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Abstract. Researchers have recently devoted much attention to the development of
control charts for monitoring healthcare systems. Accordingly, the purpose of this paper is
to design a risk-adjusted cumulative sum (CUSUM) control chart to detect decreasing shifts.
The proposed chart is used to monitor the survival times of patients who may be subject to
an assignable cause such as human error during a surgery. To this end, risk adjustment is
performed to consider the impact of each patient's preoperative risks on survival times using
survival analysis regression models. However, using the risk-adjusted CUSUM requires that
the chart parameters be determined. Hence, a multi-objective economic-statistical model
is proposed and a two-stage solution method composed of Non-dominated Sorting Genetic
Algorithm (NSGA-II) and Data Envelopment Analysis (DEA) is implemented to solve
the model and obtain the optimal design parameters. The performance of the proposed
approach is also studied in a real cardiac surgery center. Finally, to con�rm the e�ectiveness
of the proposed multi-objective design, two comparisons with the bi-objective and pure
economic designs are made. The results show that the performance of the risk-adjusted
CUSUM obtained from the proposed model is better than the two other designs in terms
of statistical and economic properties.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Monitoring of hospital and clinical processes has be-
come an important part of modern healthcare systems
that enhances the quality of surgical and other treat-
ment services. The most important tools to monitor
the e�ectiveness in the �eld of healthcare are control
charts, which are commonly used to detect shifts in
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process parameters [1]. Among them, cumulative
sum (CUSUM) control charts are widely applied to
statistical monitoring and detecting small shifts in
healthcare systems [2]. To this end, four parameters
should be determined while making the use of this chart
to e�ectively monitor processes. This includes the
sample size, sampling interval, control limits, and the
parameter designed for optimal detection of a speci�c
shift. Thus, designing a control chart is de�ned as the
selection of these parameters.

There are several economic and statistical aspects
to consider in designing a control chart. The �rst
economic design model was suggested by Duncan [3]
to determine the control chart parameters in the pres-
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ence of an assignable cause with a minimum average
cost. Duncan's cost model includes the expenses for
sampling, out-of-control alarms, detection and repair
of assignable causes, and receiving defective products.
Another popular model was developed by Lorenzen and
Vance [4] which enjoys greater 
exibility than Duncan's
model. It allows the process to pause or continue
throughout the search for detecting and eliminating
assignable causes. Since then, a great deal of research
was directed at the economic design of control charts.
Jiao and Helo [5] suggested an economic design for
CUSUM chart based on Taguchi's loss function. Lee
[6] studied the design of CUSUM chart for process
monitoring with correlated samples. Celano et al. [7]
conducted the economic design of CUSUM t chart
to monitor short production runs. Fallahnezhad and
Golba�an [8] introduced a mathematical model based
on the average number of inspected items to form an
economic design of the cumulative count of confronting
control charts.

However, the economic design of control charts
may result in weak statistical features, which makes
managers hesitant and dubious about using these
charts. Statistical properties include the probabil-
ity of type-I and type-II errors or the in-control or
out-of-control Average Run Length (ARL). To im-
prove the statistical characteristics, Saniga [9] added
the probability of type-I and type-II errors as con-
straints to Duncan's economic model [3] and presented
an economic-statistical design. Thus, an economic-
statistical design helps gain statistical and economic
features simultaneously. Asadzadeh and Khoshalhan
[10] proposed a multi-objective model for an economic-
statistical design of ~x control charts which, in addition
to minimizing an objective function of average expected
costs, seeks to maximize the objective functions of
test power and in-control Average Run Length (ARL).
Niaki et al. [11] compared the economic and economic-
statistical designs of MEWMA control chart and sug-
gested a particle swarm optimization method to solve
it. Ketabi and Moghadam [12] used a fully adaptive
method for model economic and economic-statistical
designs of np control charts in which the cost was
developed by Markov Chain approach.

As mentioned earlier, monitoring hospital outputs
and clinical processes is considered an essential part
of healthcare systems. Patients who are treated in
these systems create a heterogeneous population due
to their di�erent preoperative features such as age,
gender, diabetes, blood pressure, etc. As a result,
each patient's mortality after surgery depends on not
only surgeon's skills but also unique risk factors before
the surgery. Therefore, monitoring and evaluating
surgery performance should be adjusted for the e�ect
of patients' risk factors. It should be noted that it
is quite impossible to assess the quality of surgery

properly without performing the risk-adjustment pro-
cedure [2]. Axelrod et al. [13] evaluated the liver
and kidney transplantation performance using Risk-
Adjusted CUSUM (RACUSUM), which detects clini-
cally signi�cant changes in center performance more
rapidly. Keefe et al. [14] used a new Bernoulli
RACUSUM chart to monitor outputs from cardiac
surgery that incorporated outcome information as soon
as it would be available. Begun et al. [15] developed
a monitoring method based on the RACUSUM chart
for early detection of changes in the revision rates after
hip replacement. Kim et al. [16] utilized an RACUSUM
chart, which monitors the surgical failure, to evaluate
the learning curve and establish an appropriate training
program for laparoscopic pancreaticoduodenectomy.

Careful investigation of literature reveals that
the economic-statistical design of risk-adjusted control
charts in healthcare systems has never been addressed.
Hence, the present study intends to develop a multi-
objective design model for the RACUSUM control
chart with economic and statistical considerations. In
the proposed model, the design parameters of the
RACUSUM chart are determined to minimize the
average expected cost as well as the out-of-control
average run length (ARL1), while the in-control av-
erage run length (ARL0) is maximized. There are
several methods to solve the suggested model from
which Non-dominated Sorting Genetic Algorithm II
(NSGA-II) and Data Envelopment Analysis (DEA) are
two powerful methods for optimization. NSGA-II is
one of the most popular multi-objective evolutionary
algorithms due to its capacity to improve the quality
of solutions [17]. Therefore, this algorithm is used to
determine non-dominated solutions for the suggested
model. Then, DEA is applied to �nd the most e�cient
solutions. DEA is used to compare and evaluate the
relative e�ciency of similar units with the same respon-
sibilities [18]. It is widely used to solve multi-criteria
problems in economic and management, including the
evaluation of hospital services performance and supply
chain of a shipping company [19,20].

The rest of the paper is as follows. Section 2
mainly discusses the construction and development of
the RACUSUM control chart. Section 3 describes the
cost function used in the economic design. More-
over, the multi-objective model for the economic-
statistical design of the RACUSUM control chart is
developed. Section 4 studies NSGA-II and DEA as
solving methods to optimize the model. Section 5
provides a real case study at a cardiac surgery center in
Iran to demonstrate the applicability of the proposed
procedure in healthcare systems. Section 6 makes two
performance comparisons to validate the e�ectiveness
of the proposed multi-objective economic-statistical
design. Finally, concluding remarks are given in the
last section.
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2. Monitoring procedure based on
risk-adjusted CUSUM control chart

The challenge of community heterogeneity is apparent
in the monitoring of healthcare systems due to the
unique preoperative features of patients entering the
surgical process. Preoperative features of patients,
known as risk factors, include age, gender, diabetes,
blood pressure, etc. which a�ect the monitoring of
surgery performance [21]. For instance, patients with
more severe risks may experience worse outputs even if
they receive the best care. As a result, a patient facing
a low surgical risk is much more likely to survive than
the one with a high surgical risk. Therefore, surgery
performance for each patient depends on not only the
surgery quality, but also the unique health record of the
patient prior to the operation. Consequently, in order
to have an e�ective monitoring plan, it is necessary
to identify the relationship between the mortality rate
of a particular disease and its risk factors or to have
the monitoring procedure risk-adjusted. Thus, the
purpose of the risk-adjusted monitoring scheme is to
rapidly detect shifts in patient mortality rates taking
into account their risk factors. Given the discrete
and continuous outputs, various studies were devoted
to developing risk-adjusted control charts. Among
the existing methods, a monitoring scheme that is
based on patients' survival times is more sensitive to
the detection of shifts and changes in the mortality
rate than other procedures. It should be noted that
the survival time is a variable of reliable nature with
some speci�c features, e.g., being censorable. The
censoring mechanism is used to reduce time and cost in
surgical processes, which sometimes causes inaccurate
recording of survival times. Thus, the reliability of
survival times in line with the heterogeneities among
patients justi�es the use of survival analysis regres-
sion models. Accelerated Failure Time (AFT) and
Proportional Hazards (PH) are two major regression
models in survival analysis which are widely employed
to justify heterogeneity in the patients' population and
to establish the relationship between survival times
and in
uential covariates (risk factors). The AFT
model presents one or more parameters as a function
of covariates [22]. The present study makes use of the
AFT model for model building and risk adjustment.
Accordingly, the parameters of the baseline distribu-
tion could be expressed as  i = g(�;Xi), where  i
is a vector of distribution parameters and � and Xi
are vectors of regression parameters and covariates,
respectively, which re
ect the risk factors for the ith
patient. Moreover, survival data are often modeled
using a member of location-scale and log-location-scale
distributions. Weibull is one of the most practical
distributions that is known to be helpful in various
conditions [23]. As a result, based on the analysis

obtained from the real case study, it is assumed that
the output variable (survival times) follows Weibull
distribution. The probability density and the survival
functions of this distribution, denoted by f and s,
respectively, are as follows:

f(t) =
�
�

(
t
�

)��1 exp(�(
t
�

)�);

s(t) = exp(�(
t
�

)�); (1)

where t is the recorded value for patients' survival
time. Also, � > 0 and � > 0 are the shape and scale
parameters, respectively. Based on the AFT model, if
one relates the scale parameter to the unique covariate
in the real case study, the probability density and
survival functions are restated as:

f(tjx)=� exp(�(�0+�1xi))(t exp(�(�0 + �1xi)))��1

exp(�(t exp(�(�0 + �1xi)))�);

s(tjx) = exp(�(t exp(�(�0 + �1xi)))�); (2)

where �0 and �1 are the regression model parameters.
It should be noted that in the previous equation, the
�xed part exp(�0) has a similar interpretation as �.
As a result, the Weibull distribution has the shape
parameter � and the scale parameter � exp(�1xi).
Hence, the vector of in-control parameters is de�ned
as  i0 = (�; � exp(�1xi)). It is assumed that  i1 =
(�; �� exp(�1xi)) represents the out-of-control condi-
tion where � is a predetermined shift such that the
CUSUM chart is designed for its optimal detection.

Having de�ned the relationship between the sur-
vival time and preoperative risk factor using the AFT
model, it seems essential to design and develop the
RACUSUM control chart to monitor survival times.
Given the sensitive nature of the healthcare systems
with high and irretrievable cost of mistakes with regard
to patients' life, there is an attempt to detect decreas-
ing shifts in the mean survival times [24]. As a result,
a one-way control chart is suggested and employed
for this purpose. The statistic for the risk-adjusted
CUSUM chart is calculated as follows:

Qi = min(0; Qi�1 � wi); i = 1; 2; :::;

Q0 = 0; (3)

where wi is the CUSUM score and is computed as
follows:

wi = log
�
L(tij i1)
L(tij i0)

�
; (4)

where L represents the likelihood function. As men-
tioned earlier,  i0 and  1i are the in-control and out-
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of-control nominal values for parameters related to the
output variable or survival times.

Thus, it is apparent that the proposed CUSUM
chart is designed for rapid detection of shift from  i0
to  i1. Since a one-way CUSUM chart is used in the
present study to detect decreasing shifts in the survival
time mean, a lower control limit should be set. In this
regard, LCL is the Lower Control Limit and is selected
in a way that a desirable in-control ARL is reached.
However, to develop the RACUSUM chart, a similar
procedure discussed in Sego et al. [21] is implemented
to construct the likelihood function in the chart scores.
This procedure considers the right-censored mechanism
and the patients' survival time is only observed until a
pre-determined time or a �xed censored time denoted
by c. In doing so, the likelihood function is obtained
as follows:
L(zij i; �i) = [f(zi;  i)]�i [s(zi;  i)]1��i ; (5)

where:
zi = min(ti; c);

�i =

(
1 if ti � c
0 if ti > c

(6)

Substituting the AFT-based probability density and
survival functions in Eq. (5), the likelihood function
for the RACUSUM chart is obtained. Subsequently,
to optimally detect a shift of size � in the survival
time mean, the log-likelihood score of the Weibull
RACUSUM control chart is given by Eq. (7) shown
in Box I. Having obtained the RACUSUM scores,
calculation of the control chart statistics is straight-
forward using Eq. (3). As soon as the updated statistic
is less than LCL, the RACUSUM control charts trigger
a signal.

3. Economic and economic-statistical designs
of the risk-adjusted CUSUM control chart

The economic design is de�ned as determining the
parameters of an RACUSUM control chart by min-
imizing a proper cost function. These parameters

include n (sample size), h (sampling interval), LCL
(lower control limit), and � (coe�cient used in the
CUSUM for optimal detection of a shift), as discussed
earlier. In the present study, the cost function set
by Lorenzen and Vance [4] is employed to determine
the optimal values of RACUSUM chart parameters.
The cost function could be divided into three major
parts. The �rst part includes sampling costs. The
second part shows the costs imposed on hospitals
(healthcare systems) during the out-of-control surgery
conditions. Finally, the last part introduces the cost
of detecting and implementing corrective actions for
an assignable cause. Moreover, it is assumed that the
process begins with an in-control condition and ends
when an assignable cause occurs. As the assignable
cause happens, the process changes to an out-of-control
condition and remains in that situation until it is found
and repaired. Then, a new cycle begins. The expected
cost in unit time is calculated by dividing the total
expected cost during a cycle by the expected length of
a cycle. Also, the expected length of a cycle includes
four parts: (1) The time that the process remains in
control. It is usually assumed that this time is an
exponential random variable with mean 1

� ; (2) The
time when the process is out of control; (3) The time
to detect and identify the assignable cause; and (4)
The time for implementing corrective actions to repair
the assignable cause. Therefore, by taking all the four
parts into account, the expected cycle length equals:

ET =
1
�

+ [(h:ARL1)� � ] + TF + TD: (8)

Subsequently, the total expected cost of a cycle equals:

EC = A:
1
� + [(h:ARL1)� � ] + 
1:TF + 
2:TD

h

+CO:ARL1 + (CF + CD); (9)

where the parameters of the above equations are
summarized as follows:

� ARL0: In-control average run length;

wi = log

"
� exp(��1xi)

��

�
zi exp(��1xi)

��

�k�1
exp

��� zi exp(��1xi)
��

���#�i"
exp

��� zi exp(��1xi)
��

���#1��i

"
� exp(��1xi)

�

�
zi exp(��1xi)

�

�k�1
exp

��� zi exp(��1xi)
�

���#�i"
exp

��� zi exp(��1xi)
�

���#1��i

=
��

1� �����zi exp(��1xi)
�

���
� �i� log �: (7)

Box I
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� ARL1: Out-of-control average run length;
� � : Expected time of occurrence of the assignable

cause between the jth and j+1st samples calculated
by the following equation:

1� (1 + �:h):e��:h
�:(1� e��:h)

; (10)

� TF : The average time required to search for and
identify the assignable cause;

� TD: The average time to perform corrective actions;
� A: Sampling costs for each patient;
� CO: Cost imposed on hospital due to out-of-control

surgery for each patient because of the occurrence
of the assignable cause;

� CF : Cost of searching for and identifying the
assignable cause;

� CD: Cost of corrective actions to repair the
assignable cause;

� 
1: 1 if the process does not stop during the search
for and investigation into the assignable cause and
0 otherwise;

� 
2: 1 if the process does not stop during the
repair and elimination of the assignable cause and 0
otherwise.

Finally, the expected cost in unit time imposed
on the process is as follows:

EA =
EC
ET

: (11)

Therefore, the economic design of the RACUSUM
chart includes determining the optimal parameters that
minimize EA. Following Lorenzen and Vance [4], it is
practical and helpful to model the costs of designing
control charts in accordance with Average Run Length
(ARL). It is noteworthy that the present study makes
use of simulation method to calculate the values of
ARLs.

Next, the main concentration is given to the
multi-objective design of the RACUSUM control chart,
which is believed to be more bene�cial in real practice.
The major disadvantage of designing a control chart
from the economic point of view is the lack of statistical
properties, called the probability of type-I and type-II
errors. Therefore, to overcome the statistical weakness
of the pure economic design of the RACUSUM control
chart, a Multi-Objective Decision Model (MODM) is
proposed to consider both the statistical and economic
criteria simultaneously. In general, MODM makes use
of mathematical programming methods to solve opti-
mization problems with the aim of satisfying several
con
icting objective functions at the same time [25].
The multi-objective model of the RACUSUM control

chart consists of one economic and two statistical
objectives followed by a set of constraints given below:

Min EA(D);

Max ARL0(D);

Max 1=ARL1(D);

s.t.

EA � EUA ;
ARL0 � ARLL0 ;
ARL1 � ARLU1 ; (12)

where EUA is the desired upper bound on the expected
cost. ARLL0 and ARLU1 are also the pre-determined
values showing the lower and upper bounds for ARL0
and ARL1, respectively. It is remarkable that the
MODM model intends to minimize the expected cost
for each time unit (EA), maximize the in-control
ARL (ARL0) to decrease the false alarm rate, and
maximize the inverse of out-of-control ARL (1=ARL1)
to detect out-of-control conditions in a timely manner.
Furthermore, D = (n; h; LCL; �) is a possible combi-
nation of design parameters that needs to be optimally
determined. Therefore, selecting a combination of
design parameters for the RACUSUM control chart
with optimal objective values is the main goal of the
proposed MODM model. The next section elaborates
on the solution algorithm based on the integration of
Non-dominated Sorting Genetic Algorithm (NSGA-II)
and Data Envelopment Analysis (DEA) for optimizing
the multi-objective model introduced in Eq. (12).

4. Solution approach

To solve the proposed multi-objective economic-
statistical model, several algorithms can be proposed.
However, simultaneous optimization of multiple objec-
tives creates Pareto solutions. NSGA-II, introduced
by Deb et al. [26], is one of the most popular multi-
objective evolutionary algorithms for solving a variety
of problems which can be used as an e�cient method to
identify the optimal Pareto set. Several studies dealing
with the control chart design, such as the one described
in Safaei et al. [17], have implemented NSGA-II to
create the optimal Pareto set. Similarly, in this article,
NSGA-II is employed to optimally solve the model
introduced in Eq. (12). However, there is a challenge
while using this algorithm because it often provides
many solutions and it is quite di�cult to choose the
most e�cient solution from the optimal Pareto set.
To overcome this problem, data envelopment analysis
is introduced to rank Pareto solutions and select the
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most e�cient ones. Therefore, this study devises a two-
step solution method based on NSGA-II and DEA to
determine the optimal solutions of the multi-objective
economic-statistical model of the RACUSUM control
chart. To this end, NSGA-II is shortly summarized
and then, the DEA method is introduced.

4.1. Non-dominated sorting genetic algorithm
(NSGA-II)

NSGA-II makes use of an explicit diversity-preserving
mechanism to �nd Pareto solutions to multi-objective
programming problems. In this algorithm, instead of
using the o�spring populations solely, o�spring and
parent populations are combined to sort a set of non-
dominant items. The o�spring population is then
created out of parent population applying tournament
selection, crossover, and mutation operators. The
tournament selection operator assumes that each so-
lution i has two attributes in the population, namely
a non-dominant rank (ri) and crowding distance (di).
Thus, it can be mentioned that solution i wins the
competition against solution j if ri < rj or ri = rj ,
and di > dj . This approach ensures better selection
from a set of non-dominated solutions [25]. The
goal of crossover operator is to exchange information
between two parent chromosomes to produce two new
o�spring for the next population. According to the
literature, there are various types of crossover such
as one-point, two-point, uniform, and round. In this
study, a round crossover operator is applied to produce
new chromosomes [27]. This operator is expressed by:

Ch1 = round(Par1 �Alpha+ Par2 � (1�Alpha));

Ch2 =round(Par2�Alpha+Par1�(1�Alpha)); (13)

where Par1 and Par2 are the selected parents, respec-
tively. Alpha varies between 0 and 1, and it has the
same dimension as the chromosome matrix. Besides,
Ch1 and Ch2 are the resulting children. The mutation
operator is applied soon after the crossover operator.
This operator generates o�spring by randomly chang-
ing one or several genes in a chromosome. O�spring
may thus inherit di�erent characteristics from their
parents. Mutation prevents local searching through the
search space and increases the probability of �nding a
global optimum [25].

To �nd the Pareto optimal set of a multi-objective
economic-statistical design model, NSGA-II is de�ned
as follows:

1. Randomly, generate an initial population of size n-
pop (the number of chromosomes);

2. Compute ARL0, 1=ARL1, and EA for each chro-
mosome;

3. Rank the initial population based on non-
dominated criteria;

Figure 1. A sample chromosome.

4. Compute crowding distance for the initial popula-
tion;

5. Employ the crossover and mutation operators to
generate o�spring population of size n-pop;

6. Evaluate objectives and constraints for the men-
tioned o�spring population;

7. Combine the two (parent and o�spring) popula-
tions, rank them, and compute crowding distance;

8. Select a new population of size n-pop from the
best individuals based on the computed rank and
crowding distance;

9. Go to Step 3 and repeat until the termination
criterion (number of generations) has been reached.

In this study, (n; h; LCL; �) are the parameters
of the RACUSUM control chart which are actually the
decision variables of Model (12). Figure 1 shows an
example of a chromosome consisting of four genes as
design parameters.

It should be noted that the design parameters
(decision variables) will be reduced to (LCL; �) due
to the described situation in the real case study.

4.2. Data Envelopment Analysis (DEA)
DEA is a mathematical programming-based approach
which measures the relative e�ciency of Decision-
Making Units (DMUs) with multiple inputs and out-
puts. In this study, to rank the Pareto solutions
obtained from NSGA-II, DEA methods are used. For
this purpose, non-dominated solutions or design pa-
rameters of RACUSUM control chart are considered
as DMUs. Also, the two statistical objectives, namely
ARL0 and 1=ARL1, are determined as outputs, and
the cost objective (EA) is the only input of the model.
Then, the e�ciency of each DMU is calculated using
the additive model. Finally, the most e�cient DMU is
detected through cross-e�ciency evaluation technique.
These methods are de�ned brie
y in the following
subsections.

4.2.1. Additive model
The additive model is one of the most important
models to determine the e�ciency in DEA which is
the basis of de�nition for many other models [25].
One of the main reasons for the importance of this
model is that it computes the e�ciency completely
since it directly attempts to minimize slack variables.
However, in other models, such as the CCR and BCC,
the detection of slack variables in e�ciency is generally
performed using another model similar to the additive
model at the second stage of e�ciency measurement.
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Therefore, one of the advantages of the additive model
is that it does not require a two-step approach and the
e�ciency evaluation of a unit is done by solving a single
model. Suppose that there are m DMUs, each with a
inputs and b outputs. The values of inputs and outputs
for DMUi (i = 1; 2; :::;m) are denoted by pji (j =
1; 2; :::; a) and qri (r = 1; 2; :::; b), respectively. The
e�ciency of a DMU is speci�ed by the additive model
expressed as a mathematical programming (Eq. (14)).
The mathematical formula for DMUi is given below:

Max Ei(D)=
Xb

r=1
urqri(D)�Xa

j=1
ejpji(D)�T

s.t.Xb

r=1
urqri(D)�Xa

j=1
ejpji(D)� T � 0;

for other design D

ur; ej � 1;

T is free; (14)

where ej and ur are the input and output weights,
respectively, and T represents the return to scale.
Model (14) should be formulated for each DMU or a
combination of design parameters in order to reach a
set of weights for maximizing the e�ciency of a given
DMU. If E�i = 1, DMUi is called e�cient, while for
the case of E�i < 1, DMUi is not e�cient.

4.2.2. Cross-e�ciency evaluation
Cross-e�ciency evaluation was developed as an exten-
sion of DEA to rank e�cient DMUs and determine
the most e�cient one. In a cross-e�ciency evaluation,
the performance of each e�cient DMU is measured
according to its optimal weights and the optimal
weights of other e�cient DMUs [18]. Assuming that
the optimal weights of Model (14) for DMUd include
(e�jd; u�rd; T �d ), the e�ciency of DMUi (i = 1; 2; :::;m)
considering the DMUd weights in a peer-evaluated
process is calculated as follows:

Edi =
Pb
r=1 u

�
rdqriPa

j=1 e�jdpji � T �d : (15)

The mean of all Edi's is called cross-e�ciency and
the DMU with the highest cross-e�ciency has the
best rank. The calculation of the mean is quite
straightforward as follows:

�Ei =
Pm
d=1Edi
m

; i =; 1; 2; :::;m: (16)

Finally, to clarify the application of the
RACUSUM control chart in a surgical center using the
proposed multi-objective design, Figure 2 is provided
to illustrate the summarized steps of the approach.

5. The case study in the cardiac surgery center

Cardiovascular disease is a major cause of death around
the world and many people die every year because
of cardiac diseases. Cardiac surgery is one of the
most common surgeries among adults, and given that
a person's life depends mainly on his/her heart per-
formance, the sensitivity of this surgery is quite high
so that monitoring the patient's survival time after
the surgery seems essential. Therefore, the application
of the proposed approach is investigated at Imam Ali
Cardiac Surgery Center, located in the west of Iran.

For this purpose, a special type of operation called
Coronary Artery Bypass Grafting (CABG) surgery was
selected, and data on 100 patients including surgery
date, surgeon's name, surgery procedure, and survival
time were collected. Note that the Parsonnet score
is used to determine the preoperative risks for each
patient as the only covariate a�ecting the survival time
in the cardiac surgery process [28]. The Parsonnet
score is computed based on the sum of various scores
given in Table 1.

Once the Parsonnet scores are calculated for each
patient, the impact on the survival time should be
moderated by the AFT model. Due to the hospi-
tal regulations, the survival times of patients who
survived during the study were censored on Day 21.
To begin with, the data collected from 100 patients
were employed to �nd an appropriate distribution and
estimate the values of in-control parameters. The
results revealed that the Parsonnet score data followed
gamma distribution with a scale parameter of 5.117
and a shape parameter of approximately 4.208. Then,
the Maximum Likelihood Estimation (MLE) was em-
ployed to estimate the values of in-control parameters
associated with the AFT Weibull model. In doing so,
these values were estimated to be � = 183744:22, � =
1:2066, and �1 = �0:2144, respectively. Consequently,
using Eqs. (2) and (7), the probability density and
survival functions of AFT Weibull model in line with
the RACUSUM scores can be calculated.

However, the most important part is the deploy-
ment of the RACUSUM control chart in the CABG
process; thus, it is necessary to determine the four
design parameters of the proposed chart. As noted
earlier in this study, all patients are monitored individ-
ually and sequentially because of the high sensitivity of
healthcare systems. Hence, the value of n is constant
and is equal to 1. Furthermore, since patients undergo
surgery every four hours at Imam Ali Hospital, the h
value is also constant which is equal to 4. On the other
hand, the two other parameters of the RACUSUM
chart, namely the coe�cient for optimal detection (�)
and the lower bound of the control chart (LCL), need
to be determined in the process of cardiac surgery so
that both statistical and economic properties can be
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Figure 2. Flowchart of the multi-objective design of RACUSUM control chart at a surgery center.

satis�ed. As a result, our proposed MODM model is
used to select a combination of (LCL; �) parameters
to achieve the desired objectives of minimum expected
cost and maximum statistical properties.

In the CABG process, an assignable cause due to
the human-resource mistake occurs at � = 001875 h
rate, thus reducing the patient's survival time by 95%.
The sampling cost is 840000 Rials (Iran currency)
for each patient because of �lling out the Parsonnet
questionnaire, carrying out check-ups, and taking ac-
tions to obtain Parsonnet score records. In addition,
when an assignable cause occurs, the CABG procedure
goes to the out-of-control condition. In this case,
the cost of check-ups, echocardiography, angiography,

surgery, consultant, operation room, consumable prod-
ucts, anesthesia, consumable drugs, ICU beds, nursing
services, and public beds is approximately 21623500
Rials, which is imposed on the hospital. The details of
the costs imposed on the hospital in the out-of-control
condition are reported in Table 2.

In addition, when the CABG process is out-
of-control, a specialized committee called morbidity
or mortality is formed to investigate the root cause
of the problem. On average, 4 hours are spent on
these actions, and after identifying the root cause
of the assignable cause, it takes 2 hours on average
to implement corrective actions. An average cost of
16000000 Rials is estimated to �nd the human-oriented
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Table 1. The preoperative risks for patients used in the calculation of Parsonnet scores.

Preoperative risk
Risk factor Score Risk factor Score
Female gender 6 Left-main disease 2.5

Age
70-75
76-79
80+

2.5
7
11

Morbid obesity 1

Congestive failure 2.5 preoperative IABP 4

COPD, severe 6 Reoperation 10
20

Diabetes 3 One valve, aortic 0

Ejection fraction 30-49%
<30%

6.5
8

One valve, mitral 4.5

Hypertension 3 Valve + ACB 6

Special conditions
Cardiac Score Hepato-renal Score
Cardiogenic shock (urinary <10 cc/hr) 12 Cirrhosis 12.5
Endocarditis, active 6.5 Dialysis dependency 13.5
Left-ventricular aneurysm resected 1.5 Renal failure, acute or chronic 3.5
One valve, tricuspid:
procedure proposed

5

Transmural acute myocardial
infraction within 48 hr

4 Vascular Score

Ventricular septal defect, acute 12 Abdominal aortic aneurysm, asymptomatic 0.5
Ventricular tachycardia, ventricular
�brillation, aborted sudden death

1
Carotid disease (bilateral or 100%
unilateral occlusion)

2

Peripheral vascular disease, severe 3.5

Pulmonary Score
Asthma 1 Miscellaneous Score
Endotracheal tube, preoperative 4 Blood products refused 11
Idiopathic thrombocytopenic purpura 12 Severe neurologic disorder 5
Pulmonary hypertension
(mean pressure > 30)

11 PTCA or catheterization failure 5.5

Substance abuse 4.5

COPD: Chronic Obstructive Pulmonary Disease IABP: Intra-Aortic Balloon Pump
PTCA: Percutaneous Transluminal Coronary Angioplasty ACB: Aortocoronary Bypass

Table 2. The details of the costs imposed on the hospital in the out-of-control condition.

Action Cost (in Rial) Action Cost (in Rial)

Check-ups 215000 Anesthesia 324000
Echocardiography 100000 Consumable products 2950000

Angiography 485000 Consumable drugs 370000
Consultant 52000 ICU bed for two nights 3811000

Surgery 1904000 Nursing services 809000
Operation room 483000 Public bed for eight nights 10120000
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assignable cause and an average cost of 8000000 Rials is
spent for corrective actions. Also, the process continues
to work while the identi�cation and repair of the
assignable cause is being done. Then, according to
the estimated parameters with regard to the Parsonnet
score and the AFT Weibull model, simulation studies
are performed to calculate the statistical indices. It
should be noted that in order to minimize the sim-
ulation error, the procedure is repeated 10000 times.
For each combination of design parameters, the ARL0
values are calculated considering no shift in the data,
while the ARL1 values are recorded when there exists a
95% reduction in survival time. Moreover, to avoid the
high incidence rate of false alarms, to achieve accept-
able probability of detection power and to consider the
budget constraints using the RACUSUM control chart
in the CABG surgery process, a lower bound of 20,
an upper bound of 5, and an upper bound of 1900000
Rials have been considered for ARL0, ARL1, and EA,
respectively. It is noteworthy that the following limits
are applied to the design parameters: 0:01 � � � 0:2
and �1:5 � LCL � �0:01. Therefore, the expected
cost per time unit associated with the application of
the proposed RACUSUM chart to Imam Ali Cardiac
Surgery Center is obtained using Eq. (11).

Finally, in order to optimize the multi-objective
economic-statistical model of the RACUSUM control
chart and to achieve the best possible combination
of design parameters, a two-step solution approach is
implemented. It should be noted that all calculations
related to the solution approach were facilitated under
the coded programs in MATLAB (version R2016a) en-
vironment. Initially, due to the features of the proposed
MODM model and the proper performance of NSGA-
II, a set of non-dominated solutions was identi�ed using
the described algorithm. In other words, the optimal
Pareto solutions were determined by implementing
NSGA-II with 1000 replications, n-pop of size 100,
the crossover operator with a probability of 0.2, and
the mutation operator with a probability of 0.9. The
results are reported in Table 3. Also, the Pareto front
for the three objectives EA, ARL0, and 1=ARL1 is also
shown in Figure 3.

After identifying the non-dominated solutions,
DEA methods were used to prioritize and select the
most e�ective solution for establishing the RACUSUM
control chart at the surgery center. In DEA, any

Figure 3. Pareto front for EA, ARL0, and 1=ARL1.

Table 3. Pareto optimal solutions for the multi-objective
economic-statistical design of the RACUSUM control
chart.
Design parameters Objective function
� LCL EA ARL0 1=ARL1

0.02 {1.50 1725006.17 105.995 0.247
0.05 {1.44 1589433.19 68.479 0.292
0.07 {1.44 1557444.81 55.752 0.305
0.02 {1.43 1725937.34 106.124 0.247
0.12 {1.42 1547031.46 49.667 0.309
0.08 {1.38 1555232.69 55.118 0.306
0.02 {1.37 1710771.79 102.641 0.252
0.02 {1.35 1715010.48 103.799 0.250
0.06 {1.35 1571124.64 61.068 0.299
0.03 {1.34 1635706.18 83.233 0.276
0.05 {1.34 1580663.99 66.783 0.296
0.06 {1.34 1567163.32 60.558 0.301
0.02 {1.33 1716775.65 104.959 0.250
0.03 {1.33 1644061.58 84.273 0.273
0.02 {1.32 1713477.95 103.062 0.251
0.03 {1.28 1629783.14 80.740 0.278
0.02 {1.24 1704920.52 101.020 0.253
0.04 {1.23 1593599.92 69.038 0.291
0.08 {1.22 1553779.67 51.749 0.306
0.06 {1.20 1560712.49 57.823 0.303
0.02 {1.19 1698858.61 99.045 0.255
0.05 {1.19 1573502.28 63.979 0.298
0.03 {1.17 1632935.42 81.016 0.277
0.04 {1.16 1597916.06 69.616 0.289
0.03 {1.11 1624978.55 78.935 0.279
0.01 {1.07 1899125.94 150.118 0.204
0.03 {1.02 1622594.21 77.414 0.280
0.02 {1.01 1698107.60 97.951 0.255
0.03 {1.01 1619648.85 76.877 0.281
0.05 {1.00 1566452.67 59.089 0.301
0.10 {0.94 1543648.94 45.386 0.310
0.02 {0.92 1687088.36 96.549 0.259
0.02 {0.88 1681706.96 94.539 0.260
0.12 {0.84 1536168.95 39.993 0.313
0.03 {0.83 1610764.21 75.610 0.284
0.03 {0.81 1605936.12 73.015 0.286
0.01 {0.80 1892779.57 147.285 0.205
0.01 {0.70 1874373.26 142.585 0.209
0.02 {0.69 1665124.77 93.358 0.266
0.03 {0.69 1604541.67 72.218 0.287
0.02 {0.68 1657098.92 90.893 0.268
0.02 {0.66 1,654906.38 88.064 0.269
0.06 {0.66 1552325.62 50.880 0.307
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Table 3. Pareto optimal solutions for the multi-objective
economic-statistical design of the RACUSUM control
chart (continued).
Design parameters Objective function
� LCL EA ARL0 1=ARL1

0.03 {0.63 1609934.16 73.659 0.285
0.01 {0.62 1869120.10 137.427 0.211
0.01 {0.60 1869355.63 140.914 0.211
0.03 {0.54 1598277.20 70.672 0.289
0.06 {0.49 1546684.20 49.154 0.309
0.01 {0.48 1,864226.13 135.155 0.212
0.03 {0.46 1603011.16 71.204 0.287
0.01 {0.42 1857463.66 134.889 0.213
0.01 {0.41 1841894.75 134.194 0.217
0.02 {0.34 1650667.91 86.008 0.271
0.06 {0.25 1544854.32 46.867 0.310
0.01 {0.22 1836949.32 130.496 0.218
0.02 {0.16 1639932.48 84.086 0.274
0.02 {0.14 1644105.69 84.916 0.273
0.01 {0.09 1832831.55 129.904 0.219
0.01 {0.03 1827862.32 126.074 0.220

combination of design parameters, namely (LCL; �),
is considered a DMU. Since DEA methods select the
most e�cient DMU with the minimum input value and
maximum output value, the cost function was consid-
ered as the only input while the statistical properties
were the two outputs. The additive model was then
used to identify the e�cient DMUs. Based on the
results of the additive model, 10 DMUs were selected as
a combination of e�cient design parameters. Finally,
these 10 DMUs were considered as the input data for
the cross-e�ciency evaluation technique and the most
e�cient DMU was detected. The results are shown in
Table 4.

From Table 4, it is remarkable that the cross-
e�ciency evaluation technique o�ers � = 0:08 and

LCL = �1:38 as the most e�cient combination of
design parameters for the RACUSUM control chart
with the best economic and statistical properties (EA =
1555232:69 Rials, ARL0 = 55:118, and 1=ARL1 =
0:306).

6. Performance comparison

In this section, the performance of the proposed multi-
objective economic-statistical design model is com-
pared with those of the bi-objective statistical design
and the pure economic design model to investigate its
e�ectiveness. The bi-objective model is similar to the
multi-objective model, presented by Eq. (12) in Section
3, with a di�erence that the expected cost for each time
unit (EA) is omitted. Therefore, this model can be
introduced with two statistical objectives, ARL0 and
1=ARL1, which is rewritten with a set of constraints as
follows:

Max ARL0(D);

Max 1=ARL1(D);

s.t.

EA � EUA ;

ARL0 � ARLL0 ;
ARL1 � ARLU1 : (17)

To compare this model with the multi-objective one,
its application to the cardiac surgery center has been
studied. According to the characteristics of the bi-
objective model, NSGA-II was applied for realizing
non-dominated solutions and the Pareto front was

Table 4. E�cient solutions obtained from the DEA additive model and cross-e�ciency evaluation technique.

DMUs Optimal input
weight

Optimal output
weight

Optimal
weight

E�ciency
Cross-

e�ciency(LCL; �) e�1 u�1 u�2 T � Additive
model

({1.42, 0.12) 1.29 1685.837 125360.81 1872173.26 1 0.93
({1.38, 0.08) 1.20 1858.815 37505.95 1752593.07 1 0.94
({1.34, 0.05) 1.66 5683.617 390072.56 2129647.87 1 0.91
({1.20, 0.06) 1.00 4090.747 2538116.05 554369.47 1 0.93
({1.19, 0.05) 1.49 4099.163 319192.26 1980022.60 1 0.92
({1.07, 0.01) 1.62 7658.709 902715.92 1740017.21 1 0.70
({0.84, 0.12) 1.15 420.5552 44140.31 1741218.29 1 0.90
({0.69, 0.02) 1.70 6153.724 343148.33 2165886.81 1 0.82
({0.68, 0.02) 1.66 5626.94 297469.39 2167488.56 1 0.83
({0.49, 0.06) 1.00 1122.886 1.00 1491261.38 1 0.93
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Table 5. Comparison of the multi-objective and bi-objective designs.

Design (LCL; �) ARL0 ARL1 EA
Multi-objective design ({1.38, 0.08) 55.118 3.268 1555232.69
Bi-objective design ({0.69, 0.02) 92.358 3.763 1665124.77

Table 6. Comparison of the multi-objective and pure economic design.

Design (LCL; �) ARL0 ARL1 EA
Multi-objective design ({1.38, 0.08) 55.118 3.268 1555232.69
Economic design ({0.17, 0.18) 28.097 3.185 1534632.37

Figure 4. Pareto front for ARL0 and 1=ARL1.

determined using this algorithm. The Pareto front for
ARL0 and 1=ARL1 of the bi-objective design is shown
in Figure 4.

Upon recognizing the non-dominated solutions,
� = 0:02 and LCL = �0:69 were selected as the best
combination of bi-objective design parameters for the
RACUSUM control chart. The optimal values corre-
sponding to multi-objective and bi-objective designs
are given in Table 5.

Table 5 indicates that the bi-objective design
model increases the value of ARL0 e�ectively, while
the multi-objective design has better performance with
regard to ARL1 and EA. The bi-objective design
managed to increase the ARL0 by 69.3%. However,
ARL1 and EA values have been negatively raised by
15.2% and 7.1%, respectively. Thus, the results con�rm
that the multi-objective design outperforms the bi-
objective design in terms of detection power and the
expected cost.

Finally, the performance of the multi-objective
design is compared with that of the pure economic
design model. Table 6 depicts the optimal parameters
of multi-objective design and pure economic design. It
is apparent that as EA increases by 1.3% in the multi-
objective design compared to the economic design, the
ARL0 of the multi-objective design increases by 96%
as well. However, no signi�cant di�erence is observed
for ARL1 in both designs. Therefore, the comparisons
revealed that the ARL0 increased dramatically with a
slight increase in the cost. Consequently, the multi-
objective design could be e�ectively applied with a
signi�cant improvement in statistical properties of the
RACUSUM control chart.

7. Conclusion

Considering the importance of healthcare systems,
this paper proposed a multi-objective economic-
statistical model to design the Risk-Adjusted CUSUM
(RACUSUM) control chart to e�ectively monitor pa-
tients' lifetime. First, the RACUSUM chart was
devised based on a class of survival analysis regression
models called the Accelerated Failure Time (AFT)
model taking the preoperative risks of each patient
into account. It was assumed that the cardiac surgery
process in a hospital was a�ected by an assignable
cause resulting from the human mistakes, which caused
a decrease in the survival time of patients. Thus, a
multi-objective economic-statistical design model was
addressed to determine the parameters of RACUSUM
chart so that both the economic and statistical proper-
ties could be met simultaneously. Due to the constant
sample size and sampling interval, while applying the
RACUSUM chart to the healthcare system, the control
chart design parameters were considered to be the
lower control limit and the coe�cient for optimal shift
detection denoted by LCL and �, respectively. In order
to determine the optimal values of these parameters,
a two-stage solution algorithm was employed. The
NSGA-II was used in order to obtain the optimal
Pareto set taken from design parameters, and the DEA
methods were implemented to rank the solutions and
choose the most e�cient one. It should be noted that
each combination of design parameters was considered
as a DMU, and as the e�cient DMUs were determined
using the additive model, a cross-e�ciency evaluation
method was employed to select the �nal solution.
Finally, the application of the proposed multi-objective
model and the proposed solution method was described
at a real cardiac surgery center (hospital) located in the
west of Iran. Furthermore, two comparisons were per-
formed with the bi-objective and pure economic design
models. The results clearly revealed that the perfor-
mance of the multi-objective design was relatively supe-
rior to the bi-objective design. Likewise, in comparison
with pure economic design, the multi-objective design
o�ers better statistical properties although it slightly



2708 N. Ra�ei and Sh. Asadzadeh/Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 2696{2709

increases the imposed costs. As a result, in general, the
proposed approach to designing the RACUSUM control
charts can be e�ectively applied taking the economic
and statistical properties into account while monitoring
the survival times of patients in healthcare systems.
An interesting area worthy of continued research e�orts
includes the multi-objective design of the RACUSUM
control charts in the presence of multiple assignable
causes.

Acknowledgements

The authors express their appreciation of and gratitude
for the support of the Vice Chancellor for Research
and Technology of Kermanshah University of Medical
Sciences.

References

1. Woodall, W.H., Fogel, S.L., and Steiner, S.H. \The
monitoring and improvement of surgical-outcome qual-
ity", Journal of Quality Technology, 47(4), pp. 383{
399 (2015).

2. Rasmussen, T.B, Ulrichsen, S.P., and N�rgaard, M.
\Use of risk-adjusted CUSUM charts to monitor 30-
day mortality in Danish hospital", Clinical Epidemiol-
ogy, 10, pp. 445{456 (2018).

3. Duncan, A.J. \The economic design of �X charts used
to maintain current control of a process", Journal
of the American Statistical Association, 51(274), pp.
228{242 (1956).

4. Lorenzen, T.J. and Vance, L.C. \The economic design
of control charts: a uni�ed approach", Technometrics,
28(1), pp. 3{10 (1986).

5. Jiao, J.R. and Helo, P.T. \Optimization design of
a CUSUM control chart based on Taguchi's loss
function", The International Journal of Advanced
Manufacturing Technology, 35(11{12), pp. 1234{1243
(2008).

6. Lee, M.H. \Economic design of cumulative sum control
charts for monitoring a process with correlated sam-
ples", Communications in Statistics-Simulation and
Computation, 39(10), pp. 1909{1922 (2010).

7. Celano, G., Castagliola, P., and Trovato, E. \The
economic performance of a CUSUM t control chart for
monitoring short production runs", Quality Technology
& Quantitative Management, 9(4), pp. 329{354 (2012).

8. Fallahnezhad, M.S. and Golba�an, V. \Economic de-
sign of cumulative count of conforming control charts
based on average number of inspected items", Sci-
entia Iranica, Transactions E, Industrial Engineering,
24(1), pp. 330{341 (2017).

9. Saniga, E.M. \Economic statistical control chart de-
signs with an application to �X and R charts", Techno-
metrics, 31(3), pp. 313{320 (1989).

10. Asadzadeh, S. and Khoshalhan, F. \Multiple-objective
design of an �X control chart with multiple assignable
causes", The International Journal of Advanced Man-
ufacturing Technology, 43(3{4), pp. 312{322 (2009).

11. Niaki, S.T.A., Malaki, M., and Ershadi, M.J. \A
particle swarm optimization approach on economic
and economic-statistical designs of MEWMA control
charts", Scientia Iranica, Transactions E, Industrial
Engineering, 18(6), pp. 1529{1536 (2011).

12. Katebi, M. and Moghadam, M.B. \Optimal statistical,
economic and economic statistical designs of attribute
np control charts using a full adaptive approach",
Communications in Statistics-Theory and Methods,
48(18), pp. 4528{4549 (2019).

13. Axelrod, D.A., Kalb
eisch, J.D., Sun, R.J., et al.
\Innovations in the assessment of transplant center
performance: implications for quality improvement",
American Journal of Transplantation, 9(4p2), pp. 959{
69 (2009).

14. Keefe, M.J., Loda, J.B., Elhabashy, A.E., et al. \Im-
proved implementation of the risk-adjusted Bernoulli
CUSUM chart to monitor surgical outcome quality",
International Journal for Quality in Health Care,
29(3), pp. 343{348 (2017).

15. Begun, A., Kulinskaya, E., and MacGregor, A.J.
\Risk-adjusted CUSUM control charts for shared
frailty survival models with application to hip replace-
ment outcomes: a study using the NJR dataset", BMC
Medical Research Methodology, 19(1), pp. 1{15 (2019).

16. Kim, S., Yoon, Y., Han, H., et al. \Evaluation
of a single surgeon's learning curve of laparoscopic
pancreaticoduodenectomy: risk-adjusted cumulative
summation analysis", Surgical Endoscopy, 35(6), pp.
2870{2878 (2021).

17. Safaei, A.S., Kazemzadeh, R.B., and Niaki, S.T.A.
\Multi-objective economic statistical design of X-
bar control chart considering Taguchi loss function",
The International Journal of Advanced Manufacturing
Technology, 59(9{12), pp. 1091{1101 (2012).

18. Liu, H.H., Song, Y.Y., and Yang, G.L. \Cross-
e�ciency evaluation in data envelopment analysis
based on prospect theory", European Journal of Op-
erational Research, 273(1), pp. 364{375 (2019).

19. Chowdhury, H. and Zelenyuk, V. \Performance of
hospital services in Ontario: DEA with truncated
regression approach", Omega, 63, pp. 111{122 (2016).

20. Omrani, H., Keshavarz, M., and Ghaderi, S.F. \Evalu-
ation of supply chain of a shipping company in Iran by
a fuzzy relational network data envelopment analysis
model", Scientia Iranica, Transactions E, Industrial
Engineering, 25(2), pp. 868{890 (2018).

21. Sego, L.H., Reynolds, M.R., and Woodall, W.H. \Risk-
adjusted monitoring of survival times", Statistics in
Medicine, 28(9), pp. 1386{1401 (2009).

22. Lawless, J.F., Statistical Models and Methods for Life-
time Data, New York: Wiley (2003).



N. Ra�ei and Sh. Asadzadeh/Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 2696{2709 2709

23. Asadzadeh, S. and Baghaei, A. \Robust AFT-based
monitoring procedures for reliability data", Quality
Technology & Quantitative Management, 17(1), pp. 1{
15 (2020).

24. Asadzadeh, S. and Aghaie, A. \Improving the product
reliability in multistage manufacturing and service
operations", Quality and Reliability Engineering Inter-
national, 28(4), pp. 397{407 (2012).

25. Tzeng, G.H. and Huang, J.J., Fuzzy Multiple Objective
Decision Making, Boca Raton, FL: Chapman and
Hall/CRC (2013).

26. Deb, K., Pratap, A., Agarwal, S., et al. \A fast
and elitist multiobjective genetic algorithm", IEEE
Transactions on Evolutionary Computation, 6(2), pp.
182{197 (2002).

27. Madani, H., Arshadi Khamseh, A., and Tavakkoli-
Moghaddam, R. \Solving a new bi-objective model
for relief logistics in a humanitarian supply chain
by bi-objective meta-heuristics in algorithms", Scien-
tia Iranica, Transactions E, Industrial Engineering,
28(5), pp. 2948{2971 (2021).

28. Bernstein, A.D. and Parsonnet, V. \Bedside estima-
tion of risk as an aid for decision-making in cardiac
surgery", The Annals of Thoracic Surgery, 69(3), pp.
823{828 (2000).

Biographies

Navid Ra�ei is currently a PhD candidate in Indus-
trial Engineering at Islamic Azad University, North

Tehran Branch, Iran. His research interests include
statistical quality control in healthcare, survival data
analysis, multiple-criteria decision-making, and data
envelopment analysis.

Shervin Asadzadeh is an Assistant Professor at
Islamic Azad University, North Tehran Brach, Iran. He
held his PhD in Industrial Engineering from Khajeh
Nasir Toosi University of Technology in Iran (granted
the honor of pursuing the PhD program). He has
been teaching statistical methods, design of experi-
ments, time series analysis, advanced statistical quality
control, quality management and productivity, and
engineering statistics at K.N. Toosi University of Tech-
nology, Allameh Tabataba'i University, and Islamic
Azad University. He has published many papers in
the area of statistical process control in high-quality
international journals such as Quality and Reliability
Engineering International, Quality Technology and
Quantitative Management, Statistical Computation
and Simulation, Communications in Statistics, and
so on. He has been a member of National Elites
Foundation of Iran since 2010 and he was selected
as one of the researchers of the year in 2011 and
2017. His primary research interests include statisti-
cal quality control, reliability, survival data analysis,
applied statistics in healthcare, robust statistics, and
simulation. He is also a member of Iranian Institute
of Industrial Engineering and Iranian Statistical Soci-
ety.




