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Abstract. This paper introduces the �nite element solutions of static de
ection and stress
values for functionally graded structures by considering variable grading patterns (power-
law, sigmoid, and exponential), including porosity e�ect. Unknown values are obtained
through computations via a customized computer code using cubic-order displacement
functions considering the varied distributions of porosity (even and uneven) through
the panel thickness. Also, the values are simulated through design software (ANSYS)
to establish the present numerical solution accuracy. The comparison and the element
sensitivity behavior of the present numerical model are veri�ed by solving di�erent kinds
of numerical examples available in the published domain. At last, the e�ects of several
geometry-related parameters (aspect ratio, curvature ratio, thickness ratio, porosity index,
type of porosity, power-law exponent, geometrical con�guration, and support conditions)
a�ecting the structural sti�ness and the corresponding outcomes (de
ection and stress) of
the Functionally Graded (FG) structure are evaluated and measured using the proposed
numerical model.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Functionally Graded Materials (FGMs) are known as
the advanced form of the layered composite structure
with an adequate variety of material composition, i.e.,
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metal to ceramic. The variation of constituents is
achieved numerically via a di�erent mathematical form
and named according to the pattern type. Out of
all grading types, three major types of grading pat-
terns, i.e., power-law (PWL-FGM), exponential (EXP-
FGM), and sigmoid (SIG-FGM) [1], are adopted for
structural implementations. It is of signi�cance to men-
tion that the porosity within the part component may
reduce the total structural strength and/or sti�ness
and the subsequent performances of the components.
Therefore, the e�ects of porosity on the numerical
modeling for graded structural analysis represent one of
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the important parameters that could not be neglected.
Moreover, previous studies demonstrate that the vari-
able distribution pattern of porosity, i.e., even and
uneven types [2], may considerably a�ect the structural
responses.

Researchers have investigated Functionally
Graded (FG) structures numerically to predict the
structural responses (bending, vibration and buckling)
by using either established or modi�ed displacement
kinematic theories. In this respect, a number of
relevant studies are briefed here to �nd the necessary
knowledge gap in this present context. To this
end, a Three-Dimensional (3D) elasticity solution
is employed [3] to express the bending strength
of FG plate structures under transverse loading.
The Static responses of all Sides Simply Supported
(SSSS) functionally graded rectangular plates were
considered using generalized Shear Deformation
Theory (SDT) [4] subjected to transverse mechanical
loading. Similarly, the e�ect of coating on structural
sti�ness and subsequent de
ection parameters of the
graded plate under the in
uence of transverse loading
was reported [5] by considering the sigmoid type of
grading through the panel thickness. Moreover, the
static de
ections of thick elastic SIG-FGM (Al2O3/Al)
beam under the e�ect of uniformly distributed
transverse loading were reported [6] considering the
nonvariant type of Poisson's ratio. The 3D Finite
Element (FE) solutions of the static de
ection values
of FGM 
at components due to the variations of
aspect ratio were simulated [7] for di�erent grading
rules, i.e., PWL-FGM, SIG-FGM, and EXP-FGM.
Subsequently, to improve the modeling e�ciency,
Carrera's Uni�ed Formulation (CUF) was proposed
and utilized to analyze the FG structure under
the combined thermo-mechanical loading [8]. Also,
the CUF-type kinematic model was adopted to
evaluate de
ection values for the unidirectional
FG structure [9]. In addition to di�erent modi�ed
kinematic models, the First-order Shear Deformation
Theory (FSDT) model [10] was also adopted to
compute the bending and free vibration responses
of the FG plate. Further, to maintain the shear
stress continuity, the Higher-order Shear Deformation
Theory (HSDT) [11] kinematic model has drawn
much attention of di�erent researchers following the
report of Reddy on measuring di�erent responses, i.e.,
eigenvalue solutions and static bending responses of
the FG structure. Similarly, Finite Element Method
(FEM) is the most common type of the numerical
tool utilized to model and predict the bending and
free vibration frequency behavior of FG structures,
i.e., trapezoidal plate reinforced with Graphene
Nanoplates (GNPs) [12]. The smooth cell-based
three-noded plate element in conjunction with the
FSDT is utilized to compute the values of static and

dynamic de
ection of the FG plate [13]. Similarly,
the Finite Strip Method (FSM) [14] was extended to
analyze the buckling behavior of the FG plate under
the in-plane compressive loading. Subsequently, a
new quasi-3D Hyperbolic SDT (HySDT) model was
established [15] to compute vibration and de
ection
responses of the graded plate-type structure. Also, the
simple FSDT integrated with the mesh-free moving
Kriging method was developed [16] to compute
the static bending and free vibration responses of
the FGM structure. To determine the enhanced
frequency values of the nanotube-reinforced graded
structure [17], variable distribution was considered
through the thickness of the plate via the FSDT
model. Similarly, the graded Carbon Nanotube
(CNT) reinforced composite spherical shell structure
frequencies [18] were obtained using Sander's type
shell kinematics in conjunction with the FSDT.
The dynamic buckling responses of the viscoelastic
nanocomposite laminated conical shell subjected to
magneto-hygrothermal load were reported [19] using
FSDT. Also, the frequency was controlled using smart
material concept [20] for the laminated sandwich
shell components with piezoelectric layers via the
layer-wise FSDT. The Eigen characteristics of the
FG nanoplates were performed [21] considering the
nonlocal Trigonometric SDT (TrSDT) to predict the
accurate responses. Similarly, the quasi-3D TrSDT
for plates including the thickness stretching e�ect
was utilized to obtain frequency responses [22] of the
FG plate. A size-dependent mesh-free model was
derived [23] in the framework of the HSDT and the
nonlocal Eringen's elasticity theory to obtain the
static de
ection and frequency responses of the FG
CNT-reinforced composite nanoplates. The bending,
free vibration, and mechanical buckling behaviors of
the FGM plates were illustrated [24] using a newly
developed HSDT model. Also, a single-variable
re�ned plate theory was established [25] to compute
the static bending data of the FG plate component.
The e�ect of size on the de
ection values of the
FG curved nanobeams was reported [26] using the
Timoshenko beam theory considering a stress-driven
nonlocal integral model. Vibroacoustic analysis of the
doubly curved thick shells was carried out in [27,28]
based on the 3D sound propagation approach and
state space solution. Also, the acoustic analysis of
sound transmission loss through in�nite FG thick
plate and laminated composite plate was carried
out [29,30] using HySDT and two-variable re�ned
plate theory. The shear deformation shallow shell
theory and third-order SDT were utilized [31{33] to
investigate the acoustic behavior of doubly curved
composite shells. Also, the re�ned integral plate
theory was used [34{37] to obtain the structural
responses (buckling, bending, and vibration) of the FG
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plates and graphene sheets. The static and dynamic
behaviors of the FG beams and nanoplates were
investigated [38,39] using quasi 3D SDT and HySDT.
The hygro-thermo-mechanical buckling responses and
thermomechanical bending responses of FG sandwich
plates were obtained [40,41] using novel and nth order
shear deformation theories. The nonlocal higher-order
theory was employed [42,43] for the vibration,
buckling, postbuckling, and bending analyses of
various structures (annular nanoplate and graphene
sheets). The dynamic behavior of Graphene Platelets
(GPLs) reinforced nanocomposite sandwich truncated
conical shells and FG-CNT reinforced sandwich
microplates was investigated [44,45] using various
kinematic models (FSDT, HSDT, and exponential
SDT). A hybrid analytical-intelligent approach was
used [46] to conduct the fuzzy reliability analysis of
the composite beams reinforced by Zinc Oxide (ZnO)
nanoparticle.

In general, porosity-type defect can be induced in
FG structural components while manufacturing, which
causes a reduction in the total structural strength and
diminishes the reliability of �nal results. Therefore,
a considerable number of earlier published papers
relevant to the porous FG structures are discussed
in the following. The elastic buckling and static
de
ection values of shear deformable FG porous beam
components were evaluated [47] using Timoshenko
beam theory. The static de
ection, frequency, and
buckling responses of porous FG micro-plates were
obtained using classical and FSDT [48] kinematics.
Moreover, the Strain Gradient Theory (SGT) was
adopted to examine the nonlinear bending and the
frequency values [49] of the FG porous tubes. Also,
the nonlinear de
ections of the FG porous micro/nano-
beams reinforced with GPLs were obtained [50] using
SGT. Similarly, the e�ect of porosity on the structural
responses (vibration, bending, and dynamic) of di�er-
ent FGMs, i.e., plates resting on elastic foundation and
beams, was presented [51{54] by employing various
theories (quasi-3D HySDT, nonlocal nth order SDT,
and sinusoidal SDT).

Following a comprehensive review, it was found
that the majority of research studies evaluated the
FG structure by considering only PWL-type grading.
Also, the e�ect of porosity and its distribution pattern
in
uencing the �nal responses of the graded structure
have not drawn substantial attention so far. Further,
the review indicates that di�erent kinematic models are
adopted including the solution techniques to evaluate
and measure the responses. The completed researches
point to the existence of a substantial gap, i.e., the
e�ect of variable grading pattern in association with
porosity in the framework of shear deformation kine-
matics that did not receive any attention in the past.
Hence, the authors attempted, for the �rst time, to

derive a generic mathematical formulation for graded-
type structures with emphasis on all the three types
of grading pattern (PWL, SIG, and EXP), variable
porosity distribution (even and uneven), and geometri-
cal shape to measure the de
ection and stresses using
the FE technique in the framework of the HSDT
kinematics. In this regard, a specialized computer
code is prepared in the MATLAB platform utilizing
the isoparametric FE formulation to compute the
de
ection and stress parameters. The de
ection and
the stress responses are compared with the published
values to demonstrate the inevitability of using HSDT-
type kinematic model including the in
uences of the
grading pattern, porosity, and its distribution. More-
over, the responses are compared with the simulated
data obtained via the commercial FE tool (ANSYS)
to capture the comprehensive behavior of the proposed
model. Finally, static bending and stress responses of
di�erent types of FGM structure including the e�ect of
porosity, distribution of porosity, and grading patterns
are measured by solving a series of examples and are
explained subsequently.

2. Mathematical formulation

2.1. E�ective FGM properties
Firstly, the steps of e�ective material property evalu-
ation of graded structure are taken by considering the
variable grading pattern along the thickness direction
(�z-axis) to achieve the desired FG model. In general,
the top and bottom surfaces (�z = h=2 and �z =
�h=2) of the FG panel are considered ceramic and
metal-rich, respectively. Further, the elastic property
variation has been obtained numerically using the
available methodologies, i.e., Voigt's model (simple rule
of mixture) in association with the volume fractions of
material along the thickness direction. In the following
subsection, material property variations of three types
of grading pattern, i.e., PWL-FGM, SIG-FGM, and
EXP-FGM, with and without porosities (even and
uneven) are deliberated.

2.1.1. PWL-FGM
According to PWL-kind grading, the elastic property
variation [1] through the thickness direction can be
expressed as follows:

P = (P c � Pm)Vfc + Pm: (1)

Now, the desired porosity including the distribution
types [2], i.e., even and uneven types, is presented in the
following equations. Of note, the density of porosity
is high in the middle region of the cross-section and
decreases linearly towards the top/bottom surface for
the uneven distribution [55].

P = (P c � Pm)Vfc + Pm � 0:5�� (P c + Pm); (2)
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P =(P c � Pm)Vfc + Pm � 0:5�

� (P c + Pm)
�

1� 2 j�zj
h

�
; (3)

where Vfc =
�
0:5 + �z

h

�nz and Vfm = 1� Vfc .
The FG panel geometry is shown in Figure 1,

whereas Figure 2 shows the material grading with
even and uneven types of porosity distribution. Also,

Figure 1. Geometry of Functionally Graded Material
(FGM) panel.

the relation between volume fraction variation and
thickness ratio according to PWL-FGM method is
shown in Figure 3.

2.1.2. SIG-FGM
The ceramic volume fraction in the PWL-FGM method
changes rapidly near the bottom and top sides for
nz < 1 and nz > 1, respectively. Therefore, the
smooth variation of material properties is obtained via
two power-law functions [1]. Moreover, the individual
volume fractions are expressed using the rule of mixture
and provided in the following equations (Eqs. (4)
and (5)). Similarly, the properties of SIG-FGM in
association with porosity distribution, i.e., even and
uneven types, are calculated using the subsequent steps
as given in Eqs. (6) and (7) and Eqs. (8) and (9),
respectively [56]:

P = (P c � Pm)
�
1� 0:5

�
1� 2�z

h

�nz�
+ Pm

for 0 � �z � h=2; (4)

P = (P c � Pm)
�
0:5
�

1 +
2�z
h

�nz�
+ Pm;

for � h=2 � �z � 0; (5)

Figure 2. Functionally Graded (FG) panel with even and uneven porosity distributions.

Figure 3. Volume fraction variation in PWL-FGM.
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P =(P c � Pm)
�
1� 0:5

�
1� 2�z

h

�nz�
+ Pm

� 0:5��(P c + Pm) for 0 � �z � h=2; (6)

P =(P c � Pm)
�
0:5
�

1 +
2�z
h

�nz�
+ Pm

� 0:5��(P c + Pm) for �h=2��z�0: (7)

P =(P c � Pm)
�
1� 0:5

�
1� 2�z

h

�nz�
+ Pm

� 0:5�� (P c + Pm)
�

1� 2 j�zj
h

�
for 0 � �z � h=2; (8)

P =(P c � Pm)
�
0:5
�

1 +
2�z
h

�nz�
+ Pm

� 0:5�� (P c + Pm)
�

1� 2 j�zj
h

�
for � h=2 � �z � 0: (9)

The relation between volume fraction and thickness
ratio for SIG-FGM is shown in Figure 4 and it is
observed that the volume fraction variation of PWL-
FGM and SIG-FGM is the same at nz = 1.

2.1.3. EXP-FGM
The e�ective material property using EXP-FGM
method [1] is described by the following equation given:

P = P c � e� 1
2 ln( Pc

Pm )(1� 2�z
h ): (10)

Now, the e�ect of even and uneven porosity distri-
butions on the material properties of EXP-FGM is
obtained by the following equations:

P = P c � e(� 1
2 ln( Pc

Pm )(1� 2�z
h )�0:5��ln( Pc

Pm )); (11)

P =P c�e(� 1
2 ln( Pc

Pm )(1� 2�z
h )�0:5��ln( Pc

Pm )(1� 2j�zj
h )):

(12)

The volume fraction distribution by EXP-FGM
method in the thickness direction is shown in Figure 5.

2.2. Displacement �eld based on HSDT
The material displacement �eld model has been ex-
pressed in the following lines using the HSDT poly-
nomial [57]:

Figure 4. Volume fraction variation in SIG-FGM.

Figure 5. Volume fraction variation in EXP-FGM.
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�xx(�x; �y; �z) = �xx0(�x; �y) + �z x(�x; �y)

+ �2
z�
�
xx0

(�x; �y) + �3
z 
�
x(�x; �y);

�yy(�x; �y; �z) = �yy0(�x; �y) + �z y(�x; �y)

+ �2
z�
�
yy0

(�x; �y) + �3
z 
�
y(�x; �y);

�zz(�x; �y; �z) = �zz0(�x; �y): (13)

2.2.1. Strain-displacement relations
The strain-displacement expression for the FGM struc-
ture is represented in Green-Lagrange sense as fol-
lows [58]:

f"g = "l =

8>>>><>>>>:
"�x�x
"�y�y

�x�y

�x�z

�y�z

9>>>>=>>>>; =

8>>>><>>>>:
�xx;�x
�yy;�y

�xx;�y + �yy;�x
�xx;�z + �zz;�x
�yy;�z + �zz;�y

9>>>>=>>>>; ; (14)

where:

�xx;�x =
@�xx
@�x

+
�zz
R�x

; �xx;�y =
@�xx
@�y

;

�xx;�z =
@�xx
@�z

; �yy;�x =
@�yy
@�x

;

�yy;�y =
@�yy
@�y

+
�zz
R�y

; �yy;�z =
@�yy
@�z

;

�zz;�x =
@�zz
@�x

� �xx
R�x

; �zz;�y =
@�zz
@�y

� �yy
R�y

:

Now, the linear strain tensor is:

f"lg =

8>>>><>>>>:
"0
�x
"0
�y

"0
�x�y
"0
�x�z
"0
�y�z

9>>>>=>>>>;+ �z

8>>>><>>>>:
k1
�x
k1
�y

k1
�x�y
k1
�x�z
k1
�y�z

9>>>>=>>>>;+ �2
z

8>>>><>>>>:
k2
�x
k2
�y

k2
�x�y
k2
�x�z
k2
�y�z

9>>>>=>>>>;
+ �3

z

8>>>><>>>>:
k3
�x
k3
�y

k3
�x�y
k3
�x�z
k3
�y�z

9>>>>=>>>>; ;
(15)

or:
f"lg=[Tl] f"lg=f"0g+ �zfk1g+�2

zfk2g+�3
zfk3g:

(16)

2.2.2. FE formulation
For the proposed mathematical modeling, a nine-noded
isoparametric quadrilateral Lagrangian element with
nine Degrees Of Freedom (DOF) per node is used for
discretization. The FE presentation [59] of the mid-
plane displacement vector using the available shape
functions [N ] is provided as follows:

f�0g =
9X
i=1

[N ]f�0ig; (17)

where:

f�0ig =
n
�xx0i

�yy0i
�zz0i  xi  yi ��xx0i

��yy0i
 �xi  �yi

oT
:

Now, the mid-plane strain term is given below:

f"lg = [B] f�0ig : (18)

2.2.3. Stress-strain relation
The generic form of the constitutive relations [57] for
the FGM structural component is expressed as follows:

f�g =

8>>>><>>>>:
��x�x
��y�y
��x�y
��x�z
��y�z

9>>>>=>>>>;
=

2666664
E

1��2
E��
1��2 0 0 0

E��
1��2

E
1��2 0 0 0

0 0 E
2(1+�) 0 0

0 0 0 E
2(1+�) 0

0 0 0 0 E
2(1+�)

3777775
8>>>><>>>>:
"�x�x
"�y�y

�x�y

�x�z

�y�z

9>>>>=>>>>;
=
� �Q
� f"g: (19)

Now, the total strain energy of the FG structure is
expressed as follows:

U = 0:5�
Z
v

f"gT f�gdV: (20)

Further, the energy functional can be rewritten by
utilizing the corresponding stress and strain terms in
Eq. (20) and conceded to the following form:

U = 0:5�
Z
A

�f"lgT [D] f"lg
�
dA; (21)

where:

[D] =

h=2Z
�h=2

[Tl]
T [Q][Tl]d�z:

Similarly, the work done because of the externally
applied mechanical load (q) is expressed as follows:

W =
Z
A

f�0gT qdA; (22)

or:
W = f�0gT fFg: (23)

Additionally, the analysis has also been adopted for
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di�erent types of load intensities (uniformly distributed
load, step load, point load, etc.) as per the require-
ment.

2.2.4. Governing equations
The static de
ection values of the graded structure
are obtained through the variational form of the total
energy functional and solved to obtain the de
ection
parameters. The corresponding �nal form of the
structural equilibrium equation is presented in the
following:

�� = �(U �W ) = 0: (24)

The above equation has been modi�ed into the matrix
form using total sti�ness as well as force and displace-
ment vectors in the following equation:

[K]f�0g = fFg: (25)

Finally, the de
ection responses can be obtained by
solving Eq. (25).

2.3. Simulation model of FG structure
(ANSYS and APDL codes)

A simulation model for the unidirectional graded plate
has been developed in the ANSYS platform using
the batch input technique (ANSYS parametric design
language, APDL) for the validation purpose. The panel
model has utilized the SHELL281 element (available in
ANSYS element library) with six Degrees Of Freedom
(DOF) at each node. In general, ANSYS adopted the
FSDT type of displacement kinematics for modeling
the structural components. The static bending results
are obtained in the ANSYS platform for di�erent kinds

of FG structures. The detailed procedure for the
development of FG structure, modeling, and analysis
is elaborated in three major sub-steps as follows:

Step 1: Preprocessing. In the �rst step, necessary
input data relevant to the geometry (length `a' and
width `b' as well as the total thickness, `h') are given
to generate FG plate model. Additionally, the �nite
number of layers is de�ned in this step to obtain
smooth grading through the thickness (� 250). The
required material properties have also been included,
i.e., the metal and ceramic as per the de�ned relations
including the grading pattern. The plate model has
been discretized using SHELL281 element, as de�ned
earlier;

Step 2: Solution. The required end boundaries
are implemented in this step to avoid the rigid
body motion and the corresponding loading type (in
this analysis, uniformly distributed transverse load
adopted);

Step 3: Postprocessing. Finally, the static de
ection
responses of the FG plate model are obtained in
the pictorial form and the central de
ection values
are noted down for the validation purpose. Also,
a 
owchart is presented in Figure 6 to show the
modeling and solution steps through the simulation
tool. The given process is generalized in nature,
i.e., can be adopted to compute all di�erent kinds
of unknowns (number of element, solution type, de-

ections, and stresses). However, the present analysis
is only applied to predict the de
ection values.

Figure 6. Flowchart presentation of Functionally Graded Material (FGM) simulation modeling steps.
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Table 1. Material properties.

Material Properties
Modulus of elasticity (E) in GPa Poisson's ratio (�)

Ceramic Alumina (Al2O3) 380 0.3
Zirconia (ZrO2) 151 0.3

Metal Stainless Steel (SUS304) 201.04 0.3262
Aluminium (Al) 70 0.3

3. Results and discussions

Following a successful development of higher-order
�nite element formulation, an in-house customized
computer code has been developed for computational
purposes. The convergence behavior of the FE solution
has been veri�ed as a priori and extended for the com-
parison analysis. Also, the static bending and stress
results of the graded structure have been evaluated
computationally for di�erent design parameters, i.e.,
thickness ratio (S), aspect ratio (O), curvature ratio
(R=h), power-law exponent (nz), porosity index (�),
geometry, and boundary conditions. The necessary
elastic properties of the FG material constituents are
listed in Table 1.

3.1. Convergence and validation for bending
analysis

Now, to establish the currently proposed higher-order
FE model, few examples similar to the ones in the
Reference section are studied in this subsection. In
general, the convergence and validations are required
to verify the correctness of the present numerical
solution. Therefore, the convergence of all three types
of FG structures (PWL-FG, SIG-FG, and EXP-FG)
is obtained for the Al2O3/Al SSSS (all sides simply
supported) FG plate, as shown in Figure 7. From

Figure 7. Convergence of SSSS square Functionally
Graded Material (FGM) plate for de
ection parameter
(non-dimensional).

the given graph, it can be concluded that a mesh
(6�6) is su�cient to evaluate the �nal output (bending
de
ection) without deviating from the expected line.
The geometrical parameters are chosen similar to the
reference, i.e., a = b = 1 m, h = a=10, and nz =
2. The non-dimensional form of the de
ection [ �w =
10wEch3=(qa4), where w is the actual de
ection, Ec
is ceramic modulus, and load intensity q = 1 N/m2],
is utilized for the convergence and validation of PWL-
FG structure including the new results, if not stated
otherwise.

Further, the non-dimensional de
ection responses
for the validation study of all three types of FG
structure are presented in Figures 8, 9, and 10, showing
good agreement with the earlier published de
ection
values. The veri�cation has been completed for dif-
ferent material constituents according to the available
grading patterns, i.e., Al2O3/Al for PWL-FGM [4]
while ZrO2/Al properties [7] for another two cases
(SIG-FGM and EXP-FGM). Similarly, the responses
are computed for the simply-supported structural plate
including the given geometrical dimension (a = b = 1,
h = a=10) with di�erent values of the power-law expo-
nent. Also, SIG and EXP types of FG structures are
validated for the simply-supported plate with di�erent
values of aspect ratios and geometrical data as b = 1 m,
h = 0:02 m, and nz = 1. The non-dimensional form
used here is �w = 100wEmh3=((1� �2)� qa4).

Figure 8. De
ection parameter (non-dimensional) of
PWL-FGM.
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Figure 9. De
ection parameter (non-dimensional) of
SIG-FGM.

Figure 10. De
ection parameter (non-dimensional) of
EXP-FGM.

3.2. Validation of stress values
Similar to the de
ection parameter, the normal stress
values of the variable graded structure, i.e., PWL-
FGM, SIG-FGM, and EXP-FGM, are computed using
the current model and then, are compared with the
published data. Figure 11 shows a comparison of the
normal stress data of the present and the reference.
The responses are evaluated using the similar grading
pattern (PWL), material properties (Al2O3/Al), end
boundary condition (SSSS), and the power-law expo-
nents (nz = 0; 1; 2; 3; 5; 10;1) of the reference [60].
The non-dimensional form of the stress is presented
the same as the source, i.e., �x = �x � h=a � q.
Further, the validation of SIG and EXP types of FG
structures is also done for twelve values of aspect
ratio (O = 0:1; 0:25; 0:5; 0:75; 1; 2; 3; 4; 5; 6; 7; 8), ma-
terial properties (ZrO2/Al), and other relevant input
parameters (SSSS) similar to the reference [7] and
plotted in Figures 12 and 13, respectively. The non-
dimensional stress values (�x = �x � h2=a2 � q) are
obtained using the given formulae [7].

Figure 11. Non-dimensional stress of PWL-FGM
(a = b = 0:1, h = 0:01).

Figure 12. Non-dimensional stress of SIG-FGM (b = 1,
h = 0:02).

Figure 13. Non-dimensional stress of EXP-FGM (b = 1,
h = 0:02).

3.3. Numerical examples
After the successful examination and establishment of
the present numerical model (element sensitivity and
comparison test), the static de
ection characteristics
of each kind of FG structure including the variety of
porosity distribution (even and uneven) are investi-



820 P.M. Ramteke et al./Scientia Iranica, Transactions B: Mechanical Engineering 28 (2021) 811{829

gated. Further, new sets of numerical examples are
solved for di�erent porosity index values in conjunc-
tion with various in
uencing geometrical parameters
(aspect ratio, thickness ratio, power-law exponent,
curvature ratio, boundary condition, and geometry).
The new examples are solved using the properties of
Alumina (Al2O3) and Aluminium (Al) as the ceramic
and metal constituents of the FG structure, respec-
tively. The details of properties for each constituent
are provided in Table 1.

Now, the in
uence of the aspect ratio on the
de
ection (non-dimensional) values of SSSS FG plate
is determined for all three kinds of FG structure, as
given in Table 2. Based on the results, the non-
dimensional de
ection values are lowered down with
an increase in the aspect ratio. This occurs because
an increase in aspect ratio or a reduction in the width
of the structure causes an increment in the sti�ness

and, therefore, the de
ection of the FG structure is
reduced. Also, the rise in porosity causes an increment
in the de
ection values. Hence, it can be concluded
that the overall FG sti�ness follows the decreasing
slope with an increase in porosity. Further, the density
of pores in the uneven type of porosity distribution
pattern is higher in the central region of the thickness
and it reduces linearly towards the top and bottom
surfaces. Therefore, the uneven porosity distribution
shows higher strength than the even counterpart with
respect to the higher values of the porosity index.

Also, the e�ects of the thickness ratio values on
the FG plate structure are examined and shown in
Table 3 for all kinds of grading structure. The result
indicates that increase in thickness ratio (reduction in
thickness) causes a reduction in the static de
ection
data of the structure for all the values of porosity
indices. This is because the reduction in thickness

Table 2. E�ect of aspect ratio on the de
ection (non-dimensional) of the SSSS Functionally Graded Material (FGM)
plate (a = 1, h = a=100, nz = 2).

Type of
FGM

Aspect
ratio
(O)

Porosity index (�) and distribution
Even Uneven

0 0.1 0.2 0.3 0 0.1 0.2 0.3

PWL-FGM
0.5 2.8111 3.5087 4.7970 8.1708 2.8111 2.9898 3.2045 3.4696
1 1.1312 1.4119 1.9303 3.288 1.1312 1.2031 1.2895 1.3962
2 0.1762 0.2199 0.3005 0.5116 0.1762 0.1874 0.2008 0.2175

SIG-FGM
0.5 2.4526 2.9523 3.7596 5.3211 2.4526 2.5830 2.7339 2.9113
1 0.9869 1.1880 1.5129 2.1412 0.9869 1.0394 1.1001 1.1715
2 0.1537 0.1849 0.2355 0.3332 0.1537 0.1618 0.1713 0.1824

EXP-FGM
0.5 2.6010 2.8306 3.0804 3.3523 2.6010 2.6651 2.7301 2.7961
1 1.0466 1.1390 1.2395 1.3490 1.0466 1.0724 1.0986 1.1251
2 0.1630 0.1774 0.1931 0.2101 0.1630 0.1670 0.1711 0.1753

Table 3. E�ect of thickness ratio on the de
ection (non-dimensional) of the SSSS Functionally Graded Material (FGM)
plate (a = b = 1, h = a=S, nz = 2).

Type of
FGM

Thickness
ratio
(S)

Porosity index (�) and distribution
Even Uneven

0 0.1 0.2 0.3 0 0.1 0.2 0.3

PWL-FGM
10 1.2110 1.5051 2.0426 3.4305 1.2110 1.2899 1.3850 1.5029
50 1.1350 1.4163 1.9355 3.2944 1.1350 1.2072 1.2940 1.4012
100 1.1312 1.4119 1.9303 3.2880 1.1312 1.2031 1.2895 1.3962

SIG-FGM
10 1.0479 1.2565 1.5909 2.2331 1.0479 1.1041 1.1693 1.2458
50 0.9898 1.1912 1.5165 2.1454 0.9898 1.0424 1.1034 1.1750
100 0.9869 1.1880 1.5129 2.1412 0.9869 1.0394 1.1001 1.1715

EXP-FGM
10 1.1210 1.2199 1.3276 1.4448 1.1210 1.1501 1.1798 1.2100
50 1.0502 1.1429 1.2438 1.3535 1.0502 1.0761 1.1025 1.1292
100 1.0466 1.1390 1.2395 1.3490 1.0466 1.0724 1.0986 1.1251
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of the plate structure reduces the sti�ness, which, in
turn, increases the de
ection value. However, the
tabular values follow a decreasing slope due to the non-
dimensional form.

In addition, the e�ect of curvature ratio on the
non-dimensional de
ection of the FG hyperboloid panel
is presented in Table 4, indicating upon an increase
in the radius of curvature or curvature ratio of the
panel, the structure becomes sti�er, which results in
the reduction of de
ection values. Further, the e�ect of
CCCC (clamped), SCSC (two sides simply supported
and two sides clamped), and CFCF (two sides clamped
and two sides free) end conditions on the bending
responses of the FG structure is presented in Table 5.
In general, the sti�ness of any structure increases when

the end constraint of the panel edges increases. For
CCCC condition, all the movements are restricted,
whereas under CFCF condition, no movements are
constrained at two opposite edges. Hence, the plate
de
ection values for the clamped structure are mini-
mum, and maximum de
ection is observed in the case
CFCF end boundary conditions.

Similarly, the static de
ection responses of the
FG structure due to the variation of geometrical shape
(R=a = 10) are shown in Table 6. The results indicate
the maximum de
ection observed for the cylindrical
panel structure as it is softer than the spherical and
elliptical panel. Also, the spherical panel has the
highest sti�ness among all other panels and, therefore,
it shows minimum de
ection.

Table 4. E�ect of curvature ratio on the de
ection (non-dimensional) of the SSSS Functionally Graded Material (FGM)
hyperboloid panel (a = b = 1, h = a=100, nz = 2).

Type of
FGM

Curvature
ratio
(R=h)

Porosity index (�) and distribution
Even Uneven

0 0.1 0.2 0.3 0 0.1 0.2 0.3

PWL-FGM
100 1.2654 1.5648 2.0991 3.3909 1.2654 1.3467 1.4438 1.5629
300 1.1552 1.4411 1.9678 3.3385 1.1552 1.2286 1.3469 1.4259
500 1.1415 1.4247 1.9476 3.3158 1.1415 1.2140 1.3012 1.4089

SIG-FGM
100 1.0833 1.2969 1.6235 2.2205 1.0833 1.1461 1.2127 1.2905
300 1.0070 1.2114 1.5408 2.1751 1.0070 1.0605 1.1225 1.1953
500 0.9958 1.1987 1.5263 2.1595 0.9958 1.0488 1.1101 1.1821

EXP-FGM
100 1.1737 1.2773 1.3900 1.5127 1.1737 1.2045 1.2359 1.2676
300 1.0690 1.1634 1.2660 1.3778 1.0690 1.0954 1.1223 1.1495
500 1.0562 1.1494 1.2508 1.3612 1.0562 1.0822 1.1086 1.1354

Table 5. E�ect of support conditions on the de
ection (non-dimensional) of Functionally Graded Material (FGM) plate
(a = b = 1, h = a=100, nz = 2).

Type of
FGM

Boundary
conditions

Porosity index (�) and distribution
Even Uneven

0 0.1 0.2 0.3 0 0.1 0.2 0.3

PWL-FGM
CCCC 0.3220 0.4018 0.5490 0.9338 0.3220 0.3425 0.3672 0.3976
SCSC 0.4969 0.6200 0.8472 1.4416 0.4969 0.5285 0.5665 0.6134
CFCF 0.6603 0.8239 1.1256 1.9144 0.6603 0.7024 0.7529 0.8154

SIG-FGM
CCCC 0.2808 0.3378 0.4300 0.6081 0.2808 0.2957 0.3130 0.3333
SCSC 0.4333 0.5214 0.6637 0.9388 0.4333 0.4563 0.4830 0.5144
CFCF 0.5757 0.6927 0.8816 1.2467 0.5757 0.6063 0.6418 0.6834

EXP-FGM
CCCC 0.2980 0.3243 0.3529 0.3840 0.2980 0.3053 0.3128 0.3204
SCSC 0.4598 0.5003 0.5445 0.5926 0.4598 0.4711 0.4827 0.4944
CFCF 0.6110 0.6650 0.7237 0.7875 0.6110 0.6262 0.6415 0.6571
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Table 6. E�ect of geometry on the de
ection (non-dimensional) of the SSSS Functionally Graded Material (FGM)
structure (a = b = 1, h = 0:1, nz = 2, R = 10).

Type of
FGM

Geometry
Porosity index (�) and distribution

Even Uneven
0 0.1 0.2 0.3 0 0.1 0.2 0.3

PWL-FGM
Cylindrical 1.2006 1.4909 2.0197 3.3728 1.2006 1.279 1.3735 1.4906
Spherical 1.1701 1.45 1.9557 3.2249 1.1701 1.2468 1.3392 1.4534
Elliptical 1.1875 1.4732 1.992 3.3081 1.1875 1.2651 1.3587 1.4746

SIG-FGM
Cylindrical 1.0376 1.2429 1.571 2.1966 1.0376 1.0934 1.1579 1.2337
Spherical 1.008 1.2045 1.5163 2.1023 1.008 1.0621 1.1248 1.1983
Elliptical 1.0248 1.2263 1.5473 2.1554 1.0248 1.0799 1.1436 1.2184

EXP-FGM
Cylindrical 1.1116 1.2097 1.3165 1.4327 1.1116 1.1407 1.1703 1.2004
Spherical 1.0839 1.1795 1.2837 1.397 1.0839 1.1127 1.1419 1.1718
Elliptical 1.0996 1.1967 1.3023 1.4172 1.0996 1.1286 1.158 1.188

Table 7. E�ect of power-law exponent, porosity index, and loading (UDL) on the de
ection (non-dimensional) of the
SSSS Functionally Graded Material (FGM) plate (a = b = 1, h = a=100).

Type of
FGM

Power-law
exponent

(nz)

Porosity index (�) and distribution
Even Uneven

0 0.1 0.2 0.3 0 0.1 0.2 0.3

PWL-FGM
0 0.4400 0.4677 0.4991 0.5350 0.4400 0.4466 0.4534 0.4605
1 0.8826 1.0259 1.2336 1.5673 0.8826 0.9190 0.9597 1.0056
2 1.1312 1.4119 1.9303 3.2880 1.1312 1.2031 1.2895 1.3962

SIG-FGM
0 0.7431 0.8257 0.9289 1.0615 0.7431 0.7622 0.7823 0.8034
1 0.8826 1.0259 1.2336 1.5673 0.8826 0.919 0.9597 1.0056
2 0.9869 1.188 1.5129 2.1412 0.9869 1.0394 1.1001 1.1715

Further, the e�ects of power-law exponent on the
bending characteristics of di�erent FG structures, i.e.,
PWL and SIG types, are evaluated for the simply-
supported case. The de
ection results are presented
in Table 7. It is observed from the results that the
de
ection values are increasing, i.e., the structural
sti�ness lowers with an increase in the power-law
exponent. This is because the metal volume fraction
within the graded FG panel increases when power-law
exponent increases. This, in turn, lowers the total
structural sti�ness of the panel and allows the panel
to deform high. It would be interesting to note that
the de
ection results are the same for both kinds of
grading (PWL and SIG) for the unity exponent, i.e.,
nz = 1.

Bending-induced stress plays an important role in
designing any kind of structure/structural components.
Now, the e�ects of di�erent geometrical parameters
(aspect ratio, thickness ratio, and geometrical con�g-

uration) on the non-dimensional stress (normal and
shear) values have been measured through the present
higher-order FE model considering the porosity and
the distribution type. The results are obtained for
all three kinds of grading pattern (PWL, SIG and
EXP) and tabulated in Tables 8{10. The stress data
are mainly obtained for the simply-supported FG
(Al2O3/Al) structure using the individual constituent
properties according to Table 1. Moreover, the power-
law exponent value for two types of grading, i.e., PWL
and SIG, is considered nz = 2. The non-dimensional
form of the stress parameter for grading types is taken
as �x = �x � h=a � q, �y = �y � h=a � q and �xy =
�xy�h=a�q, where q is uniformly distributed loading of
Magnitude 1 N/m2. The e�ect of aspect ratio on the
stress responses of PWL-FG, SIG-FG, and EXP-FG
structure is presented in Table 8. It is observed from
the results that the increase in aspect ratio causes a
reduction in stress values of the FG structure. Also,
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Table 8. E�ect of aspect ratio on the non-dimensional stress responses of simply-supported Functionally Graded Material
(FGM) plates (a = 0:1, b = a=O, h = 0:01).

Type of
FGM

Aspect
ratio
(O)

Stress
Porosity index (�) and distribution

Even Uneven
0 0.1 0.2 0.3 0 0.1 0.2 0.3

PWL-FGM

0.5
�x 10.9923 12.1034 14.1082 19.2173 10.9923 11.3542 11.7549 12.2059
�y 5.0375 5.5484 6.4708 8.8256 5.0375 5.2029 5.3855 5.5905
�xy 0.0059 0.0064 0.0075 0.01 0.0059 0.0061 0.0063 0.0065

1
�x 5.2182 5.7502 6.7095 9.1505 5.2182 5.3915 5.5835 5.7999
�y 5.2157 5.7461 6.703 9.1391 5.2157 5.3885 5.58 5.7958
�xy 0.0119 0.013 0.0151 0.0204 0.0119 0.0122 0.0127 0.0132

2
�x 1.2686 1.3984 1.6312 2.2163 1.2686 1.3119 1.3602 1.4148
�y 2.7636 3.0457 3.5511 4.8182 2.7636 2.8585 2.9645 3.085
�xy 0.0053 0.0059 0.0068 0.009 0.0053 0.0055 0.0057 0.006

SIG-FGM

0.5
�x 9.7402 10.5441 11.8531 14.4009 9.7402 10.0457 10.3827 10.759
�y 4.4621 4.8318 5.4345 6.6095 4.4621 4.6018 4.7559 4.9277
�xy 0.0052 0.0056 0.0063 0.0075 0.0052 0.0053 0.0055 0.0057

1
�x 4.6232 5.0074 5.6327 6.8485 4.6232 4.7691 4.9303 5.1103
�y 4.6217 5.0052 5.6296 6.8446 4.6217 4.7674 4.9281 5.1078
�xy 0.0105 0.0113 0.0127 0.0153 0.0105 0.0108 0.0112 0.0116

2
�x 1.1225 1.2155 1.3658 1.6556 1.1225 1.1586 1.1985 1.2433
�y 2.4464 2.6483 2.9746 3.6026 2.4464 2.5253 2.6127 2.7107
�xy 0.0047 0.0051 0.0056 0.0067 0.0047 0.0048 0.005 0.0052

EXP-FGM

0.5
�x 10.5777 10.5777 10.5777 10.5777 10.5777 10.7626 10.9476 11.1326
�y 4.8479 4.8479 4.8479 4.8479 4.8479 4.9328 5.0177 5.1026
�xy 0.0057 0.0057 0.0057 0.0057 0.0057 0.0058 0.0059 0.006

1
�x 5.0194 5.0194 5.0194 5.0194 5.0194 5.1075 5.1956 5.2838
�y 5.0174 5.0174 5.0174 5.0174 5.0174 5.1053 5.1932 5.2811
�xy 0.0114 0.0114 0.0114 0.0114 0.0114 0.0116 0.0118 0.012

2
�x 1.2192 1.2192 1.2192 1.2192 1.2192 1.241 1.2628 1.2845
�y 2.6555 2.6555 2.6555 2.6555 2.6555 2.7028 2.7502 2.7976
�xy 0.0051 0.0051 0.0051 0.0051 0.0051 0.0052 0.0053 0.0054

the stresses in the PWL-FG structure are higher than
those in the SIG-FGM and EXP-FGM for the variable
aspect ratio.

Similarly, the e�ect of thickness ratio on the stress
behavior of all three types of FG structures is presented
in Table 9. It is clear from the obtained results
that with an increase in thickness ratio (reduction

in thickness), the results follow a decreasing value
progressively, i.e., PWL > SIG > EXP.

Also, the e�ect of di�erent types of geometry
(cylindrical, spherical, and elliptical) on the stress
responses of the FG structure is obtained and shown in
Table 10 considering R=a = 10. From the results, it is
observed that the higher stress values are obtained for
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Table 9. E�ect of thickness ratio on the non-dimensional stress responses of simply-supported Functionally Graded
Material (FGM) plates (a = 0:1, h = a=S, b = 0:04).

Type of
FGM

Thickness
ratio
(S)

Stress
Porosity index (�) and distribution

Even Uneven
0 0.1 0.2 0.3 0 0.1 0.2 0.3

PWL-FGM

5
�x 0.3988 0.4421 0.5175 0.6943 0.3988 0.4152 0.434 0.4561
�y 1.0415 1.1545 1.3504 1.8035 1.0415 1.0855 1.1362 1.1962
�xy 0.0021 0.0024 0.0028 0.0036 0.0021 0.0023 0.0024 0.0025

10
�x 0.7534 0.8306 0.9685 1.3114 0.7534 0.7797 0.8091 0.8425
�y 1.9734 2.1761 2.5376 3.4345 1.9734 2.043 2.121 2.2102
�xy 0.0036 0.0039 0.0045 0.006 0.0036 0.0037 0.0039 0.004

20
�x 1.4748 1.6228 1.8892 2.5655 1.4748 1.5235 1.5774 1.638
�y 3.8902 4.283 4.9907 6.7873 3.8902 4.0192 4.1622 4.3235
�xy 0.0064 0.007 0.008 0.0106 0.0064 0.0066 0.0068 0.0071

SIG-FGM

5
�x 0.3509 0.3804 0.4267 0.5114 0.3509 0.3638 0.3782 0.3946
�y 0.9163 0.9929 1.1123 1.3288 0.9163 0.9504 0.9887 1.0325
�xy 0.0019 0.002 0.0022 0.0026 0.0019 0.002 0.002 0.0022

10
�x 0.6661 0.721 0.8094 0.9787 0.6661 0.6878 0.7119 0.7389
�y 1.7456 1.8896 2.1213 2.5638 1.7456 1.8029 1.8665 1.938
�xy 0.0031 0.0034 0.0038 0.0045 0.0031 0.0033 0.0034 0.0035

20
�x 1.3055 1.4122 1.5857 1.9224 1.3055 1.3465 1.3916 1.4421
�y 3.4464 3.7299 4.1907 5.0847 3.4464 3.5549 3.6747 3.8087
�xy 0.0056 0.006 0.0067 0.008 0.0056 0.0058 0.006 0.0062

EXP-FGM

5
�x 0.3804 0.3804 0.3804 0.3804 0.3804 0.3879 0.3954 0.4029
�y 0.9925 0.9925 0.9925 0.9925 0.9925 1.0122 1.0321 1.052
�xy 0.002 0.002 0.002 0.002 0.002 0.0021 0.0021 0.0022

10
�x 0.7235 0.7235 0.7235 0.7235 0.7235 0.7366 0.7497 0.7628
�y 1.8944 1.8944 1.8944 1.8944 1.8944 1.9286 1.9629 1.9972
�xy 0.0034 0.0034 0.0034 0.0034 0.0034 0.0035 0.0036 0.0036

20
�x 1.4194 1.4194 1.4194 1.4194 1.4194 1.4444 1.4694 1.4944
�y 3.7428 3.7428 3.7428 3.7428 3.7428 3.8084 3.8741 3.9398
�xy 0.0061 0.0061 0.0061 0.0061 0.0061 0.0062 0.0064 0.0065

spherical geometry, whereas the cylindrical panel gives
the least stress results.

4. Conclusions

The static de
ection responses of the graded structural
panel were predicted numerically using a higher-order

mathematical model considering the e�ect of porosity.
Also, the e�ect of porosity distribution on the stress
values was evaluated using the proposed mathematical
model. The numerical results were obtained using
an isoparametric Finite Element (FE) formulation via
a computer code developed in the MATLAB envi-
ronment. The model validity was established by
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Table 10. E�ect of geometry on the non-dimensional stress responses of simply-supported Functionally Graded Material
(FGM) structure (a = 0:1, b = 0:05, h = 0:1, R = 10).

Type of
FGM

Geometry Stress
Porosity index (�) and distribution

Even Uneven
0 0.1 0.2 0.3 0 0.1 0.2 0.3

PWL-FGM

Cylindrical
�x 1.2812 1.4132 1.6499 2.2454 1.2812 1.3254 1.3746 1.4304
�y 2.7668 3.0493 3.5556 4.825 2.7668 2.8619 2.9681 3.0889
�xy 0.0053 0.0058 0.0068 0.009 0.0053 0.0055 0.0057 0.006

Spherical
�x 1.2845 1.417 1.6548 2.2528 1.2845 1.3289 1.3783 1.4345
�y 2.7673 3.05 3.5565 4.8264 2.7673 2.8624 2.9687 3.0896
�xy 0.0053 0.0058 0.0068 0.009 0.0053 0.0055 0.0057 0.0059

Elliptical
�x 1.2829 1.4151 1.6524 2.2491 1.2829 1.3271 1.3765 1.4325
�y 2.767 3.0496 3.556 4.8257 2.767 2.8622 2.9684 3.0893
�xy 0.0053 0.0058 0.0068 0.009 0.0053 0.0055 0.0057 0.0059

SIG-FGM

Cylindrical
�x 1.1334 1.2277 1.3804 1.6746 1.1334 1.1701 1.2107 1.2562
�y 2.4491 2.6512 2.978 3.6069 2.4491 2.5281 2.6157 2.7139
�xy 0.0047 0.005 0.0056 0.0067 0.0047 0.0048 0.005 0.0052

Spherical
�x 1.1362 1.2309 1.3841 1.6794 1.1362 1.1731 1.2139 1.2596
�y 2.4496 2.6518 2.9788 3.6079 2.4496 2.5287 2.6163 2.7145
�xy 0.0047 0.005 0.0056 0.0067 0.0047 0.0048 0.005 0.0052

Elliptical
�x 1.1348 1.2293 1.3822 1.677 1.1348 1.1716 1.2123 1.2579
�y 2.4493 2.6515 2.9784 3.6074 2.4493 2.5284 2.616 2.7142
�xy 0.0047 0.005 0.0056 0.0067 0.0047 0.0048 0.005 0.0052

EXP-FGM

Cylindrical
�x 1.2309 1.2309 1.2309 1.2309 1.2309 1.2529 1.275 1.2971
�y 2.6584 2.6584 2.6584 2.6584 2.6584 2.7058 2.7533 2.8008
�xy 0.0051 0.0051 0.0051 0.0051 0.0051 0.0052 0.0053 0.0054

Spherical
�x 1.2339 1.2339 1.2339 1.2339 1.2339 1.2561 1.2782 1.3004
�y 2.6589 2.6589 2.6589 2.6589 2.6589 2.7063 2.7537 2.8013
�xy 0.0051 0.0051 0.0051 0.0051 0.0051 0.0052 0.0053 0.0054

Elliptical
�x 1.2324 1.2324 1.2324 1.2324 1.2324 1.2545 1.2766 1.2988
�y 2.6586 2.6586 2.6586 2.6586 2.6586 2.706 2.7535 2.801
�xy 0.0051 0.0051 0.0051 0.0051 0.0051 0.0052 0.0053 0.0054

comparing the results with de
ection and stress val-
ues for a di�erent graded structure without porosity
including the grading pattern. The validation study
pointed to the viability of the present higher-order FE
model and a few examples were solved for di�erent
in
uential parameters. A list of important conclusions
is highlighted below as per the individual/combined
cases.:

� The static de
ection and the stress results were
lower for SIG-FGM than those for PWL-FGM and

EXP-FGM without porosity, whereas the highest
de
ection and stress values were achieved in the case
of PWL-FGM. The di�erence between the results
obtained for the SIG and PWL graded structures
in this case was found to be 9{15% for di�erent
in
uencing parameters;

� Conversely, the EXP-FGM structure was capable
of sustaining a good amount of de
ection including
the e�ect of porosity. In this case, maximum values
(de
ection and stress) were obtained for the PWL-
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FGM. For various design parameters, the percentage
di�erence between the computed results for EXP
and PWL graded structures lied in the range of 10{
59%;

� The results exhibited the smaller variation of de
ec-
tion and/or stress for the uneven type of porosity
distribution than the even kind of porosity distribu-
tion;

� The design parameters including aspect ratio, thick-
ness ratio, power-law exponent, geometry, support
conditions, and curvature ratios were found to
a�ect the static de
ection and stress results of
the Functionally Graded (FG) porous structures
considerably;

� It is important to note that the even type of porosity
distribution shows insigni�cant variation between
the normal stress values (�x and �y), i.e., within
the range of 10�5 to 10�9, for EXP-FG panel while
the properties of Al2O3/Al materials are adopted.

Nomenclature

P E�ective material property of FG
structures

P c; Pm Corresponding properties of the
ceramic and metal constituents,
respectively

�z Random point in the thickness
direction

nz Power-law exponent
� Porosity index
c;m Ceramic and metal constituents
Vfc ; Vfm Volume fractions of ceramic and metal

constituents, respectively
a; b; h Length, width and thickness of the FG

panel, respectively
R�x; R�y Radius of curvature along �x and

�y-axis of the panel, respectively
�xx; �yy; �zz Global and mid-plane displacement

�eld along �x, �y, and �z-direction,
respectively

�xx0 ,�yy0 ,
�zz0

Mid-plane displacement �eld along
�x, �y, and �z-direction, respectively

 x;  y Rotation of transverse normal to the
mid-plane about the �y and �x-axis,
respectively

��xx0
; ��yy0

;
 �x;  �y

Higher-order terms of Taylor's series
expansion

�2
z; �

3
z Square and cubic thickness coordinates,

respectively
"l Linear strain tensor

[Tl]5�20 Linear thickness coordinate matrix
f"lg20�1 Mid-plane strain terms matrix

f�0g Global displacement �eld vector
f�0ig Mid-plane displacement �eld vector for

ith node
[N ] Nodal shape function
f"lg Mid-plane strain term
[B]20�9 Product form of shape functions and

the di�erential operators

f�g; �Q� ; f"g Stress, reduced sti�ness matrix, and
strain vector, respectively

U Total strain energy
[D] Material property matrix
W Workdone
q Applied transverse load
[F ] Force vector
[K] Global sti�ness matrix
�;� Variation and total energy functionals,

respectively
S Thickness ratio
O Aspect ratio
R=h Curvature ratio
w Actual de
ection
w Non-dimensional de
ection
Ec; Em Young's modulus of ceramic and metal,

respectively
� Poisson's ratio
� Non-dimensional stress
� Actual stress
�xy Actual shear stress
�xy Non-dimensional shear stress

Abbreviations

HSDT Higher-order Shear Deformation
Theory

FSDT First-order Shear Deformation Theory
SDT Generalized Shear Deformation Theory
HySDT Hyperbolic Shear Deformation Theory
TrSDT Trigonometric Shear Deformation

Theory
SGT Strain Gradient Theory
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