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Abstract. In statistical process control, one objective is to control the stability of a
process. A process is stable when its mean is in control and variance bounded. Di�erent
control charts were introduced for monitoring the mean and variance of a process by plotting
suitable test statistics on the chart. In this research, design of a system which converts
the sample mean into test statistics was proposed. The second-order �lter, a special class
of the Linear Time Invariant (LTI) systems, was used to design the converting system. It
was shown that design of a low-pass �lter was better for detecting a level (mean) change in
the process. Markov chain approach was also employed to construct an appropriate control
chart and to estimate its control limits. Simulated data under normality assumption for
di�erent scenarios were used to compare the proposed control chart with Shewhart and
Exponentially Weighted Moving Average charts by means of Average Run Length (ARL)
and Percentage of False Signals (PFS) criteria. Existing data from the Central Bank of
Iran was also applied to evaluate the suggested method. The signal-to-noise ratio was used
to assess the performance of this method at di�erent stages. Results indicate that the
proposed method detects shifts more rapidly.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Statistical process control techniques are tools used to
reduce process dispersion and to improve its stability.
In statistical process control, it is usually assumed that
the output of the process is normally distributed with
in-control mean �0 and in-control standard deviation
�0. Control charts are one of the quality control
tools which are frequently used to investigate the
process stability. In the simplest case where the
quality characteristic is normally distributed, it is of
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interest to investigate if the process mean and standard
deviation remain at in-control levels. According to
Montgomery [1], one may use Shewhart control charts
to monitor the process parameters. Construction and
implementation of Shewhart charts require introduc-
tion of some test statistics for monitoring the stability
of the process. Then, the probability distribution of
the test statistics under the assumption of process
being in control must be determined. Using this
probability distribution, the values of test statistics
which may be generated when the process is in control
are determined. It is expected that when the process is
in control, test statistics fall inside a speci�c interval.
The upper and lower bounds of this interval are called
Upper Control Limit (UCL) and Lower Control Limit
(LCL), respectively. Determination of the control
limits requires a desired value for Average Run Length
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(ARL). ARL is the mean number of samples needed
to be taken from the process until the test statistics
exceed its control limits. Control limits are de�ned
to obtain a predetermined in-control ARL, such as
370. In this research, it is assumed that the process
standard deviation remains in control when monitoring
the process mean. One of the most popular control
charts for monitoring the process mean is the �X chart.
For implementing this chart, samples of size n are
taken from the process and the sample mean �X is
computed for each one of them. As long as �X 2
(�0 � 3�0=

p
n), the process mean is judged to be

in-control. According to Montgomery [1], Shewhart
�X chart is suitable to detect large shifts and is less

sensitive to small shifts. Some authors including
Jiang [2], Wu and Spedding [3], Zhang [4], Chang
and Aw [5], and Harris and Ross [6] proposed other
charts for monitoring the process mean which are
sensitive to small and moderate changes. Two of such
charts are Exponentially Weighted Moving Average
(EWMA) and Cumulative Sum (CUSUM). In these
two charts, other test statistics rather sample mean
is plotted on the chart. It was shown that EWMA
control chart was highly robust against non-normality
of the process distribution. Thus, this chart has
been adopted to construct the proposed control chart.
Saif [7] proposed a framework to integrate the control
charts with automation process control.

Monitoring the process mean may be categorized
into two approaches. In the �rst approach, monitoring
procedure is directly based on plotting the sample mean
on the appropriate chart. The second approach consists
of monitoring some appropriate functions of the sample
mean. These functions must be chosen so that the
corresponding charts would �nd small to moderate
changes rapidly.

These two approaches could be considered as a
uni�ed approach. In this uni�ed approach, one may
design a function which is called system. This system
takes �Xt, t = 1; 2; � � � s as input and transforms them
into output shown by Yt which is the charting test
statistics. The system along with its input and output
is shown in Figure 1.

Using this uni�ed approach, one may study the
behavior of monitoring procedure more precisely. In
other words, selecting appropriate test statistics to
monitor the process will be reduced to selecting an
appropriate system. Process monitoring scheme is usu-
ally designed only based on statistical considerations.
In this strategy, the behavior of processes in the time
domain is usually assessed. However, some important

Figure 1. The uni�ed controlling system.

features of the processes may not be discovered if
processes are considered only in the time domain.
Accordingly, any change in the process mean may not
be detected e�ectively.

On the other hand, considering statistical process
monitoring from the system viewpoint enables practi-
tioners to better understand the processes. The reason
is that using the system approach one could study
the process in the frequency domain. This domain
contains information about the process which may not
be evident in the time domain. Thus, it is possible
to monitor complicated processes more precisely using
system approach. Choosing an appropriate system,
shown in Figure 1, is very important in constructing
a control scheme. Designing such a system requires
that the process be studied in the frequency domain,
as well. In this research, the system approach is
followed to construct a uni�ed scheme to monitor
processes.

Various authors, including Rabyk and Schmid [8]
Shokrizadeh et al. [9], Yang and Arnold [10], Chen et
al. [11], Apley and Shi [12] and Lu and Reynolds [13],
proposed di�erent methods for monitoring process
mean. However, signal and system approach was not
explicitly used to de�ne a monitoring scheme. Previous
studies have not tried the hybrid method discussed in
this study which adopts the second-order �lter and the
Markov chain approach as a means of detecting changes
in the process mean. In this context, the signal and
system approach is applied to de�ne control scheme
with suitable properties. The proposed monitoring
procedure must be designed so that the resulting chart
can have desirable properties.

The rest of this paper is organized as follows. In
Section 2, some preliminaries about system theory are
provided. In Section 3, LTI systems are introduced.
The proposed monitoring procedure is presented in
Section 4. In the proposed method, the test statistics
is obtained by using a suitable LTI system. ARL of
the proposed procedure is obtained using Markov chain
approach in Section 5. In Section 6, the performance
of the proposed method is evaluated via simulation.
Results of monitoring a real stochastic process using
the proposed control scheme are provided in Section 7.
Finally, discussions and conclusion are made. Symbols
and notations used in this research are provided in
Nomenclature.

2. Theory and system design

The test statistics for EWMA chart is given in Eq. (1):

Zt=� �Xt + (1� �)Zt�1; Z0 =�0; t=1; 2; � � � :
(1)

The upper and lower control limits for this chart are as
follows:
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UCL = �0 + L�0

s
�

(2� �)n
;

LCL = �0 � L�0

s
�

(2� �)n
; (2)

where the charting parameters 0 � � � 1 and L > 0
are designed by the analyst for desired properties such
as having a predetermined in-control ARL. As long as
Zt 2 (LCL;UCL), the process is considered to be in
control.

According to Zhang et al. [14], CUSUM chart is
based on plotting the following statistics on the chart:

S+
0 =0; S+

t =max

(
0; S+

t�1+
p
n
� �Xt��0

�
�0

)
;

t = 1; 2; � � � ; (3)

S�0 =0; S�t =min

(
0; S�t�1+

p
n
� �Xt��0

�
�0

)
;

t = 1; 2; � � � : (4)

For a given h > 0, the process mean is said to be
in control at time t if S+

t < h and S�t > �h. The
parameter h > 0 is the charting parameter chosen to
have a predetermined in-control ARL.

Considering EWMA and CUSUM control charts,
one may conclude that it is possible to use a system
that transforms �Xt values to generate some other test
statistics. These test statistics then may be used to
monitor the process mean rather than �Xt values.

A class of systems is called the Linear Time
Invariant (LTI) which is important and suitable for
de�ning test statistics, Yt. In this research, input
and output of a LTI system at time t are shown by
x[t] and y[t], respectively. In system theory, x[t] and
y[t] are called input and output signals, respectively.
For the sake of simplicity, the relation between x[t]
and y[t] is shown by x[t] ! y[t]. The LTI systems,
as stated by Oppenheim et al. [15], are the systems
that transform input to output using two important
properties. These properties include linearity and
time invariance. For de�ning linearity, suppose that
x1[t] and x2[t] are two arbitrary input signals of a
system with corresponding output signals y1[t] and
y2[t], respectively, i.e., x1[t] ! y1[t] and x2[t] ! y2[t].
The system is said to be linear if for every a1 and
a2, a1x1[t] + a2x2[t] ! a1y1[t] + a2y2[t]. A system
intuitively is said to be time invariant if its behavior
does not change with time. More formally, x[t] ! y[t]
represents a system; this system is time invariant if for
every t0 2 Z, x[t � t0] ! y[t � t0]. In this study, the
LTI systems are used to de�ne suitable test statistics
for monitoring the process mean.

3. Statistical monitoring procedure: The LTI
system

As mentioned in Section 2, LTI systems have two
important properties: linearity and time invariance.
These properties make it easy to obtain a closed form
for output signal of a system in terms of input signal.
Outputs of a system may be called system responses.
To show how to obtain LTI system response, it is
required to de�ne two important input signals. These
two input signals are unit impulse, �[t], and unit step,
u[t], which are de�ned as follows:

�[t] =

(
1 t = 0
0 t 2 Z� f0g (5)

u[t] =

(
1 t 2 Z+ [ f0g
0 t 2 Z� (6)

Let h[t]; t 2 Z be the system response to the unit
impulse, i.e., �[t] ! h[t]. In the literature on signals
and systems, h[t] is called impulse response. According
to Oppenheim et al. [15], the output of a LTI system
to any input signal x[t] can be expressed as follows:

y[t] =
+1X

k=�1
h[k]x[t� k] = h[t]�x[t]; t; k 2 Z;

(7)

where y[t] is the system response to x[t] and (*) is the
convolution operator.

Based on Eq. (7), having h[t], one can �nd a
system response to any input signal. Eq. (7) represents
the output of a system in the time domain. In Figure 2,
the relation between input and output of a LTI system
in the time domain is shown.

It is possible to represent a system in the fre-
quency domain, as well. To this end, one may
take Fourier transformation of both sides of Eq. (7).
It is shown in Appendix A that taking the Fourier
Transformation of Eq. (7), one may conclude that:

Y (ejw) = H(ejw)X(ejw); (8)

where j =
p�1, w is the frequency variable, and

Y (ejw), H(ejw), and X(ejw) are the Fourier transfor-
mation of y[t], h[t], and x[t], respectively, which are
shown below:

Y (ejw) =
+1X
t=�1

y[t]e�jwt; (9)

H(ejw) =
+1X
t=�1

h[t]e�jwt; (10)

Figure 2. Time representation of an LTI system.
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Figure 3. Frequency representation of an LTI system.

X(ejw) =
+1X
t=�1

x[t]e�jwt: (11)

The function H(ejw) is usually called the frequency
response of system. According to Eq. (8), one may
multiply H(ejw) by X(ejw) to obtain Y (ejw). Then,
taking inverse Fourier transformation of Y (ejw) yields
y[t]. Representation of an LTI system in the frequency
domain is illustrated in Figure 3.

LTI systems are usually called �lters. In designing
a �lter, it is very important to de�ne h[t] or its
Fourier transformation H(ejw) properly. Generally,
three types of �lters, including low-pass, high-pass, and
medium-pass �lters could be de�ned. Low-pass �lters
only permit low frequency pass through the �lter. In
high-pass �lters, only high frequencies pass the �lters
and low frequencies are vanished. Median-pass �lters
only send moderate frequencies out.

One type of frequently-used LTI systems or �lters
are those represented by linear di�erence equations
with constant coe�cients. In a more formal term, let
x[t] and y[t] be input and output signals of a system
which are related to each other according to Eq. (12):

MX
k=0

bky[t� k] =
NX
k=0

akx[t� k]: (12)

Eq. (12) is a linear di�erence equation with constant
coe�cients. Solving Eq. (12) needs some auxiliary
conditions. It is rational to assume that if x[t] = 0
for t < � , then y[t] = 0 for t < � . This auxiliary
condition is called initial rest. Based on Oppenheim
et al. [15], any system that is represented by Eq. (12)
with initial rest condition speci�es a LTI system, which
is a linear �lter in turn. Designing linear �lters has
been studied by various authors, especially in the �eld
of communication systems. Wang et al. [16] proposed
linear feedback control loops to detect sensor faults.
Chen et al. [17] studied the problem of detecting
faults in linear stochastic dynamic systems. Zuo et
al. [18] designed a linear �lter to estimate missing
measurements. Liu and Shi [19] studied optimal linear
�ltering for correlated data. Liu et al. [20] investigated
the optimal design of linear �lters. Eijnden et al. [21]
proposed a hybrid low-pass �lter to control nonlinear
motion.

Two frequently used �lters include �rst-order and
second-order �lters. In this paper, the second-order
�lter is used to monitor the process mean. The
�rst- and second-order �lters are reviewed brie
y in
Subsection 3.1.

3.1. The �rst and the second order �lters
The simplest linear �lter used to design a system is a
�rst-order system with initial rest conditions:

y[t] = �1y[t� 1] + x[t]; t 2 Z; (13)

where �1 is a constant. The block diagram of the �rst-
order system is shown in Figure 4.

In Figure 4, D represents the di�erence operator.
From Eq. (13), it is evident that for a given input signal
x[t], the output signal y[t] depends on the value of y[t�
1]. Accordingly, the corresponding system is called a
�rst-order �lter.

In designing �lters, usually �rst-order systems are
connected serially or in parallel. Deciding which types
of connection to use depends on the application of the
resulting �lter.

Another frequently used �lter is the second-order
�lter that is represented by Eq. (14):

y[t] = �1y[t� 1] + �2y[t� 2] + x[t]; t 2 Z; (14)

where �1 and �2 are some constants. Block diagram of
the second-order �lter is shown in Figure 5.

According to Eq. (14), for a given input signal
x[t], the output signal y[t] depends on the values of
y[t � 1] and y[t � 2]. Because of this dependency, the
system which is represented by Eq. (14) is called the
second-order �lter.

As stated before, the behavior of each LTI system
including the �rst-order and second-order systems in
the time domain is determined by impulse response,
h[t]. In the frequency domain, the behavior of a �lter
is modeled by its frequency response, H(ejw). In this
study, the authors attempted to use the second-order
�lter to design a uni�ed control system, as shown in
Figure 1, to transform �Xt into Yt. Designing this

Figure 4. Block diagram of �rst-order system.

Figure 5. Block diagram of �rst- and second-order
systems.
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second-order �lter requires determination of the values
of �1 and �2 in Eq. (14). These coe�cients should
be determined so that the resulting test statistics,
Yt, becomes sensitive to a certain type of change in
the process mean. In this study, it is assumed that
the process mean is �0 by time t0. At time t0, the
process mean changes to an out-of-control level shown
by �0+
�0, where 
 is the magnitude of shift in process
mean in terms of process standard deviation. The
uni�ed controlling system should be designed in order
to detect this change rapidly. In other words, the values
of �1 and �2 in Eq. (14) must be determined so that
the change in process mean is magni�ed in the sequence
of Yt's. Note that the mean and variance of the �lter
output, Yt, will not be, in general, equal to those of
�Xt. One may de�ne Signal to Noise Ratio (SNR)

of �Xt and Yt by SNR �Xt =
�
E2[ �Xt]
var( �Xt)

�
and SNRYt =�

E2[Yt]
var(Yt)

�
, respectively. If SNRYt > SNR �Xt , changes in

process mean will be unfolded more prominently using
Yt. Then, out-of-control conditions will be detected
more rapidly. Thus, it is better to use a �lter that
increases SNRYt compared to SNR �Xt . In this study,
a second-order low-pass �lter is proposed to transform
�Xt into Yt. Use of low-pass �lters is logical since these

�lters remove high frequency components and smooth
out input signals. Using the ratio SNRYt

SNR �Xt
, one may

compare levels of dispersion and mean before and after
�ltering. Thus, the ability of �lter to remove noises
may be studied properly. It is important to study
the behavior of a second-order system in time and
frequency domains for designing the �lter properly. In
the next subsection, the behavior of the second-order
system in terms of h[t] and H(ejw) is investigated. This
investigation illustrates designing of an appropriate
uni�ed control system.

3.2. Behavior of the second order �lters
To study the behavior of a second-order system, its
impulse response, h[t], and frequency response, H(ejw),
must be determined. It is better to specify H(ejw)
�rst. According to Oppenheim et al. [15], in order to
have a frequency response, the system must be stable.
Intuitively speaking, a system is stable if its responses
to bounded inputs remain �nite, i.e., jx[t]j < 1 )
jy[t]j <1.

A second-order system shown by Eq. (14) is stable
if the following conditions are met:

�1 + �2 < 1; �2 � �1 < 1; j�2j < 1: (15)

Thus, if a second-order �lter is used to transform �Xt
into Yt as long as conditions of Eq. (15) are satis�ed
and j �Xtj < 1, the output signal Yt will be bounded.
Using Markov inequality, one may conclude that the
su�cient condition for j �Xtj < 1 is that E[j �Xtj] < 1.

On the other hand, E[j �Xtj] � E[jXj]. Thus, in the
stability region of a second-order �lter, if E[jXj] <1,
then jYtj <1.

Suppose that a second-order system de�ned by
Eq. (14) is stable. For determining H(ejw), one may
take Fourier transformation of both sides of Eq. (14)
which results in the following:

Y (ejw)=�1e�jwY (ejw)+�2e�2jwY (ejw)+X(ejw):
(16)

Rearranging Eq. (16) yields Eq. (17):

Y (ejw)
X(ejw)

=
1

1� �1e�jw � �2e�2jw : (17)

According to Eq. (8), Eq. (17) may be written as:

H(ejw) =
1

1� �1e�jw � �2e�2jw : (18)

Eq. (18) is called the frequency response of system.
Taking the inverse Fourier transformation of both sides
of Eq. (18), one may obtain the impulse response of
system. The impulse response of the second-order �lter
is obtained in Appendix B.

In Appendix B, it is shown that the behavior of
h[t] depends on the sign of �2

1 + 4�2. Thus, two cases
are possible for computing h[t] which are explained in
the following.

Case I: �2
1 + 4�2 > 0. If �2

1 + 4�2 > 0, the impulse
response of the system is equal to:

h[t] =
x2

x2�x1

�
1
x1

�t
u[t] +

x1

x1�x2

�
1
x2

�t
u[t];

t 2 Z; (19)

where:

x1 =
��1 +

p
�2

1 + 4�2

2�2
;

x2 =
��1 �p�2

1 + 4�2

2�2
; (20)

where u[t] is a unit step function de�ned in Eq. (6).
The stability conditions of the system require jx1j > 1
and jx2j > 1. Conversely, given x1 and x2, one could
compute �1 and �2 as follows:

�1 =
1
x1

+
1
x2
;

�2 = � 1
x1x2

: (21)

Note that x�1
1 and x�1

2 are called poles of system. If
�2

1 + 4�2 > 0, the system has two real poles. The
behavior of the second-order �lter is determined by



O. Ahmadi and H. Shahriari/Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 2210{2229 2215

Figure 6. Impulse response with �1 = 1:7 and
�2 = �0:72.

location of these poles. According to Oppenheim et
al. [15], when poles move toward 1, the corresponding
system behaves as a low-pass �lter. If poles move
toward �1, the system will be a high-pass �lter.

It could be seen that for case �2
1 + 4�2 >

0, the impulse response of the system damps out
without oscillation as t ! +1. Thus, to design
a second-order system for this case, it is important
to de�ne the values of �1 and �2. For example,
consider a second-order �lter with poles x�1

1 = 0:9
and x�1

2 = 0:8. Using Eq. (21), the values of �1 and
�2 were computed as 1.7 and�0:72, respectively. The
impulse response of this system is shown in Figure 6.
Note that these values for �1 and �2 are in a non-
oscillatory region;
Case II: �2

1 + 4�2 < 0. In case �2
1 + 4�2 < 0, the

impulse response of a system becomes:

h[t] =
sin((t+ 1)�)

sin(�)
�tu[t]; t 2 Z; (22)

where:

2� cos � = �1; ��2 = �2: (23)

For case �2
1 + 4�2 < 0, the impulse response of the

system damps with oscillation as t ! +1. Let x1
and x2 be the following:

x1 =
��1 + j

p��2
1 � 4�2

2�2
;

x2 =
��1 � jp��2

1 � 4�2

2�2
: (24)

According to Oppenheim et al. [15], in this case, x�1
1

and x�1
2 are called poles of system. In order for the

system to be stable, it is required that jx1j > 1 and
jx2j > 1. Again, given x1 and x2, the values of �1
and �2 could be obtained using Eq. (21). According
to Oppenheim et al. [15], if poles move toward 1,
the system will be a low-pass �lter. If they move
toward �1, the system will be a high-pass �lter. As

Figure 7. Impulse response with � = 0:91 and � = 0:11.

x1 ! j and x2 ! �j, the resulting system is a
medium-pass �lter. For example, consider a system
with poles x�1

1 = 0:9 + 0:1j and x�1
2 = 0:9 � 0:1j.

Using Eqs. (21) and (23), the following values were
obtained: �1 = 1:8, �2 = �0:82, � =

p��2 = 0:91,
and � = cos�1

�
�1
2�

�
= 0:11. The impulse response of

this system is shown in Figure 7.

In summary, for designing a second-order system,
the values of its poles must be chosen. These values are
set such that the resulting �lter poses some suitable
features. Based on poles' values and using Eq. (21),
�1 and �2 values are determined. When monitoring
the process mean, a desired feature that the �lter is
better to have is sensitivity to step changes. Based
on this desired feature, a suitable second-order �lter
can be designed. The designed �lter could be used to
transform sample means �Xt into test statistics, Yt's,
as shown in Figure 1. Proper design of �lter makes
Yt sensitive to step changes. Based on this guideline,
a second-order �lter is used to de�ne a uni�ed control
system here. The proposed monitoring method using
a second-order �lter is introduced in Section 4.

4. Proposed monitoring method

4.1. Underlying logic
In this section, a uni�ed control system is designed to
monitor the process mean. More formally, suppose that
when the process is in-control, the quality characteris-
tic of interest is normally distributed with mean �0
and variance �2

0 . It is assumed that when the process
is out of control, the process mean jumps to a new level
�0 + 
�0. It is important to detect this change as soon
as possible. Let t0 be the change point of the process
mean. Let �Xt be the sample mean of a random sample
of size n taken at time t. �Xt can be represented as
follows:

�Xt =

8><>:
�0 + �0p

n"t t = 0; 1; � � � ; t0 � 1

�0 + 
�0 + �0p
n"t t = t0; t0 + 1; � � �

(25)

where "t's are Normally Independently Distributed
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Table 1. Response of system to level shift.

t < t0 t � t0

�2
1 + 4�2 > 0 �[t] = �0

1��1��2
�[t] = (�0 + 
�0)

(
A1

x1�
�

1
x1

�t�t0
x1�1 +A2

x2�
�

1
x2

�t�t0
x2�1

)
�2

1 + 4�2 < 0 �[t] = �0
1��1��2

�[t] = �0+
�0
sin(�)

Pt�t0
k=0 sin (k + 1)�) �k

[NID] with mean 0 and variance 1, i.e., "t � NID(0; 1).
Expected value of �Xt in Eq. (25) could be represented
as:

E
� �Xt

�
= v[t] = �0 + (
�0)u[t� t0]: (26)

Suppose that the sequence of �Xt's are added to a stable
second-order system. Thus, we have:

Yt = �1Yt�1 + �2Yt�2 + �Xt; t = 1; 2; � � � ;

Y0 = Y�1 =
�0

1� �1 � �2
: (27)

Note that it is required to have the initial values for Y0,
and Y�1 to compute Yt for t > 0. Reasonable initial
values for Y0 and Y�1 are the expected values of the
stochastic process Yt which is �0

1��1��2
. In Eq. (27),

this initial value was used. According to Box et al. [22],
when �Xt is normally distributed, Yt follows normal
distribution.

Eq. (27) de�nes a second-order autoregressive
process, called AR(2) in time series analysis. It is
suitable to determine the e�ect of step change on the
mean value of Yt. Let E[Yt] = � [t]. Taking expectation
from both sides of Eq. (27) yields the following:

�[t] = �1�[t� 1] + �2�[t� 2] + v[t]: (28)

Eq. (28) de�nes an LTI system with input signal v[t]
and response signal �[t]. Let h[t] be the impulse

response of the system. When �2
1 + 4�2 > 0, h[t] is

given by Eq. (19). For �2
1 + 4�2 < 0, h[t] is obtained

according to Eq. (22). Based on Eq. (7), the response
of the system to the input signal v[t] is given by:

�[t] = h[t]�v[t] =
+1X

k=�1
h[k]v[t� k]: (29)

Eq. (29) was provided in Appendix C. Solution of
Eq. (29) is summarized in Table 1.

A numerical example is here provided to assess
the response of the system to the level shift.

4.2. Test evaluation of process parameters
Suppose that the quality characteristic of interest is
normally distributed with in-control mean �0 = 0 and
variance �2

0 = 1. At time t0 = 15, a positive shift of one
standard deviation (
 = 1) occurs, hence �0 +
�0 = 1.
A second-order �lter with two poles x�1

1 = 0:65 and
x�1

2 = �0:15 is considered. In this pattern of poles,
x�1

1 is closer to 1 than x�1
2 to �1. Thus, the system

behaves as a low-pass �lter. Using Eq. (21), values of
�1 and �2 are computed as 0:5 and 0.1, respectively.
This �lter is used to convert Xt into Yt. In this case,
�2

1 + 4�2 = 0:65 > 0. Thus, the response of the �lter
does not oscillate. It is expected that when t ! 1,
�[t] ! �0+
�0

1��1��2
= 2:5. Based on Table 1, �[t] is

determined and shown in Figure 8(a), along with v[t].
From Figure 8(a), it is obvious that before the change

Figure 8. Expected value of Xt and Yt: (a) �1 = 0:5 and �2 = 0:1 and (b) �1 = 0:5 and �2 = �0:4.
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Table 2. Characteristics of the proposed method and Shewhart control chart.

Test statistics Control limits In-control region

Proposed method Yt � �0
1��1��2

�2:9�Y
���Yt � �0

1��1��2

��� < 2:9�Y

Shewhart �Xt � �0 � 3�0p
n

�� �Xt � �0
�� < 3�0p

n

point, E[Xt] and E[Yt] remains at their constant levels.
At change point, E[Xt] and E[Yt] jump to the new
level 1. After change point, E[Xt] remains at 1. While
E[Yt] tends to 2:5. This behavior makes it easy to
detect a level change in E[Xt]. In other words, using
a proper second-order �lter magni�es the level change
and it would be detected sooner.

Now, consider a case in which x�1
1 ; x�1

2 = 0:25 �
0:58j. These values of poles are chosen arbitrarily in
stability region to have an oscillatory impulse response.
Using Eq. (21), �1 = 0:5, �2 = �0:4, and �2

1 + 4�2 =
�1:35 < 0. In case when t!1, �[t]! �0+
�0

1��1��2
= 1:1.

According to Table 1, �[t] is computed and shown in
Figure 8(b) along with v[t].

Figure 8 reveals that use of a proper second-order
�lter magni�es the change in the process level. �
4.3. Proposed control chart
Considering the example presented in Section 3.2, it
is logical to use Yt instead of only �Xt for monitoring
the process mean. Hence, in the proposed method,
a second-order �lter with proper parameters, �1 and
�2, must be de�ned. Then, using this system, �Xt's
are �ltered to obtain test statistics Yt's. The centered
test statistics Yt � �0

1��1��2
are then compared with

control limits �L�Y in which L is the coe�cient of
the proposed control chart and �Y is the in-control
standard deviation of Yt. Note that according to
Eq. (27), the sequence of Yt's generates a stationary
AR(2) process. Therefore, var(Yt) is the variance of an
AR(2) process. According to Box et al. [22], when the
process is in-control, the variance for an AR(2) process
is as follows:

�2
Y =

(1� �2)�2
0

n(1 + �2)(1� �1 � �2)(1� �2 + �1)
: (30)

The value of L in �L�Y is determined so that the in-
control ARL equals a pre-speci�ed value. The approach
to determining L is discussed in the next section. As
an illustration of the proposed method application, the
mentioned example in Section 3.2, Case I, is considered.
The proposed method with �1 = 1:7 and �2 = �0:72 as
well as the Shewhart control chart is used to detect any
change in the process mean. The control limits for the
two monitoring methods are set in a way that the in-
control ARL becomes 370. Note that in the proposed
method, the test statistics are not independent. Thus,

the distribution of the run length is not geometric
and the traditional method of computing ARL does
not work anymore. In Section 4, a Markov chain
approach is applied to compute the in-control ARL. In
Table 2, characteristics of the two monitoring methods
are presented.

For comparing the performance of the two meth-
ods, 50 observations were generated from the following
model:

Xt =

(
"t t < 15
1 + "t t � 15

(31)

where "t's were independent standard normal random
variables. Note that here n = 1, hence �Xt = Xt.
Figure 9 shows the sequence of Xt � �0 along with
the corresponding Shewhart control limits.

As could be seen from Figure 9, the Shewhart
control chart does not issue any out-of-control signal.

Figure 10 shows the sequence of Yt��0=(1��1�
�2) along with the proposed control limits.

Figure 9. Shewhart control chart.

Figure 10. Proposed control chart.
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Figure 10 reveals that the proposed method sig-
nals out of control in the 18th sample. Because of using
a second-order �lter, a level shift is magni�ed and the
chart signals rapidly.

It is useful to compare SNR for two control
schemes in this example. When t ! 1, E[Yt] !
E[Xt]

1��1��2
= 50. According to Eq. (30), variance of Yt

equals 89.8. Thus:

SNRYt =
�
E2[Yt]
var(Yt)

�
= 27:84:

For Shewhart control chart as t ! 1, E[Xt] = 1
according to Eq. (29). It is obvious that variance of
Xt equals 1. Thus:

SNRXt =
�
E2[Xt]
var(Xt)

�
= 1 for t!1:

In other words, before using the proposed �lter, SNR
equals 1, while SNR raised to the value of 27.84 after
using this �lter. By removing noise and smoothing the
input signal, the proposed second-order �lter increases
SNR in comparison to Shewhart control chart. This
property helps detect changes in the process mean more
rapidly.

Using the proposed method for monitoring the
process mean requires determination of the values of
�1 and �2. The precise determination of the values of
�1 and �2 is left as further research. However, some
guidelines are provided in the next subsection.

4.3.1. Determination of �1 and �2
�1 and �2 are two real numbers that characterize the
behavior of the �lter. These two parameters must be
chosen so that the conditions in 15 are satis�ed. These
conditions are stability conditions for a second-order
system or stationary conditions for an AR(2) process.
These conditions could be plotted in �1 and �2 space,
as shown in Figure 11.

If one chooses a point in the non-oscillatory
region, according to Eq. (19), the impulse response
of the system becomes non-oscillatory and decays
exponentially. While if a point in the oscillatory

Figure 11. Stability region of the second-order �lter.

region is chosen, the corresponding impulse response,
provided in Eq. (22), oscillates and damps. According
to Eq. (29), for choosing the values of �1 and �2, the
response of the system to � [t] = �0 + (
�0)u[t � t0]
must be determined. This response could be found
in the time domain using Eq. (29). However, it is
better to study the behavior of the second-order system
in the frequency domain. Without loss of generality,
assuming that �0 = 0, it is convenient to study the
behavior of level shift � [t] in the frequency domain.
The Fourier transformation of �[t] equals to:

V (ejw) = (
�0)
e�jwt0

1� e�jw : (32)

The function shown in Eq. (32) is complex valued. The
magnitude of this function is:��V (ejw)

�� =
j
j�0p

2(1� cos(w))
: (33)

Note that jV (ejw)j is a periodic function of w. One
period of this function is shown in Figure 12 for w 2
[��; �) when j
j�0 = 1.

Figure 12 shows that the low frequencies near
w = 0 make a large contribution in v[t]. Thus,
for magnifying level shift, a low-pass �lter must be
designed. For studying the e�ect of using a second-
order system for magnifying the level shift, it is more
suitable to investigate system in the frequency domain.
Taking Fourier transformation of both sides of Eq. (29)
results in the following:

�(ejw) = H(ejw)V (ejw); (34)

where �(ejw) is the Fourier transformation of �[t] and
H(j!) is the frequency response of the system shown
in Eq. (18). Substituting Eq. (32) into Eq. (34) and
taking an absolute value yields:���(ejw)

��= j
j�0

j1��1e�jw��2e�j2wjp2(1�cos(w))
:
(35)

A low-pass �lter requires large absolute values for

Figure 12. Magnitude of Fourier transformation of level
shift.
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w ' 0 in order to magnify low frequencies. Thus,
according to Eq. (35), for w ' 0, it is appropriate
to minimize j1 � �1 � �2j. This value is minimized
when �1 + �2 = 1. However, according to the stability
conditions for a system, �1 + �2 must be less than 1.
Thus, for determining the values of �1 and �2, it is
better to choose these values in stability region near
the border of �1 + �2 = 1. This choice makes the
system sensitive to level changes. In the next section,
Markov chain approach is used to determine the in-
control ARL of the proposed method. Determination
of the in-control ARL is necessary for specifying the
control limit.

Note that according to Box et al. [22], the main
purpose of process control is to cancel out the entropy
and disorganization of processes. Process control tech-
niques are categorized into two classes. The �rst class is
Statistical Process Control (SPC). The main objective
of SPC is to detect when the process is out of control
by process monitoring and remove assignable causes
of variations. The second class of statistical process
control methods is Automatic Process Control (APC).
In APC, it is attempted to compensate disturbances
by process adjustment. The main goal of process
adjustment is to maintain the output of a process at a
desired level by manipulating a control variable. This
manipulation is usually performed through feedback
and feedforward control loops. Note that the proposed
method, which is a combination of second-order �lters
and control charts, falls into the SPC category. More
formally, the purpose of the proposed method is to
monitor the process rather than to adjust the process
using feedback or feedforward control loops. However,
according to English and Case [23], SPC methods could
be combined with APC tools to control the processes
more e�ectively. For example, the proposed method
may be placed within a feedback control loop to adjust
the process better. The block diagram of this structure
is shown in Figure 13.

In Figure 13, Rt is the desired level of process.
Disturbances are added to the output of process to
make Xt. Using the proposed second-order �lter, Xt is
transformed into Yt. Statistical stability of Yt is then
monitored by means of the proposed control chart. If
the control chart shows that the process is in-control,
the control signal Ct will be Rt. Otherwise, for out-
of-control situations, Ct = Yt. The control error, Et =
Rt�Ct, is then computed. Afterwards, a Proportional-
Integral-Derivative (PID) controller adjusts the process
based on Et value. For more details about PID
controllers and feedback control loops, one may refer
to Smith and Corripio [24]. Thus, it is possible to use
the proposed method within feedback control loops.

5. Markov chain approach to determining the
in-control ARL

In a statistical process, control performances of con-
trol charts are usually evaluated using ARL criterion.
Control charts are designed to have a large in-control
ARL. However, the control charts are desired to have
a small ARL when the process is out of control. In
traditional Shewhart control charts, test statistics used
to monitor the process are independent. Thus, the
distribution of the Run Length (RL) is geometric and
computation of ARL is straightforward. However, in
some cases including EWMA chart, CUSUM chart,
and the proposed control chart in this study, the test
statistics are correlated. Computation of the ARL for
these control charts is somehow complicated. Three
di�erent approaches may be used to compute ARL of a
control chart. These include analytical, simulation, and
Markov chains. The ARLs of di�erent control charts
such as EWMA and CUSUM charts in Chang and
Wu [25], Fu and Spring [26], and Bohm and Hackl [27]
and ARMA chart in Jiang et al. [28] were computed.
In this research, Markov chain approach was employed
to compute the in-control ARL. Suppose that two

Figure 13. Combination of the proposed method with feedback control loop.
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parameters of the second-order system, namely �1, �2,
and the parameter of control limits, L, are determined.
Let zt = (Yt; Yt�1)0 be expressed as follows:

zt =
�
Yt
Yt�1

�
=
�
�1 �2
1 0

��
Yt�1
Yt�2

�
+
�

1
0

�
�Xt

=
�
�1 �2
1 0

�
zt�1 +

�
1
0

�
�Xt: (36)

According to Eq. (36), the conditional distribution of
zt given zt�1 only depends on the distribution of �Xt.
Thus, zt has Markov property and generates a Markov
process with a continuous state space. This Markov
process may be approximated by a Markov chain with
a �nite state space.

For a given L > 0, each side of the control chart
is segmented into m+ 1 states where one state is used
to show the values exceeding the control limits. The
value of m could be determined by an analyst. Note
that at a �xed value of L, the larger the value of m,
the more precise the approximation of ARL. The total
number of states is then equal to 2m+3. For each state
in the control chart, a strip with width � = 2L�Y

2m+1 is
then de�ned. Total number of strips inside the control
chart is then 2m + 1. The reason that the number of
strips is 2 units less than the number of states is that
2 out of 2m+ 3 states are used to show the situations
in which the test statistics exceed the control limits.

The segmentation of the proposed control chart
along with the strips for m = 3 is shown in Figure 14.

One may discretize the value of Yt based on the
segment in which Yt falls. According to the notation
used by Chang and Wu [25], let D0(Yt) be a discretized

Figure 14. Segmentation of the proposed control chart.

value of Yt de�ned as follows:

D0(Yt)=

8>>><>>>:
i (i� 0:5)� � Yt � (i+ 0:5)�

for i = �m;�m+ 1; � � � ;m
m+ 1 Yt > (m+ 0:5)�
�m� 1 Yt < �(m+ 0:5)�

(37)

By discretizing Yt, the vector zt is discretized and
shown by:

D0(zt) = (D0(Yt); D0(Yt�1))0; (38)

where D0(Yt) is de�ned in Eq. (37). Since the zt's
are characterized by the Markov property, the vector
D0(zt) constructs a Markov chain with a �nite state
space. The state space of this Markov chain is as:

S = f(S1; S2)0; �g ; (39)

where S1; S2 2 f�m;�m+ 1; � � � ;mg and � is used to
show the state in which the process is out of control.
This state is an absorbing state which is:

�=
��

m+1
S1

�
;
��m�1

S1

�
;
�
m+1
m+1

�
;
��m�1
�m�1

��
;

S1 2 f�m;�m+ 1; � � � ;mg: (40)

If the zt process moves to each element of set �, it will
remain in this set. Thus, it is an absorbing state.

Let P = [pab] be the transition matrix of D0(zt),
where pab is the probability of D0(zt) moving from
state a to state b. The method of computing pab's
is provided in Appendix D. After constructing P, one
could compute the in-control ARL of the control chart
using the formula provided in Appendix E. For di�erent
values of �1, �2 and the in-control ARL, the values of L
for the proposed control chart are provided in Table 3.
These values are used in the next section to assess the
performance of the proposed control chart.

As stated in Section 3, values of system poles,
x�1

1 and x�1
2 , determine the system to be low-pass,

high-pass, or medium-pass �lter. Thus, depending on
the values of system poles, the proposed second-order
�lter could be low pass, high pass, or medium pass.
The system relation shown in Eq. (36) is valid in all of
these cases. As a result, the conditional distribution of
zt given zt�1 only depends on the distribution of �Xt,
as long as jx1j > 1 and jx2j > 1. Thus, the stochastic
process zt is a Markov process, whether the proposed
second order �lter is low pass, high pass, or medium
pass. So, the hybrid method discussed in this study
could be used even in cases where the proposed �lter is
high pass or medium pass. Note that the main purpose
of this study is to detect shifts in process mean. To
reduce noises, it is recommended that system poles be
selected close to 1 and a low pass �lter be designed.
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Table 3. Values of L for the proposed control chart (m = 10).

ARL
�2

1 + 4�2 > 0 �2
1 + 4�2 < 0

�1 = 0:2 �2 = 0:79 �1 = 1:8 �2 = �0:85

200 1.39 2.63

250 1.50 2.79

300 1.61 2.89

370 1.71 3.05

500 1.88 3.25

ARL �1 = 0:85 �2 = 0:14 �1 = 1:5 �2 = �0:6

200 1.51 2.54

250 1.62 2.63

300 1.73 2.70

370 1.86 2.79

500 2.05 2.92

6. Simulation studies

In this section, the performance of the proposed control
chart to detect level shifts in the process mean is
evaluated by means of simulation in MATLAB R2018b
software. The proposed control chart is compared
with two frequently used control charts, including
Shewhart �X chart and EWMA chart. Shewhart �X and
EWMA control charts were described in Section 1. The
Markov chain approach was used to design the control
charts proposed by Chang and Wu [25] and Bohm and
Hackl [27]. However, these charts are used to monitor
autocorrelated processes. The proposed method was
designed to monitor an independent sequence of obser-
vations. Thus, control charts to monitor autocorrelated
observations were excluded from comparison.

The proposed control chart to be discussed here is
shown by AR(2). Two criteria were used in this section
to compare the control charts. The �rst one is ARL,
and the second criterion is the percentage of times when
a chart signals before change occurs, i.e., Percentage of
False Signals (PFS). The smaller the value of the latter
criterion, the better a control chart. The control limits
of the charts were speci�ed so that the in-control ARL
be equal to 370. In Eq. (2), using the Markov chain
approach, L = 2:085 and � = 0:15 lead to an in-control
ARL as being equal to 370. An EWMA chart with � =
0:15 is a special case of AR(2) model with �1 = 0:85
and �2 = 0. The introduction of the second parameter
�2 to a �rst-order system yields a second-order model,
AR(2). Let �1 = 0:85 and �2 = 0:14 for the simulation
study. For these values of parameters, L = 1:86 was
selected from Table 3. According to Eq. (20), by these
values for �1and �2, x1 = 1:0088 and x2 = �7:08 were
obtained. Thus, poles of the system are equal to x�1

1 =
0:99 and x�1

2 = �0:14. As could be seen, one pole is

very close to 1. Thus, the corresponding system is a
low-pass �lter. In each simulation run, the data were
generated using the following model:

Xt =

(
"t t < t0

 + "t t � t0 (41)

where "t's are independent standard normal random
variables, t0 is the time instance at which level shift
in process mean occurs, and 
 is the value of the level
shift. Note that individual observations in this section
are used to control the process, i.e., n = 1. As stated
in Section 3.1, it is possible to use SNRYt

SNRXt
to study the

e�ect of the proposed �lter on input signal. Note that
E[Xt] = 
, E[Yt] = 


1��1��2
for t � t0. Using Eq. (30),

one may compute var(Yt) for the proposed �lter which
is equal to 27.96. It is possible to compute SNR values
for di�erent values of 
. For example, if 
 = 1, then
SNRXt = 1 and SNRYt = 3:58 for t � t0. Thus, after
the occurrence of shifts, the proposed low-pass �lter
smooths out input signals. This will help the control
scheme detect shifts rapidly.

After generating each observation, test statistics
for each control chart was computed. For each control
chart, generating a new observation continued until
an observation would exceed its control limits and
then, the run length was recorded. For each value
of t0 = 20; 50; 75 and 
 = �2(0:1)2, this procedure
was repeated 10000 times. The mean and standard
deviation of the run lengths for each control chart as
well as the proportion of the false signals were then
computed. Results for ARL criterion are shown in
Figure 15.

In Figure 15, the 95% con�dence intervals of
ARL values are also shown using vertical error bars.
These intervals are de�ned as ARL� 2 SDRLp

10000
in which
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Figure 15. ARL of control charts: (a) t0 = 20, (b) t0 = 50, and (c) t0 = 75.

SDRL is the estimated standard deviation of run
length. Figure 15 shows that the ARL of the three
control charts reduces when j
j increases. However, the
reduction rate of ARL for AR(2) and EWMA charts
is steeper than that for the Shewhart chart. It is
shown that EWMA and AR(2) detect the level change
more rapidly than the Shewhart chart. Comparing
the AR(2) and the EWMA charts, one could �nd that
for small changes, the AR(2) chart on average detects
the level shifts before the EWMA charts. For large
changes, the EWMA chart performs slightly better
than AR(2). AR(2) and EWMA charts outperform
Shewhart chart in terms of ARL. From Figure 15, it is
obvious that as j
j increases, the SDRL decreases for
all control charts. This indicates that as shifts become
larger, the standard deviation of run length decreases
and shifts are detected more precisely. Note that the
con�dence level is the same for estimating ARL of
the three control charts. However, changes in SDRL
values result in changes in width of con�dence intervals.
Note that the performance of the proposed method in
detecting shifts in the process could be enhanced by
assigning proper values to �1 and �2. The proper values
of these parameters may be determined by a number
of optimization methods. By using this approach, the
behavior of the proposed method could be modi�ed
to accommodate larger mean changes. Optimizing the
performance of the proposed method is left as an area
for further research. Results for PFS criterion are
shown in Figure 16.

In Figure 16, the 95% con�dence intervals of PFS
values are also shown. These intervals are de�ned

as PFS � 2 SDPFSp
10000

in which SDPFS is the estimated
standard deviation of PFS. Considering PFS curves
shown in Figure 16 reveals that PFS of the three charts
is relatively constant. However, the probability of false
alarms for AR(2) is much less than that for the other
two charts. Considering the two criteria shows that
the AR(2) chart detects changes more rapidly and
precisely. The AR(2) chart outperforms EWMA in
terms of PFS. In terms of PFS, the proposed AR(2)
chart is much better than the other two charts. In
summary, the results of simulation studies indicate
that the level shifts in process mean are detected more
rapidly and precisely when the proposed AR(2) chart
is used.

7. Case study { Existing data

In this section, the application of the proposed control
scheme to monitor a real process is shown. The
stochastic process which was monitored is Euro ex-
change rate to Iranian Riyal. Time series data
of this stochastic process may be found on the
website of Islamic Republic of Iran Central Bank:
https://cbi.ir/exratesadv/exratesadv en.aspx. Euro
exchange rates, from 01/08/2019 to 30/07/2020, a
total of 365 observations, were used as a process to
be monitored. The main purpose of monitoring this
process was to detect if the mean of Euro exchange
rates shifted. Three control charts including Shewhart,
EWMA, and AR(2) were employed in this section to
monitor the process. Parameters of these charts are
the same as those in Section 6. To construct control
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Figure 16. PFS of control charts: (a) t0 = 20, (b) t0 = 50, and (c) t0 = 75.

Figure 17. Control charts for monitoring exchange rate: (a) Shewhart, (b) EWMA, and (c) AR(2).

charts, it is required to compute in-control process
mean and standard deviation. To remove the e�ects
of outliers, robust estimators of process mean and
standard deviation were applied to estimate the values
of these parameters. Process mean was estimated using
the sample median of 365 observations being equal
to 46525 Riyals. To estimate the process standard
deviation, Median Absolute Deviation (MAD) from
sample median was used. For this data set, MAD =
549:6 Riyals. Using these estimated parameters and
parameters introduced in Section 6, control limits of
each control chart were computed. These charts along
with the corresponding sequences of test statistics are
shown in Figure 17.

Considering Figure 17(a), it is obvious that She-
whart control chart detects changes in the process
mean at point 357. Whereas some abrupt changes are

evident before this point. In fact, the presence of heavy
noise in observations has made Shewhart control chart
insensitive to detecting changes in process mean. In
EWMA control chart, Figure 17(b), 
uctuations were
removed to some extent. In this chart, a few initial ob-
servations fall outside the control limits. While it seems
that the process mean is initially in-control and these
observations fall outside control limits due to noises.

Considering AR(2) control chart, Figure 17(c), it
is evident that noises were removed. In fact, by using
a low pass �lter, input signal was smoothed out. As
a result, changes in process mean were magni�ed and
were detected using proposed AR(2) control chart.

8. Results and discussion

In this study, a uni�ed approach based on signal and
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system theory was proposed to monitor the process
mean. Most of the approaches to monitoring processes
are designed only based on statistical properties of
processes in the time domain. Some important features
of processes may be overlooked if the processes are
only studied in the time domain. Thus, this research
study proposed studying the process in the frequency
domain, as well. In this research, the test statistics for
monitoring the process were considered as an output of
the system. Based on the signal theory, the behavior of
this transforming system was studied in the frequency
domain. In this domain, some features of the process
are unfolded. Thus, one could design the control
scheme more e�ciently.

The problem of monitoring process mean was
addressed in this paper. An attempt was made to
design a control chart that can be sensitive to level
shifts in process mean. The design of such a control
chart is based on the signal and system approach. More
accurately, a uni�ed control scheme based on the LTI
systems was developed. This control scheme is called
a �lter. It was suggested that a second-order system
be used to �lter out the sample means and then, to
control the process via the proposed control chart. This
�lter has two parameters that must be predetermined
in order to detect the level shifts rapidly. To determine
the values of these parameters, the behavior of the
second-order system was investigated in the frequency
domain. It was shown that the level shift only has low
frequency components. Thus, it is required to design
a �lter that magni�es the low frequencies. Based on
this fact, the values of the system parameters are then
chosen. After designing the �lter, control limits of the
proposed control chart must be determined. To adjust
the control limits, it is recommended that the Markov
chain approach be used. The proposed control chart
was compared with EWMA and the Shewhart control
charts through simulation. It must be noted that the
EWMA chart is a special case of the proposed AR(2)
chart with �1 = 1 � � and �2 = 0. The Shewhart
chart could be considered as a special case of AR(2)
chart when �1 = �2 = 0. The simulation results
showed that the proposed control chart detected the
level shifts more rapidly and precisely. In addition
to the second-order �lters, the other �lters may be
used to monitor the process. The proposed method
is able to detect shifts in process mean rapidly with
low frequency components. If out of control conditions
with high frequency components need to be detected,
it is suggested to use other �lters that magnify high
frequencies.

9. Conclusion

In this paper, monitoring process mean was considered.
A second-order low-pass �lter was proposed to remove

noises from sequence of sample means. This �lter is
a Linear Time Invariant (LTI) system that is used
to transform sample mean into a test statistics. It
was shown that by using this �lter, any changes
in process mean were magni�ed, while at the same
time, noises were �ltered out. As a consequence,
the SNR value increased which resulted in detecting
shifts rapidly. By choosing poles of the proposed
system appropriately, low-pass, high-pass, or medium-
pass �lters could be obtained. All of these second-order
�lters could be used to remove nuisance components
of signals. As a result, changes in process could be
detected rapidly. The proposed second-order �lter has
two parameters that must be determined. Performance
of the proposed control chart depends on the values
of these parameters. To identify appropriate values
of these parameters, some optimization methods, such
as gradient based search or metaheuristic algorithms,
should be used. This is an open area that could be
studied to design the proposed control chart better.
The �ltering approach proposed in this research may
be used to control correlated observations. These areas
are left for further research. The proposed monitoring
scheme may be used to monitor various stochastic
processes, including chemical, �nancial, and electrical
processes.
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Nomenclature

�0 In-control process mean
�0 In-control process standard deviation
n Sample size to compute sample mean
Z Set of integer numbers
t 2 Z Time index
�Xt Sample mean at time t
� 2 [0; 1] Parameter of EWMA control chart
L Coe�cient of control chart
j =
p�1 Imaginary unit

x[t] Input signal of LTI system
y[t] Output signal of LTI system
�[t] Unit impulse function
u[t] Unit step function

Z+ � Z Set of positive integer numbers
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Z� � Z Set of negative integer numbers
Yt Proposed test statistic to be monitored
h[t] Impulse response of LTI system
t0; k 2 Z Shifts in time index
w Frequency variable
H(ejw) Fourier transform of h[t]

X(ejw) Fourier transform of x[t]

Y (ejw) Fourier transform of y[t]
�1 Coe�cient of y[t� 1]
�2 Coe�cient of y[t� 2]
t0 Change point in process mean

 Magnitude of shift in process mean
E[:] Expectation operator
x1; x2 Inverse of second order �lter poles
�[t] Expected value of �Xt

pab One step transition probability from
state a to state b

�[t] Expected value of Yt
V (ejw) Fourier transform of �[t]

�(ejw) Fourier transform of �[t]
m Parameter used to determine states of

proposed control chart
� Width of control chart strips
D0(:) Discretizing function
S Markov chain state space
P Transition probability matrix
r Magnitude of x1; x2

� Inverse of r
� = ]x1 Phase of x1

P (:j:) Conditional probability operator
I Identity matrix
� Absorbing state
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Appendix A

Fourier transformation of LTI system response

Substituting Eq. (7) into Eq. (9) yields the following:

Y (ejw) =
+1X
t=�1

+1X
k=�1

h[k]x[t� k]e�jwt: (A.1)

Let t� k = t0 2 Z, thus:

Y (ejw) =
+1X

t0=�1

+1X
k=�1

h[k]x[t0]e�jw(k+t0)

=
+1X

t0=�1
x[t0]e�jwt0

+1X
k=�1

h[k]e�jwk: (A.2)

Using Eqs. (10) and (11), we have:

Y (ejw) = X(ejw)H(ejw): (A.3)

Appendix B

Impulse response of second-order �lter

To obtain the inverse Fourier transformation ofH(ejw),
it is better to �rst factorize H(ejw). Let x = e�jw;

thus, the denominator of H(ejw) becomes D(x) = 1�
�1x � �2x2. Suppose x1 and x2 denote the roots of
D(x). It is easy to verify that these roots are:

x1 =
��1 +

p
�2

1 + 4�2

2�2
;

x2 =
��1 �p�2

1 + 4�2

2�2
: (B.1)

Note that D(x) may be written as follows:

D(x) =1� �1x� �2x2 = ��2

�
x2 +

�1

�2
x� 1

�2

�
=� �2(x� x1)(x� x2)

=� �2x1x2

�
1� x

x1

��
1� x

x2

�
:

(B.2)

According to Eq. (B.1), �2x1x2 = �1; thus, D(x) could
be written as follows:

D(x) =
�

1� x
x1

��
1� x

x2

�
: (B.3)

If �2
1 + 4�2 6= 0, two roots are distinct. For the sake of

simplicity, suppose that this is the case. Now, H(ejw)
could be written as follows:

H(ejw) =
1

(1� x�1
1 e�jw)(1� x�1

2 e�jw)
: (B.4)

Then, H(ejw)can be factorized in the following manner:

H(ejw) =
1

1�x�1
2 x1

1� x�1
1 e�jw +

1
1�x�1

1 x2

1� x�1
2 e�jw : (B.5)

Taking inverse Fourier transformation of both sides of
Eq. (B.5), one may obtain the following:

h[t] =
x2

x2 � x1

�
1
x1

�t
u[t] +

x1

x1 � x2

�
1
x2

�t
u[t];

(B.6)

where u[t] is a unit step function de�ned in Eq. (6).
According to system stability, jx1j > 1 and jx2j > 1.

Based on the sign of �2
1 + 4�2 in Eq. (B.1), two

cases could be considered. If �2
1 + 4�2 > 0, two roots

x1 and x2 are real numbers and h[t] will tend to zero
without oscillation as t ! +1. If �2

1 + 4�2 < 0, the
two roots are complex conjugate numbers. In this case,
x1 and x2 could be written as:

x1 =
��1+j

p��2
1�4�2

2�2
=rej�=r cos �+jr sin �;

x2 =
��1�jp��2

1�4�2

2�2
=re�j�=r cos ��jr sin �;

(B.7)
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where r = jx1j = jx2j and � = ]x1. It could be shown
that:

x1 + x2 = ��1

�2
= 2r cos �; (B.8)

x1 � x2 = j
p��2

1 � 4�2

�2
= 2jr sin �: (B.9)

Let r�1 = �. Solving Eqs. (B.8) and (B.9) for �1 and
�2 results in the following:

�1 = 2� cos �; �2 = ��2: (B.10)

Substituting Eqs. (B.7) and (B.9) in (B.6) results in:

h[t] =
��r1�te�j�(t+1)

2jr sin �
+
r1�tej�(t+1)

2jr sin �

�
u[t]: (B.11)

Note that:

ej�(t+1) � e�j�(t+1) = 2j sin(�(t+ 1)): (B.12)

Substituting (B1.2) in (B.11) results in the following:

h[t] =
sin((t+ 1)�)

sin(�)
�tu[t]: (B.13)

Thus, if �2
1 + 4�2 < 0, the impulse response of the

second-order system oscillates and damps as t! +1.

Appendix C

Response of uni�ed controlling system to level
shift

De�ne A1 and A2 as in the following:

A1 =
x2

x2 � x1
; A2 =

x1

x1 � x2
: (C.1)

Case I: �2
1 +4�2 > 0. Let �2

1 +4�2 > 0. Substituting
Eqs. (19) and (26) in Eq. (29), we have:

�[t] =
+1X
k=0

" 
A1

�
1
x1

�k
+A2

�
1
x2

�k!
(�0 + (
�0)u[t� t0 � k])

#
: (C.2)

For t < t0:

�[t] = �0

+1X
k=0

" 
A1

�
1
x1

�k
+A2

�
1
x2

�k!#
: (C.3)

After some algebraic computation of Eq. (C.3), one
may obtain:

�[t] =
�0

1� �1 � �2
; t < t0: (C.4)

For t � t0, Eq. (C.2) becomes:

�[t]=
t�t0X
k=0

" 
A1

�
1
x1

�k
+A2

�
1
x2

�k!
(�0+
�0)

#
:

(C.5)

Simplifying Eq. (C.5) yields:

�[t] =(�0 + 
�0)

8><>:A1

x1 �
�

1
x1

�t�t0
x1 � 1

+A2

x2 �
�

1
x2

�t�t0
x2 � 1

9>=>; ; t � t0: (C.6)

Note that if t ! +1, the control system reveals
steady state behavior. This behavior is modeled by

lim
t!+1�[t] according to the following:

lim
t!+1�[t] =

�0 + 
�0

1� �1 � �2
: (C.7)

Case II: �2
1 + 4�2 < 0. Now, suppose �2

1 + 4�2 < 0.
Substituting Eqs. (22) and (26) in Eq. (29) results in:

�[t]=
+1X
k=0

sin((k+1)�)
sin(�)

�k(�0+(
�0)u[t�t0�k]):
(C.8)

For t < t0, Eq. (C.8) becomes:

�[t] =
�0

sin(�)

+1X
k=0

sin((k + 1)�)�k; t < t0: (C.9)

Using Euler formula, Eq. (C.9) is simpli�ed into the
following:

�[t]=
�0

1�2� cos �+�2 =
�0

1��1��2
; t < t0:

(C.10)

For t � t0, Eq. (C.8) becomes:

� [t] =
�0 + 
�0

sin(�)

t�t0X
k=0

sin((k + 1)�)�k: t � t0:
(C.11)

Appendix D

Computing in control pab

For computing pab, let a = (S1a; S2a)0 and b =
(S1b; S2b)0 be two states in the state space. Thus, pab
is equal to:

pab = Pr (D0(zt) = bjD0(zt�1) = a)

= Pr (D0(Yt) = S1b; D0(Yt�1)

=S2bjD0(Yt�1) = S1a; D0(Yt�2) = S2a): (D.1)
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If S1a 6= S2b, then pab = 0. Due to this fact, only some
transitions are possible in the intended Markov chain.
These transitions are shown below:

a =
�
S1a
S2a

�
! b =

�
S1b
S1a

�
;

S1a; S2a; S1b 2 f�m;�m+ 1; � � � ;mg; (D.2)

a =
�
S1a
S2a

�
! b

2
��

m+1
S1a

�
;
��m�1

S1a

�
;
�
m+1
m+1

�
;
��m�1
�m�1

��
;

S1a; S2a 2 f�m;�m+ 1; � � � ;mg; (D.3)

a = �! b = �: (D.4)

Probability of transition shown in Eq. (D.2) is equal
to:

Pr (D0(Yt) =S1b; D0(Yt�1) = S1ajD0(Yt�1)

=S1a; D0(Yt�2) = S2a): (D.5)

For small values of �, Eq. (D.5) becomes:

pab = Pr ((S1b � 0:5)� � Yt � (S1b + 0:5)�jYt�1

=S1a�; Yt�2 = S2a�) = Pr
�
(S1b � 0:5)�

��1Yt�1+�2Yt�2+ �Xt � (S1b+0:5)�jYt�1

=S1a�; Yt�2 = S2a�
�

= Pr
�
(S1b � 0:5)�

� �1S1a� + �2S2a� + �Xt � (S1b + 0:5)�
�

= Pr
�

(S1b � 0:5� �1S1a � �2S2a)�
p
n

�0
� Z

� (S1b + 0:5� �1S1a � �2S2a)�
p
n

�0

�
; (D.6)

where Z is standard normally distributed.
To compute the probability of transitions shown

in Eq. (D.3), note that:

Pr
�
a =

�
S1a
S2a

�
!
�
m+ 1
m+ 1

��
= Pr

�
a =

�
S1a
S2a

�
!
��m� 1
�m� 1

��
= 0: (D.7)

for S1a; S2a 2 f�m;�m+ 1; � � � ;mg.

Other transition probabilities of Eq. (D.3) for
small � are computed as follows:

Pr
�
a =

�
S1a
S2a

�
!
�
m+ 1
S1a

��
= Pr fD0(Yt) = m+ 1; D0(Yt�1) = S1ajYt�1

=S1a�; Yt�2 =S2a�g=Pr fYt>(m+0:5)�jYt�1

= S1a�; Yt�2 = S2a�g = Pr f�1Yt�1 + �2Yt�2

+ �Xt > (m+ 0:5)�jYt�1 = S1a�; Yt�2 = S2a�g
= Pr f�1S1a� + �2S2a� + �Xt > (m+ 0:5)�g

= Pr
�
Z >

(m+ 0:5� �1S1a � �2S2a)�
p
n

�0

�
;
(D.8)

and:

Pr
�
a =

�
S1a
S2a

�
!
��m� 1

S1a

��
= Pr fD0(Yt) = �m� 1; D0(Yt�1) = S1ajYt�1

= S1a�; Yt�2 =S2a�g=Pr fYt<(�m�0:5)�jYt�1

= S1a�; Yt�2 =S2a�g=Pr f�1Yt�1+�2Yt�2+ �Xt

< (�m� 0:5)�jYt�1 = S1a�; Yt�2 = S2a�g
= Pr f�1S1a� + �2S2a� + �Xt < (�m� 0:5)�g

=Pr
�
Z <

(�m�0:5��1S1a��2S2a)�
p
n

�0

�
:
(D.9)

The probability of transition of Eq. (D.4) is equal to 1.
Other transition probabilities except those shown

in Eqs. (D.2) to (D.5) are equal to zero.

Appendix E

Computing in control ARL

Let P be the transition matrix whose computation
procedure was explained in Appendix D. According to
Chang and Wu [25], P could be written as:

P(2m+2)(2m+2) =
�
A(2m+1)�(2m+1) B(2m+1)�1

00(2m+1)�1 1

�
;

(E.1)

where A(2m+1)(2m+1) is the transition matrix of tran-
sient states, B(2m+1)�1 is a vector whose entries are
the probability of process moving to absorbing state,
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�. Let RL be the in-control run length of the proposed
chart de�ned as follows:

RL = inf ft : D0(zt) = �g : (E.2)

Thus, the in-control ARL of the model can be de�ned
as follows:

ARL = E[RL] =
+1X
t=0

Pr (RL > t): (E.3)

According to Fu and Spring [26], Eq. (E.3) could be
written as follows:

ARL = �00(I�A)�11; (E.4)

where �0 is a vector whose elements are the probability
of z0 being in each state, I is the identity matrix,
and 1 is the vector whose elements are all equal to
one.
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