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Abstract. Proper assessment of wind load ensures a durable design of structures under
varying wind load conditions. Accurate prediction of surface mean pressure coe�cient
(Cp) on any irregular plan shaped buildings is essential to assessing wind loads and
structural design. The main objective of this study is to present an equation in the line
of Multivariate Adaptive Regression Spline (MARS) approach using experimental data
of Cp. This developed equation can be used satisfactorily for accurate prediction of Cp
values on the surfaces of C-shaped buildings. Extensive experimentation was carried out to
determine the coe�cient of pressure over the surfaces of C-shaped building models under
varying sizes, corner curvatures, and angles of incidence in a sub-sonic wind tunnel. The
predicted values of pressure coe�cient of di�erent C-shaped buildings using the developed
model were compared with the equations developed by Swami and Chandra (S&C) and
Muehleisen and Patrizi (M&P). The comparison indicated that the proposed MARS model
could predict Cp values more accurately than S&C and M&P models on frontal and side
surfaces. Further, the model was used to validate the results using the actual building, and
Tokyo Polytechnic University (TPU) data were employed to show the applicability of the
proposed equation.
© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

With considerable use of many new innovative building
designs, the role of model studies in assessing exactly
the wind 
ow nature and its impact on structures has
been realized. As a result, the �rst important step

1. Present address: Department of Mechanical Engineering,
Vellore Institute of Technology Vellore, Tamil Nadu,
India-632014.

*. Corresponding author. Tel.: +91-8249497614
E-mail addresses: monalisa.nitrkl@gmail.com (M. Mallick);
abinash.mohanta@vit.ac.in (A. Mohanta);
akumar@nitrkl.ac.in (A. Kumar)

doi: 10.24200/sci.2020.51377.2142

in the wind-induced pressure analysis is to accurately
calculate pressure on the walls of structures. Wind
pressure on structures are a�ected by the geometry of
the structure, the extent of curved corners, wind angle
of incidence, and 
ow features. The pressure coe�-
cient is required to assess the wind-induced pressure
di�erence. Generally, full-scale structure tests, small-
scale model experiments in wind tunnel, and analytical
equations are the main techniques, which are mostly
required to estimate the pressure coe�cient.

A considerable investigation of di�erent struc-
tures, i.e., cylindrical [1], rectangular [2], and square,
has been reported [3]. Only a few studies have investi-
gated wind pressures on irregular shapes by Cook [4].
Suresh Kumar et al. [5] estimated Cp on the faces
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of tall buildings using the model test in wind tunnel.
Stathopoulos and Zhou [6,7] studied the wind loads on
the stepped roof of L-shape buildings using a numerical
approach. Ahmad and Kumar [8] experimented on
di�erent types of hip roof plan building models with a
30� roof slope and examined interferences between the
buildings placed in the free air stream at di�erent con-
�gurations/angles of incidence. Ho et al. [9] examined
the local obstructions on low building wind loads. Lou
et al. [10] carried out wind tunnel tests on a double-
skin facade building to determine the wind pressure
distribution on each surface. Lu et al. [11] carried out
a numerical simulation of spherical tall buildings with
and without curved annexes. Chakraborty et al. [12]
studied the pressure distribution of `+' (plus) shaped
tall buildings and compared them numerically by using
Fluent. Gomes et al. [13] investigated pressure dis-
tributions on L-shaped and U-shaped building models
and compared pressure coe�cients at di�erent wind
incidence angles. Amin and Ahuja [14,15] presented
their works on L-shaped and T-shaped buildings with
di�erent con�gurations and estimated the average,
minimum, maximum, and root mean square values
of pressure coe�cients. Kim and Kanda [16] studied

uctuating values of wind pressures, 
ow separation,
and formation of vortex on tall buildings as well as
conical buildings. Chakraborty et al. [17] carried out
a comparative study of experimental and numerical
methods to predict wind e�ect on `+' plan shaped tall
buildings. Bhattacharyya et al. [18] measured the pres-
sure distribution of E-shaped tall buildings by varying
angles of incidence from 0� to 180�. Bhattacharyya and
Dalui [19] investigated mean wind pressures on E plan
shaped tall buildings and compared both experimental
and numerical results by Computational Fluid Dynam-
ics (CFD). For a better comparison of the results,
pressure contours on all the faces were also predicted
by both methods. Yi and Li [20] investigated a tall
building in Hong Kong and used the wind tunnel model
test to explain force and pressure coe�cients and high
frequency balance. The wind tunnel test result was
seen to be fairly in agreement with the full model test.
Li and Li [21] conducted wind tunnel test on L plan
shaped tall buildings to quantify dynamic load across
the wind. They proposed an empirical formulation with
emphasis on the side ratio and territory of the building
to express wind load. Mallick et al. [22] reported the
experimental wind tunnel and numerical studies on
distribution of pressure coe�cient on curved surfaces
of the C-shaped building model.

Akins [23], Walton [24], Walker and Wilson [25]
proposed parametric equations to predict Cp on low
height buildings, and Ginger and Letchford [26] and
Ohkuma et al. [27] studied the pressure coe�cients on
a particular building (full-scale) tests by conducting
wind tunnel experiments. Swami and Chandra [28]

determined average surface pressure coe�cients on low
height buildings over the building facades. Swami and
Chandra [29] proposed an equation (S&C equation) for
the prediction of Cp on various heights of rectangular
shaped buildings considering the wind direction and
side ratio. Grosso [30] proposed a complex parametric
model for pressure coe�cient around the buildings.
The S&C equation was used to forecast the surface
average pressure coe�cient (Cp) implemented by Craw-
ley et al. [31] for creating a certain program called
Building Energy Simulation. Cook [32] proposed the
building codes of common building shapes for estimat-
ing a range of average wind pressure coe�cients that
were further clari�ed using the analytical wind load
calculation techniques. Costola et al. [33] reviewed
necessary equations and methodologies for calculating
Cp by numerical simulation and Costola et al. [34]
applied air
ow network analysis to building energy
simulations. Further, Muehleisen and Patrizi [35]
developed equation (M&P equation) for coe�cient of
pressure in case of small building models.

Nowadays, Machine Learning Algorithms (MLAs)
are used extensively as alternative approaches to
predicting 
ow properties in areas of aerodynamics.
Recently, MLAs such as Multivariate Adaptive Re-
gression Splines (MARS), Group Method of Data
Handling (GMDH), Support Vector Machines (SVM),
Genetic Algorithm (GA), Gene-Expression Program-
ming (GEP), Model Tree (MT), Gaussian Process
Regression (GPR), Relevance Vector Machine (RVM),
and K-Nearest Neighbors (KNN) [36-47] have been
successfully adopted to solve a variety of problems
relating to water resources as well as hydraulic and
hydrological engineering �elds.

Samui et al. [48] compared MARS methodology
with Arti�cial Neural Network (ANN) and Finite Ele-
ment Method (FEM) models and found that the MARS
achieved the best outcomes in terms of uplift capacity
of suction caisson. Samui and Kurup [49] used MARS
and Least Square Support-Vector Machine (LSSVM)
to predict the consolidation ratio of clay deposits.
Samui [50] predicted the elastic modulus of rock by
using MARS and demonstrated the higher performance
of MARS model than ANN. Cheng and Cao [51]
developed EMARS to predict the energy performance
of buildings. Koc and Bozdogan [52] introduced a
criterion called information-theoretic measure of com-
plexity (ICOMP) for model selection in MARS to be
in agreement with the data and the model complexity
and then, they found the ICOMP as the simplest model
that could balance the over�tting and under�tting for
the MARS model. Zhang and Goh [53] used MARS
as an alternative to neural networks to approximate
the relationship between the inputs and dependent
response and to mathematically interpret the relation-
ship among various parameters for quantifying the
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Figure 1. (a) Sub-Sonic wind tunnel (IIT Kharagpur, India). (b) Schematic diagram for experimental setup of the wind
tunnel.

prediction of maximum compressive stresses, maximum
tensile stresses, and blow per foot to measure the
strength of a pile. Mukhopadhyay [54] explained the
methodology by applying MARS to identify damage
localization as well as quanti�cation in structures
with di�erent damage intensities. Bhattacharya et
al. [55] implemented the Functional Network (FN)
and MARS models to predict the uplift capacity of
suction caisson in clay. The authors found the FN
and MARS models to be more e�cient to predict
the load capacity of clay than other machine learning
techniques by various statistical measures. Mirabbasi
et al. [56] investigated the performance of the M5Tree
model, MARS, least square support vector regression,
gene expressing programming, and ANNs methods for
estimating the monthly long-term rainfall. Goh et
al. [57] also applied the MARS approach to establishing
relationships between the maximum surface settlement
and the major in
uencing factors including the opera-
tion parameters, cover depth, and ground conditions.
Zhang et al. [58] studied the de
ection of wall caused by
deep braced excavations and applied MARS approach
to estimate the possible depth at which maximum
lateral deformation occurred. The authors included
the 30 data case histories for studying the braced
excavation in medium-sti� and soft clays.

2. Experimental setup

Experiments were carried out in an open circuit sub-
sonic wind tunnel in the aerodynamic laboratory of the
Department of Aerospace Engineering, Indian Institute
of Technology Kharagpur, India. The wind speed was
kept constant at 12.9 m/s. The wind tunnel with a
bottom surface consisting of a plywood test section was
1.83 m long with cross-sectional dimensions of 0.61 m
in width and 0.61 m in depth. Building models were
placed within the boundary layer zone, centrally in the
test section at a distance of 1.2 m from the beginning

Figure 2. Geometry of C-shaped model de�ning the
surfaces, model dimensions, and angle of incidence.

of the test section. To ascertain models within the
boundary layer zone, the roughness elements were
placed on the upstream side of the model. For this,
wooden cubic blocks of 25 mm size and clear spacing
of 50 mm in all directions were �xed on 4 mm thick
plywood sheet. Photocopy of a sub-sonic wind tunnel
with a schematic illustration is shown in Figure 1.

All the experimental building models were made
of transparent Perspex sheet of 3 mm thickness. Details
of the thirteen C-shaped models marked by C-1, C-
2, C-3, and C-4 of varying curvatures, C-5, C-6, and
C-7 of varying frontal ratios, and C-8, C-9, C-10, C-
11, C-12, and C-13 of varying side and height ratio
con�gurations are shown in Figure 2 and Table 1. The
models were �tted with 90 to 120 numbers of pressure
tapping points in 4-5 rows and 3-5 columns on the
surfaces. The pressure tapping points were kept at
less spacing near the wall boundaries to tap the sharp
pressure variation due to 
ow separation and at larger
spacing in the middle of the surfaces.

Free stream velocity during the experiment was
measured using Pitot tube. The pressure tapping
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Table 1. Detailed geometry of di�erent C-shaped models.

Serial no. Model
shape

Overall
depth,
D (mm)

Overall
breadth,
B (mm)

Depth,
d (mm)

Breadth,
b (mm)

Height,
H (mm)

Radius of
curvature,
R (mm)

1 C-1 120 120 100 80 80 20
2 C-2 120 120 90 60 80 30
3 C-3 120 120 80 50 80 40
4 C-4 120 120 70 40 80 50
5 C-5 110 120 80 60 80 30
6 C-6 100 120 70 60 80 30
7 C-7 90 120 60 60 80 30
8 C-8 120 110 90 50 80 30
9 C-9 120 100 90 40 80 30
10 C-10 120 90 90 30 80 30
11 C-11 120 120 90 60 70 30
12 C-12 120 120 90 60 60 30
13 C-13 120 120 90 60 50 30

points were kept at less spacing near the wall bound-
aries to tap the sharp pressure variation due to 
ow
separation and at larger spacing in the middle of the
surfaces. The free ends of tubes were connected to Dig-
ital Sensor Array (DSA) to record the 
uctuating wind
pressures at the corresponding tapping points. All
data were measured by a DSA scan valve corporation,
Model DSA 3217/16 pox, USA. This DSA device is set
to give an average pressure of 5 seconds in duration.
At the same time, for greater accuracy, a pressure
measurement at each tapping point was repeated for
three times and the mean of three pressure data sets
was obtained. The pressure coe�cient Cp for each
tapping point was calculated by putting the pressure
data in equation of pressure coe�cient.

3. Methods for the prediction of Cp on the
surfaces of the building model

Predictive modeling is the process of creating, testing,
and validating the probability to forecast outcomes.
The model involves two types of parameters: depen-
dent and independent. Following the collection of data
on relevant parameters, a number of statistical tools
and analytical techniques were used to develop the
forecasting model. The earlier researchers have also
presented analytical models to predict the surface mean
pressure coe�cient (Cp). Some of the main models are
mentioned below.

3.1. Swami and Chandra (S&C) equation
The S&C equation [29] is proposed for calculating the
mean pressure coe�cient on the surface of low-rise
buildings given below:

Cp (�;D/B) = Cp(0o) ln[1:248� 0:703 sin(�/2)

�1:175 sin2(�) + 0:131 sin3(2G�)

+0:769 cos(�/2)! + 0:07G2 sin2(�/2)

+0:717 cos2(�/2)]; (1)

where � indicates the angle of wind incidence on the
surface, G is the logarithmic of the ratio side face
described as ln(D=B), and Cp(0�) and Cp are the values
at 0� angles of incidence.

3.2. Muehleisen and Patrizi (M&P) equation
The M&P equation [35] was developed to calculate the
mean coe�cient of pressure on the wall of a low-rise
building with di�erent angles of incidence, �, and the
side ratio D=B given as follows:

Cp(�;D=B) =
ao + a1G+ a2� + a3�2 + a4G�
1 + b1G+ b2� + b3�2 + b4G�

;

G = ln(D=B); (2)

where ai and bi are the adjustable factors with di�erent
values described below, � is the angle of incidence, and
G is the logarithmic of the ratio side face described as
ln(D=B). The values of ai and bi are given as follows:

ao = 6:12� 10�1; a1 = �1:78� 10�1;

a2 = �1:15� 10�2; a3 = 3:28� 10�5;

a4 = 1:67� 10�3;

b1 = �3:12� 10�1; b2 = �1:59� 10�2;
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b3 = 9:82� 10�5; b4 = 2:15� 10�3:

3.3. Authors' approaches for new model
The most popular database method from the machine
learning �eld is the MARS and was adopted here to
obtain a model for the prediction of surface mean Cp
on the faces of C-shaped models. The data were used in
the present work to formulate and simulate the method,
as shown in Table 1.

The surface mean pressure coe�cient (Cp) is a
function of overall side ratio (D=B), (d=b), height ratio
(H=D), and curvature, and wind angle of incidence (�)
of the building model. Here, in the MARS modeling,
the normalized value of independent variables was
taken as inputs. Then, the output of the model was
the normalized value of mean pressure coe�cient from
which actual values are obtained. The 75% of the data
of the mentioned dataset were designated for training
and another 25% of data for testing the proposed
model. The data were normalized between 0 and 1.
Normalization occurred using the following equation:

Cpnorm =
Cp � Cpmin

Cpmax � Cpmin
; (3)

where Cp is any �nite data, Cpmin the minimum value
of the data, Cpmax the maximum value of the data, and
Cpnorm the normalized value of the data.

3.3.1. Multivariate Adaptive Regression Spline
(MARS)

The most popular database method from the machine
learning �eld is the MARS and it was adopted here
to obtain a model for the prediction of Cp on building
models. The MARS is a type of the non-parametric
regression model �rst introduced by Friedman [59].
It also divided the data into several splines at the
corresponding interval in which each spline split the
predictors into subgroups and knots for non-linear
relationships by Friedman and Roosen [60]. Accord-
ing to Leathwick et al. [61], MARS splits the input
variables into piecewise linear segments to make a
non-linear association between dependent (output) and
independent (input) variables. The formulation of
MARS is written in the following form:

y = c0 +
NX
i=1

ci
KiY
j=1

bji
�
xv(j;i)

�
; (4)

where y is the dependent output variable, c0 the
constant term, ci the coe�cient vector of the non-
constant basis functions, Bji

�
xv(j;i)

�
the truncated

power basis function, and xv(j;i) the index of the
independent input variable of the ith term and the jth
product, and Ki is the order of interaction limit. The
de�nition of spline bji is shown as follows:

bji (x) = (x� tji)q+ =

(
(x� tji)q ; x < tji
0; otherwise

(5)

bji+1 (x) = (tji � x)q+ =

(
(tji � x)q ; x < tji
0; otherwise (6)

where tji is the loop of the spline. The MARS
model works through two steps: a forward process
followed by a backward process. The truncated power
basis functions are chosen based on the Residual Sum-
of-Squares (RSSs) and Generalized Cross-Validation
(GCV) principles (Craven and Wahba) [62]. The
ine�ective basis functions are considered unused for the
prediction of the model. RSSs are measured in the
training process through which the model parameters
are compared using Eq. (7):

RSS =
NX
i=1

[yi � f (xi)]
2: (7)

To compare the performance of the predictors in the
backward pass, GCV is used. The lower values of
GCV show a better subset of predictors. The GCV
shows precision against model complexity. The GCV
evaluation is de�ned as follows:

GCV =

1
N

NP
i=1

[yi � f (xi)]
2h

1� C(B)
N

i2 ; (8)

where N is the number of data and C(B) is the penalty
function, which increases with the number of basic
functions and is de�ned as follows:

C (B) = B + d
�
B � 1

2

�
; (9)

where B is the number of basis terms and d the
penalty term in the respective functions provided by
Friedman [59]. It can also be considered as a smoothing
parameter.

3.3.2. Development of model for surface 1
In MARS model, 17 basis functions are used initially in
the forwarding step, out of which �ve basic functions
are deleted in the backward step process to obtain an
optimum model for the prediction of Cp. Thus, the
�nal MARS model is restricted to 12 numbers of basic
functions. Here, four input parameters are used for
the development of MARS model to predict Cp as the
output parameter. RSS and GCV criteria are also
performed to know the importance of the predictors
using Eqs. (7) and (8), respectively, which are given
in Table 2. The ranking of parameters as per RSS and
GCV criteria is as follows: radian (�) (1), d=b (2), H=D
(3), and R=D (4).



2972 M. Mallick et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 2967{2984

Table 2. Generalized Gross-Validation (GCV) and
Residual Sum-of-Square (RSS) criteria analysis in
Multivariate Adaptive Regression Spline (MARS) model.

Parameters GCV RSS

radian (�) 100 100

d=b 27.1 29.3

H=D 12.4 15

R=D 7.2 11.5

The surface mean pressure coe�cient (Cp) is
quanti�ed through linear arrangement of the constant
{0.39 for surface 1. The basis functions, shown in Ta-
ble 3, super imposed with their respective coe�cients
were achieved by the models.

Finally, the optimal model aimed at predicting Cp
on surface 1 is presented as follows:

Cp = �0:39 +
12X
i=1

ciBi(x); (10)

where Cp is the average pressure coe�cient at a face,
Bi(x) the basic function, and ci the coe�cient.

3.3.3. Development of model for surface 2
For the second surface, 12 basis functions were used
initially in the forwarding step out of which 8 basis
functions were deleted through the backward step pro-
cess to obtain an optimum model to predict the value of
Cp. Therefore, the �nal MARS model was restricted to
four basis functions. Here, three input parameters for
the development of MARS model were taken to predict
the value of Cp as the output parameter. The surface
mean pressure coe�cient (Cp) was quanti�ed through

Table 4. Basis functions Bi(x) and coe�cients (ci) used
for obtaining Multivariate Adaptive Regression Spline
(MARS) model.

Basis Function, Bi(x) ci

B1 (x) = max (0; (R=D)� 0:27) {2.1

B2 (x) = max (0; 1� radian(�)) {1.5

B3 (x) = max (0; radian (�)� 1:6) {0.72

B4 (x) = (d=D)� (R=D)�max (radian (�)� 1) {0.29

linear arrangement of the constant 0.8 for the second
surface.

Finally, the following optimal model was pro-
duced for prediction of Cp value on surface 2:

Cp = 0:8 +
4X
i=1

ciBi(x): (11)

The values of Bi(x) with their respective coe�cients
(ci) are shown in Table 4.

4. Model performance assessment

It is important to estimate the sensitivity of each
parameter of the proposed model to its signi�cance.
The sensitivity analysis is used to evaluate the inde-
pendent parameters proposed by Barati et al. [63],
Barati [64], and Akhbari and Barati [65] for 
ood
routing study, and they recommended analyzing the
in
uence of each parameter. Similarly, Gandomi et
al. [66] studied the e�ect of multiple parameters on a
single result. The percentage of sensitivity (Si) for the
independent parameters was established through the
following expressions:

Table 3. Basis functions Bi(x) and coe�cients (ci) used for obtaining Multivariate Adaptive Regression Spline (MARS)
model for surface 1.

Basis Function, Bi(x) ci

B1 (x) = max (0; 2� (d=b)) 0.39

B2 (x) = max (0; (R=D)� 0:3) {1.4

B3 (x) = max (0; radian (�)� 0:52) {0.93

B4 (x) = max (0; radian (�)� 1:05) 0.65

B5 (x) = max (0; 1:57� radian (�)) 1.3

B6 (x) = max (0; radian (�)� 1:57) 0.65

B7 (x) = (R=D)�max (0; 1:57� radian (�)) {1.5

B8 (x) = max (0; 2� (d=b))�max (0; (R=D)� 0:25) 1.8

B9 (x) = max (0; 2� (d=b))�max (0; radian (�)� 1:57) {0.24

B10 (x) = max (0; 2� (d=b))�max (0; 1:57� radian (�)) {0.3

B11 (x) = max (0; 0:67� (H=D))�max (0; radian (�)� 0:52) 0.22

B12 (x) = max (0; 0:3� (R=D))�max (0; 1:047� radian (�)) {3.1
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Table 5. Sensitivity analysis of di�erent parameters.

Parameters d=b H=D R=D �

Sensitivity (%) 13.55 46.68 2.02 37.59

Ni = fmax(xi)� fmin(xi); (12)

Si(%) =
NiPn
i=1Ni

� 100; (13)

where fmax(xi) and fmin(xi) are the corresponding
maximum and minimum values of predicted result over
the ith independent factor by considering the mean
values of former factors. Si denotes the percentage of
sensitivity, as given in Table 5, for individual factors.

The testing of the model performance is a vital
task following the development of a model, where a
comparison between the observed (Cpoi) and predicted
(Cppi) values of Cp is made. The interpretation of
the MARS model is demonstrated through their stan-
dard statistical error calculations such as coe�cient
of correlation (R2), Root-Mean-Square-Error (RMSE),
Mean Absolute Error (MAE), and the Mean Absolute
Percentage Error (MAPE). The values of R2, RMSE,
MAE, and MAPE were determined by Gandomi et
al. [66] and Ebtehaj et al. [67] through the following
equations:

R2 =

NP
i=1

�
Cpoi � Cpo�2 �Cppi � Cpp�2

NP
i=1

�
Cpoi � Cpo�2 NP

i=1

�
Cppi � Cpp�2 ; (14)

MAE =

NP
i=1
jCpoi � Cppij

N
; (15)

RMSE =

vuuut NP
i=1

(Cpoi � Cppi)2

N
; (16)

MAPE =

NP
i=1

� jCpoi�Cppij
Cpoi � 100

�
N

; (17)

where (Cpoi) and (Cppi) are the observed and the
predicted values of Cp, respectively, Cpo the mean of
the observed Cp values, Cpp the mean of the predicted
Cp, and N the number of data samples.

The closure is the value of R2 set to 1 and it
shows a favorable correlation between the observed and
predicted values of various models. MAE measures the
closeness between the predicted and observed values,
while RMSE shows the deviation of the predicted value
from the observed value. MAE and RMSE have a
unit similar to the dependent input value, i.e., a lower
value of predictive variables depicts a better prediction

model. MAE and RMSE is converted to unit less
as NMAE and NRMSE for anonymous consideration
of the model for various types of dataset. Therefore,
MAE and RMSE denote percentages of the di�erence
between maximum and minimum predicted values,
which are the normalized values. The normalized
values of RMSE and MAE are expressed as Normalized
Root Mean Square Error (NRMSE) and Normalized
Mean Absolute Error (NMAE), respectively, which are
presented in the following:

NMAE =
MAE

max
�
Cp
��min

�
Cp
� ; (18)

NRMSE =
RMSE

max
�
Cp
��min

�
Cp
� : (19)

5. Results and discussion

5.1. Windward surface (surface 1) of C-
shaped model buildings

Following the development of the model (Eq. (10)), an
attempt is made to test the strength. A comparison
(Figure 3) is made between the predicted values of
Cp using the developed model (Eq. (10)) and the
corresponding observed values of Cp.

It is clearly seen from the above �gure that the
predicted values of Cp are in good agreement with the
corresponding observed values.

The authors also compared the predicted results
with the values obtained using di�erent equations
(Eqs. (1) and (2)) on the surfaces of the building
models. The comparisons of the experimental values
of Cp (with the angle of incidence) and those obtained
from di�erent models including the proposed model,
are shown in Figures 4 to 7. Here, the authors
attempted to show the curvature e�ect on Cp by

Figure 3. Comparison between observed and predicted
surface mean pressure coe�cient (Cp) values for surface 1.
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Figure 4. Comparison between observed Cp data and predicted values of di�erent curvatures.

changing side ratios. In Case I, the variations in Cp
with the angle of incidence for di�erent curvatures are
shown (Figure 4(a) to (d)) by maintaining the side ratio
(D=B) as 1 and height ratio (H=D) as 0.67. In Case II,
height ratio (H=D) and radius of curvature (R) are
kept constant and variation in Cp with the angle of
incidence � at di�erent side ratios, i.e. D=B and d=b,
is shown in Figure 5(a) to (d). In Case III, height ratio
(H=D) and radius of curvature (R) are kept constant
and variations in Cp with the angle of incidence � at
di�erent frontal ratios, i.e., D=B and d=b, are shown
in Figure 6(a) to (d). In Case IV, the variation in Cp
with the angle of incidence is shown at di�erent height
ratios (Figure 7(a) to (d)) by maintaining the side ratio
(D=B; d=b) and radius of curvature (R) constant as 1,
1.5, and 0.5, respectively.

Case I: Variation of surface mean pressure coe�cient
(Cp) with the angle of incidence (�) for di�erent
curvatures. Figure 4(a) to (d) show the values Cp
of surface 1 (a front face) of the model as a function
of the wind angle of incidence (�). It can be seen that
the prediction obtained by the MARS model and the
corresponding observed data are in good agreement
with the S&C equation data in the entire range
of incidence angles. However, results of the M&P

equation prediction are in close agreement with the
MARS and observed data in the lower range of wind
incidence angles, i.e., 0�to 90�and the higher range of
120� to 180�. In the middle range of wind incidence
angles (90�to 120�), M&P equation data deviate from
those of MARS and S&C data. M&P performs
usually better than S&C, as stated by Muehleisen
and Patrizi [35]. The comparison between the data
obtained by MARS model and those by other two
models authenticates the chosen MARS model and
the e�ectiveness to forecast Cp for the entire series of
wind incidence angles;

Case II: Variation of surface mean pressure coe�-
cient (Cp) with the angle of incidence (�) at di�erent
side ratios. Figure 5(a) to (d) shows Cp on surface 1
at di�erent side ratios D=B and d=b as a function of
the wind angle of incidence �. Here, MARS unveils
the correctness of the calculated data for any D=B
and � and it facilitates accurate prediction of the
calculated data. MARS prediction is closer to the
observed data in all the cases. The predictions made
by MARS model and the corresponding observed
data are in close agreement with the S&C equation
data in the entire range of incidence angles. As
in Case I, M&P equation predictions are in close
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Figure 5. Comparison between observed Cp data and predicted values at di�erent side ratios.

agreement with others only in the lower range of wind
incidence angles, i.e., 0� to 90� and the higher range
of 120� to 180�. However, in the middle range of wind
incidence angles (90� to 120�), M&P equation data
deviate from those of MARS and S&C data;

Case III: Variation of surface mean pressure co-
e�cient (Cp) with the angle of incidence (�) at
di�erent frontal ratios. Figure 6(a) to (d) shows
Cp on surface 1 at di�erent frontal ratios of D=B
and d=b as a function of the wind angle of incidence
(�). Here, MARS ensures a good correlation of the
measured data for any D=B and � and �nds an
accurate prediction of the measured data. MARS
prediction is closer to the observed data in all of the
cases. The predictions made by MARS model and the
corresponding observed data are in close agreement
with the S&C equation data in the entire range
of incidence angles. As in Case I, M&P equation
predictions are in close agreement with others only
in the lower range of wind incidence angles i.e., 0� to
90� and the higher range of 120� to 180�. However,
in the middle range of wind incidence angles (90� to
120�), the data of M&P equation deviate from those
of MARS and S&C;

Case IV: Variation of surface mean pressure coe�-
cient Cp with the angle of incidence (�) at di�erent

height ratios. Figures 7(a) to (d) show Cp on surface
1 of the model as a function of the wind incidence
angle �. It can be seen that the predictions of Cp by
the developed MARS model and other two S&C and
M&P equations are in good agreement with observed
data in the lower range of angles of incidence (0�
to 60�) and again beyond 150�. The predictions by
M&P model in the middle range of angles of incidence
(60� to 150�) deviate from others. Moreover, the
predictions by MARS models are in close agreement
with the observed data and S&C predictions in the
entire range of angles of incidence.

The sensitivity analysis of each parameter in-
volved is obtained and presented in Table 5.

Table 5 shows that the pressure coe�cients are
signi�cantly a�ected by d=b, H=D, R=D, and �.
The height ratio (H=D) has the highest in
uence on
pressure coe�cient (46.68%) followed by the angle (�)
and side ratio (d=b) of 37.59% and 13.55%, respectively.
The R=D ratio has a sensitivity rate of 2.02% in
u-
encing the capacity of predicting the average pressure
coe�cient. The R=D ratio has a quite insigni�cant
e�ect on the average pressure coe�cient.

Gandomi et al. [66] carried out error analysis
and obtained Coe�cient of Determination (R2), MAE,
RMSE, and MAPE. Table 6 shows the error analysis of
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Figure 6. Comparison between observed Cp data and predicted values at di�erent frontal ratios.

Table 6. Error analysis of predicted Cp by Multivariate
Adaptive Regression Spline (MARS) against reported
models for experimental data.

Models S&C M&P MARS

ME (%) {4.80 {27.22 {2.61

R2 0.77 0.82 0.99

MAE 0.24 0.23 0.05

RMSE 0.31 0.29 0.06

MAPE (%) {21.59 {32.10 {5.83

the present experimental dataset with di�erent predic-
tive models. From the above analysis, we can conclude
that the MARS model could outperform other models
in accurately predicting the coe�cient of pressure on
the surface of the C-shaped model. Better results of
error analysis show the acceptability of the MARS
model for the practical application.

For a better understanding, the performances of
the models, NMAE in % and NRMSE in %, are
compared with S&C and M&P equations as given
in Figure 8(a) and (b), respectively. The developed
MARS model obtains lower values of NMAE and

Table 7. Error analysis of predicted Cp by Multivariate
Adaptive Regression Spline (MARS) model for surface 2.

ME (%) R2 MAE RMSE MAPE

{0.28 0.98 0.07 0.09 35.94

NRMSE for the data concerning the S&C and M&P
equations.

5.2. Side surface (surface 2) of C-shaped
model buildings

Another attempt is also taken to predict the values
of surface mean pressure coe�cient for side surface
(surface 2) of C-shaped building models which is
provided in Eq. (11). A comparison was made between
the predicted values of Cp using the developed model
(Eq. (11)) and the corresponding observed values of Cp.
As seen in Figure 9, the forecasted values of Cp were in
good agreement with the corresponding observed ones.
The error analysis was also carried out to show the
acceptability of the developed model on the side face.
Table 7 shows the error analysis of the present experi-
mental dataset with predictive models on the side face.

The comparison between the predicted values
of Cp using the developed MARS model and the
corresponding observed one with the angle of incidence
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Figure 7. Comparison between observed Cp data and predicted values of di�erent height ratio.

Figure 8. Comparison between the performance of Multivariate Adaptive Regression Spline (MARS) model and Swami
and Chandra (S&C) and M&P equations.

was also made for the varying cases of curvatures, side
ratio and frontal ratio (D=B and d=b), and height ratio
H=D.

Figure 10(a) to (d) show the predicted and ob-
served values of Cp with angles of incidence for di�erent
curvatures. Similarly, the predicted and observed
values of Cp with angles of incidence for varying cases
of side ratio and frontal ratio (D=B and d=b) as well
as height ratio (H/D) are presented in Figures 11(a) to
(d), 12(a) to (d), and 13(a) to (d), respectively.

According to the above �gures, the predicted

values of Cp are in fairly good agreement with the
corresponding observed ones.

5.3. Validation of the developed model with
TPU dataset

The predictions made by the developed model were
compared with the data of 
at roof building models
called TPU Data measured at Wind Engineering in-
formation Centre, Tokyo Polytechnic University [68].
Here, surface mean pressure coe�cients (Cp) on the
front windward surface were compared to determine
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Figure 9. Comparison between observed and predicted
values of Cp for surface 2.

the compatibility of the developed model (Eq. (10)).
The TPU data of �ve building models with varying
wind angles, side ratios (D=B = 1, 0.4, 0.667, 1.5,
and 2.5), and height ratios (H=B = 1=4, 2/4, 3/4,
and 4/4) are used for comparative studies. The Cp
values for wind angles (�) from 0� to 180� at 30�
intervals were calculated by using the developed MARS

Table 8. Error analysis of predicted Cp data using
Multivariate Adaptive Regression Spline (MARS) model
with Tokyo Polytechnic University (TPU) dataset.

ME (%) SD R2 MAE RMSE MAPE

6.69 19.05 0.99 0.06 0.07 {1.95

model (Eq. (10)) and compared with corresponding
TPU data (presented in Figure 14). The error analysis
for predicting surface mean pressure coe�cient of TPU
dataset was also performed in terms of Mean Percent-
age (ME) error, Standard Deviation (SD), coe�cient of
determination, MAE, RMSE, and MAPE as shown in
Table 8 to check the compatibility of developed model
equation.

6. Conclusions

From the results and discussion, the following conclu-
sions were drawn:

� The developed model using Multivariate Adaptive
Regression Spline (MARS) could be satisfactorily
used to assess the surface mean pressure coe�cient
on the surfaces of C-shaped building model for all

Figure 10. Comparison between the predicted and observed values of Cp for di�erent curvatures.
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Figure 11. Comparison between the predicted and observed values of Cp at frontal ratio.

Figure 12. Comparison between the predicted and observed values of Cp at side ratio.
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Figure 13. Comparison between the predicted and observed values of Cp at height ratio.

Figure 14. Comparison between Multivariate Adaptive Regression Spline (MARS) predicted Cp values and Tokyo
Polytechnic University (TPU) Dataset on surface 1.
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the cases with wind angle of incidence, curvatures,
and aspect ratio;

� The predictions of surface mean pressure coe�cient
values obtained by using the developed model were
in good agreement with the corresponding experi-
mental data;

� The predicted values of Cp using the developed
MARS model were in good agreement with those
by the previously developed S&C and M&P model
equations;

� The values of the mean percentage error, mean
absolute error, mean absolute percentage error, and
root mean square error of the predicted results by
the MARS model were the least as compared to
predictions by S&C and M&P models. It was shown
that the proposed model predicted the surface mean
pressure coe�cient to be closer to the experimental
data;

� The developed MARS model was found compatible
with the actual Tokyo Polytechnic University (TPU)
dataset.
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Nomenclature

D Overall depth of the model (mm)
B Overall breadth of the model (mm)
H Height of the model (mm)
d Depth of the model (mm)
b Breadth of the model (mm)
R Radius of Curvature (mm)
� Angle of incidence (degree)
Cp Pressure coe�cient

Cp Surface mean pressure coe�cient
p Mean pressure data obtained

experimentally
Po Total pressure in the settling chamber
P1 Static pressure in the reference tube
R2 Coe�cient of regression
Bi(x) Basic functions
Ci Coe�cients

MARS Multivariate Adaptive Regression
Spline

DSA Digital Sensor Array
TPU Tokyo Polytechnic University
GCV Generalized Cross-Validation
RSS Residual Sum-of-Squares
ME Mean percentage Error
SD Standard Deviation
MAE Mean Absolute Error
NMAE Normalization Mean Absolute Error
RMSE Normalization Root Mean Square

Error
NRMSE Root Mean Square Error
MAPE Mean Absolute Percentage Error
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