge(O1;O2)
X )

Maji et al. [35] o1
2 = o2

2 � o1
1 = o2

3 � o2
1

Algorithm 2
(ODOB = �1)

o1
2 � o2

2 � o1
1 � o2

3 � o2
1Roy and Maji [16] o1

2 = o2
2 � o1

1 � o2
3 � o2

1

Kong et al. [17] o1
2 = o2

2 � o1
1 = o2

3 � o2
1

Table 2 in [22] Liu et al. [22] x6 � x4 � x3 � x7

� x2 � x5 = x8 � x1

Algorithm 2
(ODOB = �2)

u6 � u4 � u3 � u7

� u2 � u5 � u8 � u1

Example 5.5 (Step 3) in [36] Petchimuthu
and Kamac� [36]

u2
1 � u1

3 � u1
1 � u2

2 � u1
2 Algorithm 2

u2
1 � u1

3 � u1
1 � u2

2 � u1
2

Example 5.6 (Step 3) in [36] u1
2�u2

2�u1
3�u1

4�u1
1�u2

1 u1
2�u2

2�u1
3�u1

4�u1
1�u2

1

Table 2 in [24]

Xiao [26] x2 � x3 � x1
Algorithm 2

(ODOB = �1)
x2 � x3 � x1Khameneh et al. [21] x2 � x3 � x1

Wang et al. [25] x2 � x3 � x1

Table 14 in [26]

Basu et al. [23] x3 � x1 = x4 � x2
Algorithm 2

(ODOB = �2) x3 � x1 � x4 � x2
Xiao [26] x3 � x1 � x4 � x2

Li et al. [24] x3 � x1 � x4 � x2

Table 10 in [25]
Wang et al. [25] x3 � x1 � x4 � x2 Algorithm 2

(ODOB = �2)
x3 � x4 � x1 � x2

Li et al. [24] x3 � x4 � x1 � x2

concept of inversing, which gives bidirectionality to the
soft approach function, can be adopted for most of the
fuzzy hybridizations of soft sets. In further research,
it is necessary and meaningful to develop the inverse
structures of intuitionistic fuzzy sets, picture fuzzy sets,
and neutrosophic sets. We will focus on the issues
mentioned above in the future.
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Appendix

Scilab codes for Algorithms 1 and 2 are generated in
Figure A.1.
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Figure A.1. Scilab codes for Algorithms 1 and 2.
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Figure A.1. Scilab codes for Algorithms 1 and 2 (continued).
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