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Abstract. Several auxiliary information-based estimators of population variance are
available in the existing literature on survey sampling. Mostly, these estimators are based
on conventional dispersion measures of the auxiliary variable. In this study, a generalized
class of ratio-product type exponential estimators of the population variance is proposed
by integrating the nonconventional auxiliary information under Simple Random Sampling
(SRS). The performance of the proposed estimators was compared, theoretically and
numerically, with several existing estimators of the population variance. It was established
that the proposed class of estimators outperformed the existing estimators in terms of
Mean Squared Error (MSE) and Relative Root Mean Square Error (RRMSE). Moreover,
Percentage Relative E�ciency (PRE) of the proposed estimators was much higher than
that of their counterparts.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

In survey sampling, auxiliary information, if available
or easily obtainable without involving much cost, can
be advantageously used in choosing the appropriate
sampling design, selection of sampling units for inquiry
or measurement processes, and the estimation of the
characteristics of interest. For example, to study
sugar cane production, the auxiliary information about
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area under cultivation, the market price of sugar, the
incentive in terms of support price given to the farmers,
the production of sugar cane in the previous year,
etc. can play a vital role in the e�cient estimation
of the expected sugar cane production. Ratio, product,
regression, and exponential type estimators are popular
choices, in practice, to e�ciently estimate population
mean and variance in the presence of auxiliary infor-
mation correlated with the study variable. The use of
these estimators is expanding to a variety of �elds such
as yield estimation in agriculture, demographic studies,
environmental studies, statistical process monitoring
in industry, medical and biological sciences, and many
other related �elds; see for example [1{7].

Along with population mean, the estimation of
variance is of great interest to make certain policy
decisions in many practical situations such as agricul-
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ture, business, stock investment, production planning
in manufacturing industry, services industry, ecology,
seismology, and medical sciences [8{10]. Therefore,
e�cient estimation of the mean and variance are
equally important for e�ective decision making. The
estimation of variance in the context of ratio-type
methods of estimation, using auxiliary information,
has been considered by various researchers. Usually,
conventional auxiliary measures such as mean, median,
quartiles, variance, coe�cient of kurtosis, variation,
skewness, and the correlation between the study and
auxiliary variables are employed under ratio and re-
gression type estimation structures to improve the
e�ciency of the estimators of variance. For example,
see [10{27] as well as their cited references for details
on this subject. The auxiliary measures used in most of
the existing ratio-type estimators of variance are non-
resistant to the presence of outliers. The use of such
measures can undermine the e�ciency of the ratio-type
estimators of variance if some outliers are present in the
data. Thus, there is need for incorporation of some
outlier resistant auxiliary measures to develop more
stable ratio-type estimators.

Recently, ratio-type estimators for the estimation
of population mean have been developed, which incor-
porate auxiliary information by using nonconventional
measures of location [28{32]. These non-conventional
measures are somewhat robust and outlier-resistant,
which aids in stabilizing the Mean Square Error (MSE)
of estimators in the presence of outliers [8,33,34].
Use of non-conventional or robust measures for the
estimation of population variance, in the context of
ratio or regression methods of estimation, is still a
neglected area. E�cient estimation of variance in the
presence of outliers is of paramount interest in several
practical situations, such as in agriculture, business,
production processes, and so forth. Therefore, the
problem of estimating the �nite population variance
is dealt with in this study by incorporating auxiliary
information in some non-conventional and robust mea-
sures of dispersion, as detailed in Section 3, to develop
more stable and outlier-resistant ratio-product type
exponential estimators. It is assumed that the auxiliary
information on the non-conventional measures is read-
ily available or can be obtained economically. Suppose
a �nite population 
 = f
1;
2; � � � ;
Ng consists of
N di�erent and identi�able units. Let (y; x) be the
measurable study and auxiliary variables, respectively,
with their values (yi; xi) being ascertained on 
i(i =
1; 2; � � � ; N). The purpose of the measurement process
is to e�ciently estimate the population variance of the
variable of interest, S2

y = (N � 1)�1PN
i=1(yi� �Y )2, by

drawing a random sample of size n from 
 using Simple
Random Sampling Without Replacement (SRSWOR).
Let s2

y = (n � 1)�1Pn
i=1(yi � �y)2 and s2

x = (n �
1)�1Pn

i=1(xi� �x)2 be the sample variance of the study

and the auxiliary variable, respectively. Furthermore,
let �yx be the population coe�cient of correlation
between the study and the auxiliary variables and Cy =
Sy= �Y and Cx = Sx= �X be the population coe�cients of
variation for y and x, respectively.

To determine the bias and MSE of the existing
and the proposed estimators, the following preliminar-
ies regarding the relative error terms are considered:
Let:

�0 = (s2
y � S2

y)=S2
y ;

and:

�1 =
�
s2
x � S2

x
�
=S2

x;

so that:

E(�1) = E(�2) = 0;

E(�2
0) = �(�2(y) � 1) = �?2(y);

E(�2
1) = �(�2(x) � 1) = �?2(x);

E(�0�1) = �(�22 � 1) = �?22;

where:

� =
�

1
n
� 1
N

�
:

�2(y) and �2(x) are the population coe�cients of kur-
tosis of the study variable y and auxiliary variable x,
respectively, and:

�22 =
�22

�20�02
;

with:

�rs =
1

N � 1

NX
i=1

�
yi � �Y

�r �xi � �X
�s :

2. Some existing estimators of variance under
SRS

Numerous estimators of �nite population variance are
available in the literature. In this section, we brie
y
describe the structure of some of the existing estimators
of �nite population variance based on SRS.

The usual unbiased estimator of variance under
SRS as de�ned in Cochran [35] is given as:

bS2
y =

1
n� 1

nX
i=1

(yi � �y)2 :

The variance of bS2
y is given as:
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Var
�bS2

y

� �= S4
y�

?
2(y): (1)

Isaki [13] proposed a ratio type estimator of S2
y , which

is given as:bS2
R = s2

y

�
S2
x
s2
x

�
:

The MSE of bS2
R, to the �rst degree of approximation,

is given as:

MSE
�bS2

R

� �= S4
y

h
�?2(y) + �?2(x) � 2�?22

i
: (2)

The conventional regression type estimator, according
to Isaki [13], is given as:bS2

Reg = s2
y + b(s2y;s2x)(S2

x � s2
x);

where b(s2y;s2x) represents the regression coe�cient to be
estimated from the sample.

The MSE of bS2
Reg, up to the �rst degree of

approximation, is given as:

MSE
�bS2

Reg

� �= S4
y�

?
2(y)

h
1� �2

(S2
y;S2

x)

i
; (3)

where:

�(S2
y;S2

x) = �?22=
q
�?2(y)�

?
2(x);

denotes the population correlation coe�cient between
y and x.

The di�erence type estimator of Singh et al. [19]
is given as:bS2

d = c1s2
y + c2(S2

x � s2
x);

where c1 and c2 are unknown constants and their
optimal values are determined in such a manner that
the MSE of bS2

d is minimized.
The minimum MSE of bS2

d at optimum values
c1(opt) = �?2(x)=(�

?
2(x) + �?2(y)�

?
2(x) � �?222) and c2(opt) =

S2
x�?22=(S2

y(�?2(x) + �?2(y)�
?
2(x) � �?222)), up to the �rst

degree of approximation, is given by:

MSE
�bS2

d

�
min
�= S4

y�?2(y)

h
1� �2

(S2
y;S2

x)

i
1 + �?2(y)

h
1� �2

(S2
y;S2

x)

i : (4)

The ratio-type exponential estimator proposed by Bahl
and Tuteja [11] is given as:

bS2
BT = s2

y exp
�
S2
x � s2

x
S2
x + s2

x

�
:

The minimum MSE of bS2
BT, up to the �rst degree of

approximation, is given as:

MSE
�bS2

BT

� �= S4
y

�
�?2(y) +

1
4
�?2(x) � �?22

�
: (5)

Upadhyaya and Singh [25] used the coe�cient of
kurtosis of the auxiliary variable to propose a modi�ed
ratio-type estimator of population variance, which is
given as:bS2

US = s2
y

�
S2
x + �2(x)

s2
x + �2(x)

�
:

The MSE of bS2
US, up to the �rst degree of approxima-

tion, is given as:

MSE
�bS2

US

� �= S4
y

h
�?2(y) + 
2

US�
?
2(x) � 2
US�?22

i
; (6)

where:


US =
S2
x

S2
x + �2(x)

:

Kadilar and Cingi [14] utilized population coe�cient
of variation and the population coe�cient of kurtosis
of the auxiliary variable to suggest some modi�ed
estimators of population variance as:bS2

KC1 = s2
y

�
S2
x + Cx
s2
x + Cx

�
;

bS2
KC2 = s2

y

�
CxS2

x + �2(x)

Cxs2
x + �2(x)

�
;

bS2
KC3 = s2

y

�
�2(x)S2

x + Cx
�2(x)s2

x + Cx

�
:

The respective MSEs of bS2
KC1, bS2

KC2, and bS2
KC3, up to

the �rst degree of approximation, are given as:

MSE
�bS2

KC1

��=S4
y

h
�?2(y)+
2

KC1�
?
2(x)�2
KC1�?22

i
;
(7)

MSE
�bS2

KC2

��=S4
y

h
�?2(y)+
2

KC2�
?
2(x)�2
KC2�?22

i
;
(8)

MSE
�bS2

KC3

��=S4
y

h
�?2(y)+
2

KC3�
?
2(x)�2
KC3�?22

i
;
(9)

where:


KC1 =
S2
x

S2
x + Cx

; 
KC2 =
CxS2

x
CxS2

x + �2(x)
;


KC3 =
�2(x)S2

x

�2(x)S2
x + Cx

:

The estimator of population variance S2
y , given by

Shabbir and Gupta [17], is:bS2
SG = c3s2

y + c4(S2
x � s2

x) exp
�
S2
x � s2

x
S2
x + s2

x

�
;

where c3 and c4 are unknown quantities to be deter-
mined in a manner to minimize the MSE of bS2

SG.
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c3(opt) =
�?2(x)

8

 
8� �?2(x)

�?2(x) + �?2(y)�
?
2(x) � �?222

!
;

and:

c4(opt) =
S2
y

8S2
x

 �4�?2(x) + �?2(x) + 8�?22 � �?22�?2(x) + 4�?2(y)�
?
2(x) � 4�?222

�?2(x) + �?2(y)�
?
2(x) � �?222

!
:

Box I

The optimum values of c3 and c4 that minimize
the MSE of bS2

SG are given by the equations shown in
Box I, whereas the minimized MSE of bS2

SG is:

MSE
�bS2

SG

�
min
�= S4

y

640@��?22(x)�16�?2(y)

�
1��2

(S2
y;S2

x)

��
�?2(x)�4

�
1 + �?2(y)(1� �2

(S2
y;S2

x))

1A :
(10)

Subramani and Kumarapandiyan [36] used the median
of the auxiliary variable to propose an estimator of the
population variance, which is de�ned as:

bS2
SK1 = s2

y

�
S2
x +Mx

s2
x +Mx

�
:

The MSE of bS2
SK1, up to the �rst degree of approxima-

tion, is given as:

MSE
�bS2

SK1

��=S4
y

h
�?2(y)+
2

SK1�
?
2(x)�2
SK1�?22

i
; (11)

where:


SK1 =
S2
x

S2
x +Mx

:

Taking motivation from Kadilar and Cingi [14]
and Subramani and Kumarapandiyan [36], a new ratio-
type estimator of the population variance was intro-
duced by Subramani and Kumarapandiyan [22] that
utilized the population information for the coe�cient
of variation and the median of the auxiliary variable,
as given below:

bS2
SK2 = s2

y

�
CxS2

x +Mx

Cxs2
x +Mx

�
:

The MSE ofbS2
SK2, to the �rst order of approximation,

is given as:

MSE
�bS2

SK2

��=S4
y

h
�?2(y)+
2

SK2�
?
2(x)�2
SK2�?22

i
; (12)

where:


SK2 =
CxS2

x
CxS2

x +Mx
:

Khan and Shabbir [15] used upper quartile and
the population correlation coe�cient to suggest an
improved ratio estimator of population variance as:

bS2
KS = s2

y

�
�yxS2

x +Q3(x)

�yxs2
x +Q3(x)

�
:

The MSE of bS2
KS, up to the �rst degree of approxima-

tion, is given as:

MSE
�bS2

KS

��=S4
y

h
�?2(y)+
2

KS�
?
2(x)�2
KS�?22

i
; (13)

where:


KS =
�yxS2

x
�yxS2

x +Q3(x)
:

The generalized estimator of population variance
proposed by Swain [24] is given below:

bS2
SW = s2

y

"
k
�
S2
x
s2
x

�q
+ (1� k)

�
s2
x
S2
x

�h#�
;

where k, q, and h are suitably chosen constant and
� = (1;�1). The minimum MSE of bS2

SW, up to the
�rst degree of approximation, at the optimum value of
k = (�h+ (�?22=�?2(y)))=(�(g + h)), is given by:

MSE
�bS2

SW

�
min
�= S4

y�
?
2(y)(1� �2

(S2
y;S2

x)): (14)

It is to be noted that the MSE(bS2
SW)min is equal to

MSE(bS2
Reg).

The general estimator class for population vari-
ance proposed by Yadav et al. [26] is given by:

bS2
YG =

�
c5s2

y + c6(S2
x � s2

x)
��

�
�
aS2

x + b
as2
x + b

�
+(1� �) exp

�
a(S2

x � s2
x)

a(S2
x + s2

x) + 2b

��
;
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where c5 and c6 are suitably chosen constants that
minimize the MSE of bS2

YG, while � can take the values
of 0 or 1 and a, b are the known values of the auxiliary
variable parameters. The minimum MSE of bS2

YG, up
to the �rst degree of approximation, at the optimum
values is:

c5(opt) =

0@ 1� 1
8g

2(1+3�+4�2)�?2(x)

1� 1
4g2�(1+3�)�?22(x)+�?2(y)

�
1��2

(S2
y;S2

x)

�1A ;

and:

c6(opt) =
S2
y

S2
x

 
1
2
g(1+�)+c5(opt)

 
�?22
�?2(x)

�g(1+�)

!!
;

is given as:

MSE
�bS2

YG

�
min
�= S4

y

8><>:�1� 1
4
g2(1 + �)2�?2(x)

�

�
�

1� 1
8g

2(1 + 3�+ 4�2)�?2(x)

�2

1� 1
4g2�(1+3�)�?22(x)+�?2(y)

�
1��2

(S2
y;S2

x)

�9>=>; ;
(15)

where:

g =
aS2

x
(aS2

x + b)
:

The minimum MSE of bS2
YG, up to the �rst order

of approximation at (�; a; b) = (1; 1; 0), is given below:

MSE
�bS2

YG

�
min
�=S4

y

0@S�4
y MSE

�bS2
Reg

�
(1��?2(x))

1��?2(x)+S�4
y MSE

�bS2
Reg

�1A :
(16)

Yadav and Kadilar [37] proposed a ratio-product type
estimator of population variance, which is given as:

bS2
YK =s2

y

�
�1

�
(1� �1)s2

x + �1S2
x

�1s2
x + (1� �1)S2

x

�
+(1� �1)

�
�1s2

x + (1� �1)S2
x

(1� �1)s2
x + �1S2

x

��
;

where �1 and �1 are constant.
The minimum MSE of bS2

YK, up to the �rst degree
of approximation, is given below:

MSE
�bS2

YK

�
min
�= S4

y

h�
�?2(y) + �?2(x) � 2�?22

�
+ 16�1�1�?2(x) (1� �1 � �1 + �1�1)

+4�?22 (�1��1)2+4�?2(x)
���1��1+�2

1+�2
1
�i
:
(17)

The minimum MSE of bS2
YK, up to the �rst degree of

approximation at (�1(opt); �1(opt)) =
� 1

2 ;
1
2

�
, is:

MSE
�bS2

YK

�
min
�= S4

y�
?
2(y): (18)

And when (�1; �1) = (((�?2(x) � 2�?22)=2�?2(x)); 0), the
minimum MSE of bS2

YK is given as:

MSE
�bS2

YK

�
min
�= S4

y�
?
2(y)

�
1� �2

(S2
y;S2

x)

�
: (19)

Recently, Yaqub and Shabbir [27] proposed an im-
proved class of estimators for population variance given
as:bS2

YS =s2
y
�
c7 + c8(S2

x � s2
x)
��aS2

x + b
as2
x + b

�
�

1
2

exp
�

a(S2
x � s2

x)
aS2

x + s2
x) + 2b

�
+frac12 exp

�
a(s2

x � S2
x)

a(s2
x + S2

x) + 2b

��
;

where c7 and c8 are suitably chosen constants and a and
b be the known population parameters of the auxiliary
variable. Assuming a = 1 and b = 0, the minimum
MSE of bS2

YS, up to the �rst degree of approximation,
based on the optimum values is calculated by Eq. (20)
as shown in Box II.

3. The proposed generalized estimator of
variance

This section presents a generalized ratio product type
exponential estimator of population variance, which
incorporates information on some outlier resistant non-
conventional measures of dispersion of the auxiliary
variable. The non-conventional measures are used in a
linear combination within the structure of the proposed
estimator to make it robust against possible outliers
in the data. The non-conventional somewhat robust
measures of the auxiliary variable considered in this
study include:

(i) The interquartile range: The interquartile
range (IQR) is the di�erence between the up-
per quartile (Q3(x)) and lower quartile (Q1(x)).
Symbolically, it is given as:

IQRx = Q3(x) �Q1(x):

It is the most known, somewhat, robust measure
of dispersion with a breakdown point of 25%.

(ii) The Gini's mean di�erence estimator:
Gini [38] suggested an estimator of dispersion,
which is also known as the Gini's mean di�erence
estimator. It is given as:
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c7(opt) =
�?2(x)

2

0@ 1 + 7
�

1� �?2(x)

�
�?22(x) + 4�?2(x)

�
1� �?2(x)

�
+ 4�?2(y)�

?
2(x) � 4�?222

1A ;

and:

c8(opt) =
S2
y

2S2
x

0@�?22 + 7�?22

�
1� �?2(x)

�� 8�?2(x)

�
1� �?2(x)

�
+ 8�?2(y)�

?
2(x) � 8�?222

�?22(x) + 4�?2(x)

�
1� �?2(x)

�
+ 4�?2(y)�

?
2(x) � 4�?222

1A ;

hence:

MSE
�bS2

YS

�
min
�= S4

y

16

24 64
�

1� �?2(x)

�
S�4
y MSE

�bS2
Reg

�� �?22(x)

�?2(x) + 4
�

1� �?2(x)

�
+ 4S�4

y MSE
�bS2

Reg

�35 : (20)

Box II

GINx =
4

N � 1

NX
i=1

�
2i�N � 1

2N

�
x(i);

where x(i) denotes the ith order statistics. It
is robust to outliers and more e�cient than
the estimators based on range and standard
deviation (cf. [39]).

(iii) The Downton's estimator: Like GINx, Down-
ton [40] suggested a robust and highly e�cient
estimator of dispersion. It is de�ned as:

DOWx =
2
p
�

N(N � 1)

NX
i=1

�
i� N + 1

2

�
x(i);

where x(i) denotes the ith order statistics.
The asymptotic e�ciency of DOWx is 97.8%
(cf. [39]).

(iv) The probability weighted moment esti-
mator: Another similar estimator to GINx
and DOWx is the probability weighted moment
estimator given in [41]. It is de�ned as:

SPWx =
p
�

N2

NX
i=1

(2i�N � 1)x(i);

where x(i) denotes the ith order statistics. Its
properties are similar to those of GINx and
DOWx, as all these three estimators are propor-
tional to each other.

(v) Median absolute deviation from median:
Hampel [42] suggested an estimator based on the
median of the absolute deviations taken from the
median, which is given as:

MADMx = m
h
median

���xi � eX���i
for i = 1; 2; � � � ; N;

where m is the consistency coe�cient and eX de-
notes the median of the observations. MADMx
is robust against outliers with a breakdown point
of 50%, but under normality its e�ciency is
relatively low, i.e., 37%. To make MADMx a
consistent estimator of � under normal distribu-
tion, the value of m is set equal to 1.4826.

(vi) The median of pairwise distances:
Shamos [43] and Bickel and Lehmann [44]
suggested an estimator of dispersion based
on the median of pairwise distances as
medianfjxi � xlj; i < lg. Rousseeuw and
Croux [45] suggested to pre-multiply it by
1.0483 to achieve consistency under the
Gaussian distribution. The resultant estimator
can be de�ned as:

Bnx = 1:0483[medianfjxi � xlj; i < lg]:
Bnx is somewhat robust to outliers with a
breakdown point of 29% and has a relatively
high e�ciency (about 86%) under normality.

(vii) The ordered statistic of subranges: Croux
and Rousseeuw [46] proposed a class of location-
free robust estimators of dispersion based on
ordered statistics of subranges de�ned as:

Sr�x = C�
n��x(i+[�N ]+1) � x(i)

��
([N2 ]��N)

o
;

where 0 < � < 0:5 and x(1) � x(2) � � � � �
x(N) are ordered statistics (here, the symbol [�]
represents the integer part). The value of Sr�x
is determined by �rst, sorting the observations
xi and then, calculating the absolute di�er-
ences jx(i+[�N ]+1) � x(i)j for i = 1; 2; � � � ; N �
[�N ]� 1. From these calculated quantities, the��N

2

�� �N�th order statistics yield the desired
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estimator. The constant C� is chosen in such a
way that Sr�x becomes a consistent estimator for
a given value of �. In the present study, we use
� = 0:25, which corresponds to C� = 1:4826
under normality. Sr�x has a 50% breakdown
point and it is more e�cient than MADMx for
small samples.

(viii) The trimmed mean of median deviations:
Rousseeuw and Croux [47] proposed an esti-
mator with a high breakdown point of 50%
and e�ciency of 52% under normality, which is
relatively higher than MADMx. It is de�ned as:

Tnx =
1:38
h

hX
k=1

[medianfjxi � xlj; i 6= lg](k) ;

where for each i = 1; 2; � � � ; N , we compute
the median of jxi � xlj, l = 1; 2; 3; � � � ; N that
yields N values. The average of the �rst h
order statistics gives the desired estimator (here,
h =

�N
2

�
+ 1, which is roughly half the number

of observations).
(ix) The 0.25-quantile of pairwise distances:

Similar to Bnx, Rousseeuw and Croux [45] sug-
gested a robust estimator of dispersion based on
the 0.25-quantile of pairwise distances between
the observations. It is given as:

Qnx = dfmedianjxi � xlj; i < lg(p);
where:

p =
�
h
2

�
�
�
N
2

�
=4 and h =

�
N
2

�
+ 1:

Hence, the pth order statistic of the
�
N
2

�
inter-

point distances yields the desired estimator. The
value of d is set equal to 2.2219 for Qnx to
be a consistent estimator under normality. The
estimator Qnx has a 50% breakdown point and
high Gaussian asymptotic e�ciency of 82%.

(x) The median of the median of distances:
Rousseeuw and Croux [45] suggested another
robust estimator, which has a high breakdown
point of 50%. it is de�ned as:

Snx = q[medianifmedianj jxi � xj j; i 6= jg];
where q is the consistency factor with a default
value of 1.1926 under the normal population. To
compute Snx, �rst, we determine the median
of fjxi � xj j; j = 1; 2; � � � ; Ng for each i, which
results in N values. Finally, the median of these
N values yields Snx.

For more details on these non-conventional measures of

dispersion, the readers may see [38{40,43{47] and the
references cited therein.

Taking motivation from Shabbir and Gupta [17]
and Naz et al. [34], we integrate the above-mentioned
non-conventional robust measures of dispersion to de-
sign a stable ratio product type exponential estimator
of population variance de�ned as:

bS2
Pr op = s2

y

8<:p1

�
'S2

x + �
's2

x + �

� 'S2
x

'S2
x+�

+p2

�
's2

x+�
'S2

x+�

� 'S2
x

'S2
x+�

9=; exp
�

'(S2
x � s2

x)
'(S2

x+s2
x)+2�

�
;
(21)

where p1 and p2 are suitably chosen constants and their
values are to be determined later in such a manner
that MSE of bS2

Pr op is minimized. ' can either be some
known real value or function of a known conventional
population parameter{such as �(s2y;s2x), Cx, or any other
value{of the auxiliary variable, whereas � can be one
of the above-mentioned non-conventional measures.

Setting ! = 'S2
x

'S2
x+� and expressing bS2

Pr op in terms
of �'s, we have:bS2

Pr op =S2
y(1 + �0)

�
p1f1 + !�1g�! + p2f1+!�1g!�

exp

"
�!�1

2

�
1 +

!�1
2

��1
#
: (22)

For simpli�cation, expanding Eq. (22) and retaining
terms only up to the 2nd order in �'s, we have:bS2

Pr op � S2
y
�= S2

y

h
p1

n
1 + �0 �

�
!2 +

!
2

�
�1

+
�
!4

2
+ !3 +

3
8
!2
�
�2
1 �

�
!2 +

!
2

�
�0�1

�
+ p2

n
1 + �0 +

�
!2 � !

2

�
�1

+
�
!4

2
�!3 +

3
8
!2
�
�2
1 +
�
!2�!

2

�
�0�1

�
�1
�
:
(23)

By applying expectation on both sides of Eq. (23), we
get the bias of bS2

PR as follows:

Bias
�bS2

PR

� �= S2
y

"
(p1 + p2 � 1)

+p1

��
!4

2
+!3+

3
8
!2
�
�?2(x)�

�
!2 +

!
2

�
�?22

�
+p2

��
!4

2
�!3+

3
8
!2
�
�?2(x)+

�
!2�!

2

�
�?22

�
�1

#
: (24)
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p1(opt) =
1
8

266666666664

8>><>>:
!(�1 + 2!)

�
!2(�7 + 4!(1 + !))�?22(x) � 16�?222 + 8�?2(x)(1 + 3!�?22)

�
+ 16

�
!�?2(x) � �?22

�
�?2(y) + 16�?22

9>>=>>;
!2
n
!2(4!2 � 5)�?22(x) � 16�?222 + 4�?2(x)(1 + 4!�?22 + �?2(y))

o
377777777775
;

and:

p2(opt) =
1
8

2666666664

8><>:!(1 + 2!)
�
!2 (�7 + 4!(�1 + !))�?22(x) � 16�?222 + 8�?2(x) (1 + 3!�?22)

�
+ 16(�!�?2(x) + �?22)�?2(y) � 16�?22

9>=>;
!2
n
!2(4!2 � 5)�?22(x) � 16�?222 + 4�?2(x)(1 + 4!�?22 + �?2(y))

o
3777777775 :

Box III

MSE
�bS2

PR

�
min
�= S4

y

16

266666666664

8>><>>:
16!2�?22(x)

��
! � 4!3��?22 � 4�?2(y)

�� !4 �1� 4!2�2 �?32(x) � 64�?222

�
1 + �?2(y)

�
+ 16�?2(x)

�
!2 �4!2 � 1

�
�?222 + 4(1 + 2!�?22)�?2(y)

�
9>>=>>;

!2(4!2 � 5)�?22(x) � 16�?222 + 4�?2(x)

�
1 + 4!�?22 + �?2(y)

�
377777777775
:

(26)

Box IV

Squaring both sides of Eq. (23) and then, applying
expectation, we get the MSE of bS2

PR as follows:

MSE
�bS2

PR

�
= S4

y + p2
1S

4
y

(
1 + �?2(y)

+ (2!4 + 3!3 + !2)�?2(x) � 4
�
!2 +

!
2

�
�?22

)
+ p2

2S
4
y

(
1 + �?2(y) +

�
2!4 � 3!3 + !2��?2(x)

+ 4
�
!2 � !

2

�
�?22

)
+ 2p1p2S4

y

n
1 + �?2(y)

+!2�?2(x) � 2!�?22

o� 2p1S4
y

(
1

+
�
!4

2
+ !3 +

3
8
!2
�
�?2(x) �

�
!2 +

!
2

�
�?22

)
� 2p2S4

y

(
1 +

�
!4

2
� !3 +

3
8
!2
�
�?2(x)

+
�
!2 � !

2

�
�?22

)
: (25)

To get the optimal values of p1 and p2, we minimize
Eq. (25) with respect to p1 and p2, which gives the
equations shown in Box III. The optimal values of p1
and p2 are then substituted in Eq. (25), which gives
the minimum MSE of bS2

PR by Eq. (26) as shown in
Box IV. Many estimators of population variance can be
generated from the class of estimators given in Eq. (21)
by setting di�erent values of ' and �. A number of
selected estimators, which are members of the proposed
class, are given in Table 1.
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Table 1. Some new members of the proposed class I estimators.

Estimator

Value of
constant

' �

bS2
PR�1 = s2

y

8>>><>>>:p1

 
�(s2y;s2x)S2

x + IQRx
�(s2y;s2x)s2

x + IQRx

! �(s2y;s
2
x)S

2
x

�(s2y;s
2
x)S

2
x+IQRx

+ p2

 
�(s2y;s2x)s2

x + IQRx
�(s2y;s2x)S2

x + IQRx

! �(s2y;s
2
x)S

2
x

�(s2y;s
2
x)S

2
x+IQRx

9>>>=>>>;
exp

(
�(s2y;s2x)(S2

x � s2
x)

�(s2y;s2x)(S2
x + s2

x) + 2IQRx

) �(s2y;s2x) IQRx

bS2
PR�2 = s2

y

8>>><>>>:p1

 
�(s2y;s2x)S2

x + GINx

�(s2y;s2x)s2
x + GINx

! �(s2y;s
2
x)S

2
x

�(s2y;s
2
x)S

2
x+GINx

+ p2

 
�(s2y;s2x)s2

x + GINx

�(s2y;s2x)S2
x + GINx

! �(s2y;s
2
x)S

2
x

�(s2y;s
2
x)S

2
x+GINx

9>>>=>>>;
exp

(
�(s2y;s2x)(S2

x � s2
x)

�(s2y;s2x)(S2
x + s2

x) + 2GINx

) �(s2y;s2x) GINx

bS2
PR�3 = s2

y

8>>><>>>:p1

 
�(s2y;s2x)S2

x + DOWx

�(s2y;s2x)s2
x + DOWx

! �(s2y;s
2
x)S

2
x

�(s2y;s
2
x)S

2
x+DOWx

+ p2

 
�(s2y;s2x)s2

x + DOWx

�(s2y;s2x)S2
x + DOWx

! �(s2y;s
2
x)S

2
x

�(s2y;s
2
x)S

2
x+DOWx

9>>>=>>>;
exp

(
�(s2y;s2x)(S2

x � s2
x)

�(s2y;s2x)(S2
x + s2

x) + 2DOWx

) �(s2y;s2x) DOWx

bS2
PR�4 = s2

y

8>>><>>>:p1

 
�(s2y;s2x)S2

x + SPWx

�(s2y;s2x)s2
x + SPWx

! �(s2y;s
2
x)S

2
x

�(s2y;s
2
x)S

2
x+SPWx

+ p2

 
�(s2y;s2x)s2

x + SPWx

�(s2y;s2x)S2
x + SPWx

! �(s2y;s
2
x)S

2
x

�(s2y;s
2
x)S

2
x+SPWx

9>>>=>>>;
exp

(
�(s2y;s2x)(S2

x � s2
x)

�(s2y;s2x)(S2
x + s2

x) + 2SPWx

) �(s2y;s2x) SPWx

bS2
PR�5 =s2

y

8>>><>>>:p1

 
�(s2y;s2x)S2

x+MADMx

�(s2y;s2x)s2
x+MADMx

! �(s2y;s
2
x)S

2
x

�(s2y;s
2
x)S

2
x+MADMx

+p2

 
�(s2y;s2x)s2

x+MADMx

�(s2y;s2x)S2
x+MADMx

! �(s2y;s
2
x)S

2
x

�(s2y;s
2
x)S

2
x+MADMx

9>>>=>>>;
exp

(
�(s2y;s2x)(S2

x � s2
x)

�(s2y;s2x)(S2
x + s2

x) + 2MADMx

) �(s2y;s2x) MADMx

bS2
PR�6 = s2

y

8>>><>>>:p1

 
�(s2y;s2x)S2

x + Bnx
�(s2y;s2x)s2

x + Bnx

! �(s2y;s
2
x)S

2
x

�(s2y;s
2
x)S

2
x+Bnx

+ p2

 
�(s2y;s2x)s2x + Bnx
�(s2y;s2x)S2

x + Bnx

! �(s2y;s
2
x)S

2
x

�(s2y;s
2
x)S

2
x+Bnx

9>>>=>>>;
exp

(
�(s2y;s2x)(S2

x � s2
x)

�(s2y;s2x)(S2
x + s2

x) + 2Bnx

) �(s2y;s2x) Bnx
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Table 1. Some new members of the proposed class I estimators (continued).

Estimator

Value of
constant
' �

bS2
PR�7 = s2

y

8>>><>>>:p1

 
�(s2y;s2x)S2

x + Sr�x
�(s2y;s2x)s2

x + Sr�x

! �(s2y;s
2
x)S

2
x

�(s2y;s
2
x)S

2
x+Sr�x

+ p2

 
�(s2y;s2x)s2

x + Sr�x
�(s2y;s2x)S2

x + Sr�x

! �(s2y;s
2
x)S

2
x

�(s2y;s
2
x)

S2
x+Sr�x

9>>>=>>>;
exp

(
�(s2y;s2x)(S2

x � s2
x)

�(s2y;s2x)(S2
x + s2

x) + 2Sr�x

) �(s2y;s2x) Sr�x

bS2
PR�8 = s2

y

8>>><>>>:p1

 
�(s2y;s2x)S2

x + Tnx
�(s2y;s2x)s2

x + Tnx

! �(s2y;s
2
x)S

2
x

�(s2y;s
2
x)S

2
x+Tnx

+ p2

 
�(s2y;s2x)s2

x + Tnx
�(s2y;s2x)S2

x + Tnx

! �(s2y;s
2
x)S

2
x

�(s2y;s
2
x)S

2
x+Tnx

9>>>=>>>;
exp

(
�(s2y;s2x)(S2

x � s2
x)

�(s2y;s2x)(S2
x + s2

x) + 2Tnx

) �(s2y;s2x) Tnx

bS2
PR�9 = s2

y

8>>><>>>:p1

 
�(s2y;s2x)S2

x + Qnx
�(s2y;s2x)s2

x + Qnx

! �(s2y;s
2
x)S

2
x

�(s2y;s
2
x)S

2
x+Qnx

+ p2

 
�(s2y;s2x)s2

x + Qnx
�(s2y;s2x)S2

x + Qnx

! �(s2y;s
2
x)S

2
x

�(s2y;s
2
x)S

2
x+Qnx

9>>>=>>>;
exp

(
�(s2y;s2x)(S2

x � s2
x)

�(s2y;s2x)(S2
x + s2

x) + 2Qnx

) �(s2y;s2x) Qnx

bS2
PR�10 = s2

y

8>>><>>>:p1

 
�(s2y;s2x)S2

x + Snx
�(s2y;s2x)s2

x + Snx

! �(s2y;s
2
x)S

2
x

�(s2y;s
2
x)S

2
x+Snx

+ p2

 
�(s2y;s2x)s2

x + Snx
�(s2y;s2x)S2

x + Snx

! �(s2y;s
2
x)S

2
x

�(s2y;s
2
x)S

2
x+Snx

9>>>=>>>;
exp

(
�(s2y;s2x)(S2

x � s2
x)

�(s2y;s2x)(S2
x + s2

x) + 2Snx

) �(s2y;s2x) Snx

bS2
PR�11 = s2

y

8<:p1

�
CxS2

x + IQRx
Cxs2

x + IQRx

� CxS2
x

CxS2
x+IQRx

+ p2

�
Cxs2

x + IQRx
CxS2

x + IQRx

� CxS2
x

CxS2
x+IQRx

9=;
exp

�
Cx(S2

x � s2
x)

Cx(S2
x + s2

x) + 2IQRx

� Cx IQRx

bS2
PR�12 = s2

y

8<:p1

�
CxS2

x + GINx

Cxs2
x + GINx

� CxS2
x

CxS2
x+GINx

+ p2

�
Cxs2

x + GINx

CxS2
x + GINx

� CxS2
x

CxS2
x+GINx

9=;
exp

�
Cx(S2

x � s2
x)

Cx(S2
x + s2

x) + 2GINx

� Cx GINx

bS2
PR�13 = s2

y

8<:p1

�
CxS2

x + DOWx

Cxs2
x + DOWx

� CxS2
x

CxS2
x+DOWx

+ p2

�
Cxs2

x + DOWx

CxS2
x + DOWx

� CxS2
x

CxS2
x+DOWx

9=;
exp

�
Cx(S2

x � s2
x)

Cx(S2
x + s2

x) + 2DOWx

� Cx DOWx
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Table 1. Some new members of the proposed class I estimators (continued).

Estimator

Value of
constant

' �

bS2
PR�14 = s2

y

8<:p1

�
CxS2

x + SPWx

Cxs2
x + SPWx

� CxS2
x

CxS2
x+SPWx

+ p2

�
Cxs2

x + SPWx

CxS2
x + SPWx

� CxS2
x

CxS2
x+SPWx

9=;
exp

�
Cx(S2

x � s2
x)

Cx(S2
x + s2

x) + 2SPWx

� Cx SPWx

bS2
PR�15 = s2

y

8<:p1

�
CxS2

x + MADMx

Cxs2
x + MADMx

� CxS2
x

CxS2
x+MADMx

+ p2

�
Cxs2

x + MADMx

CxS2
x + MADMx

� CxS2
x

CxS2
x+MADMx

9=;
exp

�
Cx(S2

x � s2
x)

Cx(S2
x + s2

x) + 2MADMx

� Cx MADMx

bS2
PR�16 = s2

y

8<:p1

�
CxS2

x + Bnx
Cxs2

x + Bnx

� CxS2
x

CxS2
x+Bnx

+ p2

�
Cxs2

x + Bnx
CxS2

x + Bnx

� CxS2
x

CxS2
x+Bnx

9=;
exp

�
Cx(S2

x � s2
x)

Cx(S2
x + s2

x) + 2Bnx

� Cx Bnx

bS2
PR�17 = s2

y

8<:p1

�
CxS2

x + Sr�x
Cxs2

x + Sr�x

� CxS2
x

CxS2
x+Sr�x + p2

�
Cxs2

x + Sr�x
CxS2

x + Sr�x

� CxS2
x

CxS2
x+Sr�x

9=;
exp

�
Cx(S2

x � s2
x)

Cx(S2
x + s2

x) + 2Sr�x

� Cx Sr�x

bS2
PR�18 = s2

y

8<:p1

�
CxS2

x + Tnx
Cxs2

x + Tnx

� CxS2
x

CxS2
x+Tnx

+ p2

�
Cxs2

x + Tnx
CxS2

x + Tnx

� CxS2
x

CxS2
x+Tnx

9=;
exp

�
Cx(S2

x � s2
x)

Cx(S2
x + s2

x) + 2Tnx

� Cx Tnx

bS2
PR�19 = s2

y

8<:p1

�
CxS2

x + QnX
Cxs2

x + QnX

� CxS2
x

CxS2
x+Qnx

+ p2

�
Cxs2

x + Qnx
CxS2

x + Qnx

� CxS2
x

CxS2
x+Qnx

9=;
exp

�
Cx(S2

x � s2
x)

Cx(S2
x + s2

x) + 2Qnx

� Cx Qnx

bS2
PR�20 = s2

y

8<:p1

�
CxS2

x + Snx
Cxs2

x + Snx

� CxS2
x

CxS2
x+Snx

+ p2

�
Cxs2

x + Snx
CxS2

x + Snx

� CxS2
x

CxS2
x+Snx

9=;
exp

�
Cx(S2

x � s2
x)

Cx(S2
x + s2

x) + 2Snx

� Cx Snx
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4. Theoretical and numerical e�ciency
comparisons

In this section, theoretical and numerical e�ciency
of the proposed generalized class of ratio-product
type exponential estimators of population variance are
compared with the existing estimators discussed in
Section 2.

4.1. Theoretical comparison
For theoretical e�ciency comparison, let the MSE of
the proposed class of estimators bS2

PR be written as:

MSE
�bS2

PR

�
min

=
S4
y

16

�
A
B

�
; (27)

where:

A=16!2�?22(x)

��
! � 4!3��?22 � 4�?2(y)

�
� !4 �1� 4!2�2 �?32(x) � 64�?222

�
1 + �?2(y)

�
+16�?2(x)

�
!2�4!2�1

�
�?222+4(1+2!�?22)�?2(y)

�
;

and:

B = !2 �4!2 � 5
�
�?22(x) � 16�?222

+ 4�?2(x)

�
1 + 4!�?22 + �?2(y)

�
:

then:

(i) The proposed class of estimators has superior
e�ciency to bS2

y if Var(bS2
y) � MSE(bS2

PR)min >
0. Thus, by Eqs. (1) and (27), the e�ciency
condition is given as:

S4
y

16

�16B�?2(y) �A
B

�
> 0:

(ii) Similarly, bS2
PR is more e�cient than bS2

R if
MSE(bS2

R) � MSE(bS2
PR)min > 0. Thus, by

Eqs. (2) and (27), the e�ciency condition is
given as:

S4
y

16

8<:16B
�
�?2(y)+�?2(x) � 2�?22

��A
B

9=; > 0:

(iii) The estimators envisaged in the class bS2
PR attain

higher e�ciency than bS2
Reg, bS2

SW, and bS2
YK if:

MSE(bS2
Reg)�MSE(bS2

PR)min > 0;

MSE(bS2
SW)min �MSE(bS2

PR)min > 0; and

MSE(bS2
YK)min �MSE(bS2

PR)min > 0:

Thus, by Eqs. (3), (14), (19), and (27), the
e�ciency condition is given as:

S4
y

16

8<:16B�?2(y)

�
1� �2

(S2
y;S2

x)

��A
B

9=; > 0:

(iv) The e�ciency of the proposed class bS2
PR is

higher than bS2
d if MSE(bS2

d)min�MSE(bS2
PR)min >

0. Thus, by Eqs. (4) and (27), the e�ciency
condition is given by the equation shown in
Box V.

(v) bS2
PR shows better e�ciency than bS2

BT if
MSE(bS2

BT) � MSE(bS2
PR)min > 0. Thus, by

Eqs. (5) and (27), the e�ciency condition is
given as:

S4
y

16

8<:4B
�

4�?2(y) + �?2(x) � 4�?22

��A
B

9=; > 0:

(vi) The proposed class of estimators bS2
PR display

superior e�ciency to bS2
US; bS2

KC1; bS2
KC2; bS2

KC3;bS2
SK1; bS2

SK2, and bS2
KS if their MSEs are greater

than MSE(bS2
PR)min. Thus, by Eqs. (6){(9),

(11){(13), and (27), the e�ciency condition is
given as:

S4
y

16

8<:16B
�
�?2(y)+
2

i �?2(x)�2
i�?22

��A
B

9=;>0;

where 
i = 
US; 
KC1; 
KC2; 
KC3; 
SK1; 
SK2,
and 
KS, respectively.

(vii) The e�ciency of bS2
PR is higher than bS2

SG if
MSE(bS2

SG)min � MSE(bS2
PR)min > 0. Thus, by

Eqs. (10) and (27), the e�ciency condition is
given as:

S4
y

16

2416B
n
�?2(y)

�
1� �2

(S2
y;S2

x)

�o�An1 + �?2(y)

�
1� �2

(S2
y;S2

x)

�o
B
n

1 + �?2(y)

�
1� �2

(S2
y;S2

x)

�o 35 > 0:

Box V
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S4
y

64

24n��?22(x)�16�?2(y)

�
1��2

(S2
y;S2

x)

��
�?2(x)�4

�o
1+�?2(y)

�
1��2

(S2
y;S2

x)

�
� 4A

B

35 > 0:

(viii) The estimators envisaged in bS2
PR achieve

higher e�ciency than bS2
YG if MSE(bS2

YG)min �
MSE(bS2

PR)min > 0. Thus, by Eqs. (16) and (27),
the e�ciency condition is given as:

S4
y

16

24n16�?2(y)

�
1� �2

(S2
y;S2

x)

��
1� �?2(x)

�o
1� �?2(x) + �?2(y)

�
1� �2

(S2
y;S2

xt)

�
� A
B

35 > 0:

(ix) The proposed estimators of class bS2
PR are

superior to bS2
YS in terms of e�ciency if

MSE(bS2
YS)min � MSE(bS2

PR)min > 0. Thus, by
Eqs. (20) and (27), the e�ciency condition is
given as:

S4
y

16

24n64�?2(y)

�
1��2

(S2
y;S2

x)

���?22(x)

o
4�3�?2(x)+�?2(y)

�
1��2

(S2
y;S2

x)

� �A
B

35>0:

4.2. Numerical comparison in the presence of
outliers

As pointed out in Section 3, the proposed class of
estimators incorporate the non-conventional measures,
which are somewhat robust to outliers. Therefore,
numerical comparison of the proposed class of estima-
tors of population variance with the existing estimators
is made by using three population datasets, which
contain some outliers. The boxplots given in Figures 1{
3 clearly show that both the study and auxiliary
variables in Populations 1 and 3 are crippled with
outliers, while population 2 has only one outlier in
its auxiliary variable. Thus, these datasets are a
good realization of both cases with and without outlier
observation. These population datasets are frequently
used in many studies to compare the performance of
various estimators of population mean and variance
(see for example [28,29,33,48,49]). The description
and various population characteristics are detailed as
follows:

Population 1: This dataset is taken from Cochran

Figure 1. Boxplots for Population 1. (a) Study variable and (b) auxiliary variable.

Figure 2. Boxplots for Population 2. (a) Study variable and (b) auxiliary variable.
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Figure 3. Boxplots for Population 3: (a) Study variable and (b) auxiliary variable.

[35], where y represents the number of inhabitants (in
1000's) in United States cities in 1930 and x is the
number of inhabitants (in 1000's) in 1920.

N = 49; n = 20; Y = 127:7959;

X = 103:1429; S2
y = 15158:8299;

S2
x = 10900:4249; �2(y) = 4:9245;

�2(x) = 5:9878; Cx = 1:0435;

�22 = 4:6977; � = 0:02959;

�(S2
y;S2

x) = 0:83577; Q1(x) = 43:0;

Q3(x) = 120:0; IQRx = 77;

GINx = 97:7553; DOWx = 86:6508;

SPWx = 84:8456; MADMx = 39:2889;

Bnx = 52:415; Sr�x = 34:0998;

Tnx = 35:5488; Qnx = 46:6599;

Snx = 40:5484; �yx = 0:9817;

Mx = 64:0:

Population 2: This dataset is obtained from Murthy
[50], where y denotes the output (in 100,000 rupees) of
factories in a region and x is �xed capital (in 100,000
rupees).

N = 80; n = 20; Y = 51:8264;

X = 11:2646; S2
y = 336:9757;

S2
x = 70:6634; �2(y) = 2:2667;

�2(x) = 2:8664; Cx = 0:751;

�22 = 2:2209; � = 0:0375;

�(S2
y;S2

x) = 0:79311; Q1(x) = 5:1500;

Q3(x) = 16:975; IQRx = 11:825;

GINx = 10:3613; DOWx = 9:1844;

SPWx = 9:0681; MADMx = 4:8925;

Bnx = 7:7060; Sr�x = 4:0032;

Tnx = 4:3265; Qnx = 5:1770;

Snx = 4:6869; �yx = 0:941;

Mx = 7:575:

Population 3: This dataset is obtained from the
Italian Bureau of Environment Protection-IBEP (2004)
[source: http://www.osservatorionazionalerifuti.it (20-
04)], where y denotes the amount of recyclable waste
(in tons) collected in di�erent cities of Italy in 2003 and
x is the number of inhabitants living in those cities.

N = 103; n = 40; Y = 62:6212;

X = 556:5541; S2
y = 8345:7177;

S2
y = 8345:7177; S2

y = 8345:7177;

�2(x) = 17:8738; Cx = 1:0963;

�22 = 17:2220; � = 0:01529;

�(S2
y;S2

x) = 0:6570; Q1(x) = 259:3830;

Q3(x) = 628:0235; IQRx = 368:6405;

GINx = 457:666; DOWx = 405:678;

SPWx = 401:701; MADMx = 223:169;

Bnx = 241:697; Sr�x = 191:317;
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Table 2. Estimated numerical results for the MSEs, RRMSEs, and PREs with respect to bS2
y of the existing estimators.

Estimator Measure Pop-1 Pop-2 Pop-3 Estimator Measure Pop-1 Pop-2 Pop-3bS2
y

MSE 26686254 5393.75 38482180 bS2
SG

MSE 7411158 1923.464 15515489
RRMSE 0.3407832 0.2179449 0.7433034 RRMSE 0.179588 0.1301498 0.471975
PRE 100 100 100 PRE 360.0821 280.4185 248.0243

bS2
R

MSE 10314786 2952.368 21898276 bS2
SK�1

MSE 10213530 2494.658 21896896
RRMSE 0.2118675 0.1612452 0.5607138 RRMSE 0.2108251 0.14822 0.5606962
PRE 258.7184 182.6923 175.7316 PRE 261.2834 216.212 175.7426

bS2
Reg

MSE 8045752 2000.995 21871290 bS2
SK�2

MSE 10217681 2389.708 21897016
RRMSE 0.1871189 0.1327469 0.5603682 RRMSE 0.2108679 0.1450688 0.5606977
PRE 331.6813 269.5533 175.9484 PRE 261.1772 225.7074 175.7417

bS2
d

MSE 7773572 1966.345 16644658 bS2
KS

MSE 10124389 2162.944 21895159
RRMSE 0.1839266 0.1315925 0.4888479 RRMSE 0.209903 0.1380143 0.5606739
PRE 343.2946 274.3033 231.1984 PRE 263.5839 249.3707 175.7566

bS2
BT

MSE 10021370 2188.727 25695997 bS2
SW

MSE 8045752 2000.995 21871290
RRMSE 0.2088324 0.1388344 0.607392 RRMSE 0.1871189 0.1327469 0.5603682
PRE 266.2935 246.4332 149.7594 PRE 331.6813 269.5533 175.9484

bS2
US

MSE 10305164 2750.183 21898209 bS2
YG

MSE 7728302 1963.789 15367096
RRMSE 0.2117687 0.155626 0.560713 RRMSE 0.1833903 0.131507 0.4697126
PRE 258.96 196.1233 175.7321 PRE 345.3055 274.6603 250.4193

bS2
KC�1

MSE 10313107 2895.45 21898272 bS2
YK

MSE 8045752 2000.995 21871290
RRMSE 0.2118503 0.1596833 0.5607138 RRMSE 0.1871189 0.1327469 0.5603682
PRE 258.7606 186.2836 175.7316 PRE 331.6813 269.5533 175.9484

bS2
KC�2

MSE 10305564 2691.57 21898215 bS2
YS

MSE 7335157 1919.253 14417414
RRMSE 0.2117728 0.1539587 0.5607131 RRMSE 0.1786648 0.1300072 0.4549671
PRE 258.95 200.3942 175.732 PRE 363.813 281.0338 266.9146

bS2
KC�3

MSE 10314506 2932.174 21898275
RRMSE 0.2118647 0.1606928 0.5607138
PRE 258.7255 183.9505 175.7316

Tnx = 201:547; Qnx = 223:029;

Snx = 221:654; �yx = 0:7298;

Mx = 373:82:

For numerical comparison, we computed the MSEs,
Percentage Relative E�ciencies (PREs), and Relative
Root Mean Square Errors (RRMSEs) based on the
above-mentioned datasets. The PREs of the proposed
estimators and the existing estimators relative to the
usual SRS estimator of population variance (bS2

y) were
obtained by using the following expression:

PRE
��; bS2

y

�
=

Var
�bS2

y

�
MSE(�) or MSE(�)min

� 100; (28)

where MSE(�) or MSE(�)min denotes the MSEs of
the existing and proposed estimators of population

variance considered in this study. An estimator with
a higher value of PRE is considered superior to its
counterparts. The RRMSE is obtained by using the
following expression:

RRMSE =

r
MSE

�b�i�
�

;

b�i = bS2
y ; bS2

R; bS2
Reg; � � � ; bS2

YS; bS2
PR�j ; (29)

where � is the true population variance, i.e., S2
y ,

and bS2
PR�j(j = 1; 2; � � � ; 20) denotes the proposed

estimators given in Table 1. An estimator with the
lowest RRMSE is usually declared as the most e�cient
among the competing estimators.

The numerical results for MSEs, RRMSEs, and
PREs of the existing estimators and proposed esti-
mators are given in Tables 2 and 3, respectively. A
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Table 3. Estimated numerical results for the MSEs, RRMSEs, and PREs with respect to bS2
y of the proposed estimators.

Estimator Measure Pop-1 Pop-2 Pop-3 Estimator Measure Pop-1 Pop-2 Pop-3

bS2
PR�1

MSE 5458119 1862.839 13835683 bS2
PR�11

MSE 5433607 1869.284 13823937
RRMSE 0.1541189 0.1280823 0.4456938 RRMSE 0.1537724 0.1283037 0.4455046
PRE 488.9277 289.5445 278.1372 PRE 491.1333 288.5463 278.3735

bS2
PR�2

MSE 5490879 1847.107 13842745 bS2
PR�12

MSE 5460177 1853.613 13828183
RRMSE 0.1545807 0.1275403 0.4458075 RRMSE 0.1541479 0.1277647 0.445573
PRE 486.0106 292.0107 277.9953 PRE 488.7434 290.9857 278.288

bS2
PR�3

MSE 5473413 1832.747 13838622 bS2
PR�13

MSE 5446001 1839.234 13825704
RRMSE 0.1543346 0.1270436 0.4457412 RRMSE 0.1539477 0.1272682 0.4455331
PRE 487.5615 294.2986 278.0781 PRE 490.0156 293.2607 278.3379

bS2
PR�4

MSE 5470560 1831.236 13838307 bS2
PR�14

MSE 5443688 1837.716 13825515
RRMSE 0.1542944 0.1269912 0.4457361 RRMSE 0.153915 0.1272157 0.44553
PRE 487.8158 294.5414 278.0845 PRE 490.2238 293.5029 278.3418

bS2
PR�5

MSE 5397326 1763.154 13824116 bS2
PR�15

MSE 5384508 1768.603 13816990
RRMSE 0.1532582 0.1246082 0.4455075 RRMSE 0.1530761 0.1248006 0.4453926
PRE 494.4348 305.9149 278.3699 PRE 495.6117 304.9723 278.5135

bS2
PR�6

MSE 5418674 1812.166 13825591 bS2
PR�16

MSE 5401720 1818.501 13817876
RRMSE 0.153561 0.1263282 0.4455312 RRMSE 0.1533205 0.1265488 0.4454069
PRE 492.4868 297.6411 278.3402 PRE 494.0325 296.6042 278.4956

bS2
PR�7

MSE 5388830 1744.32 13821579 bS2
PR�17

MSE 5377668 1749.249 13815467
RRMSE 0.1531375 0.1239409 0.4454666 RRMSE 0.1529788 0.1241158 0.4453681
PRE 495.2143 309.2179 278.421 PRE 496.2422 308.3467 278.5442

bS2
PR�8

MSE 5391205 1751.381 13822394 bS2
PR�18

MSE 5379580 1756.516 13815956
RRMSE 0.1531713 0.1241915 0.4454797 RRMSE 0.153006 0.1243734 0.445376
PRE 494.996 307.9712 278.4046 PRE 496.0658 307.0709 278.5343

bS2
PR�9

MSE 5409339 1768.802 13824105 bS2
PR�19

MSE 5394190 1774.389 13816983
RRMSE 0.1534286 0.1248076 0.4455073 RRMSE 0.1532136 0.1250046 0.4453925
PRE 493.3367 304.938 278.3701 PRE 494.7222 303.9779 278.5136

bS2
PR�10

MSE 5399383 1758.961 13823996 bS2
PR�20

MSE 5386165 1764.303 13816918
RRMSE 0.1532874 0.1244599 0.4455055 RRMSE 0.1530996 0.1246488 0.4453915
PRE 494.2464 306.644 278.3723 PRE 495.4592 305.7156 278.5149

comparison of these results clearly establishes that all
the proposed estimators as members of the class bS2

PR
have smaller MSEs and RRMSEs than the existing
estimators of population variance in all the populations
considered in this study. Moreover, the PREs of the
proposed estimators are much higher than those of
their existing counterparts. It is also observed that
in most cases, the estimators that employ auxiliary

information on Cx and the non-conventional measures
in tandem, that is, bS2

PR�1 to bS2
PR�10, perform slightly

better than other estimators of the proposed classbS2
PR.

5. Conclusion

In this study, we propose a new generalized class of
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ratio-product type exponential estimators of popula-
tion variance under Simple Random Sampling (SRS),
which incorporates both the conventional and some-
what robust non-conventional auxiliary information.
The results for the bias, Mean Square Error (MSE), and
e�ciency conditions indicated that the proposed esti-
mators were better than the existing estimators in the
literature. Using three di�erent datasets, which con-
tained outlier observations, numerical e�ciency com-
parison with the existing estimators was made based on
MSEs, Relative Root Mean Square Errors (RRMSEs),
and Percentage Relative E�ciency (PREs). It was
established that the proposed estimators had superior
e�ciency to their counterparts.
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