
Scientia Iranica D (2020) 27(6), 3005{3018

Sharif University of Technology
Scientia Iranica

Transactions D: Computer Science & Engineering and Electrical Engineering
http://scientiairanica.sharif.edu

ML-CK-ELM: An e�cient multi-layer extreme learning
machine using combined kernels for multi-label
classi�cation

M. Rezaei Ravaria, M. Eftekharia;�, and F. Saberi-Movahedb

a. Department of Computer Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
b. Department of Applied Mathematics, Faculty of Sciences and Modern Technologies, Graduate University of Advanced Technology,

Kerman, Iran.

Received 5 May 2019; received in revised form 1 March 2020; accepted 15 June 2020

KEYWORDS
Extreme learning
machine;
Kernel learning;
Multi-label learning;
Neural network;
Linear combination.

Abstract. Recently, many neural network methods have been proposed for multi-
label classi�cation in the literature. One of these recent methods is the Multi-Layer
Extreme Learning Machines (ML-ELMs) in which stack auto encoders are used for tuning
their weights. However, ML-ELMs su�er from three primary drawbacks: First, input
weights and biases are chosen randomly; second, the pseudoinverse solution for calculating
output weights will increase the reconstruction error; third, memory and execution time
of transformation matrices are proportional to the number of hidden layers. In this
paper, Multi-Layer Kernel Extreme Learning Machine (ML-CK-ELM) that uses a linear
combination of base kernels in each layer is proposed for multi-label classi�cation. The
proposed approach e�ectively addresses the above-mentioned drawbacks. Furthermore,
multi-label classi�cation data are inherently characterized by multi-modal aspects due to a
variety of labels assigned to each instance. Applying a combination of di�erent kernels is the
added advantage of ML-CK-ELM that implicitly assesses the inherent multi-modal aspects
of multi-label data; each kernel can be e�ectively used to cover one of the modals better
than other kernels. The empirical study indicates that ML-CK-ELM shows competitively
better performance than other state-of-the-art methods, and experimental results of multi-
label datasets verify the feasibility of ML-CK-ELM.
© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Classi�cation is an important technology for perform-
ing data analysis, which is vastly used in machine
learning, data mining, pattern recognition, etc. In
conventional classi�cation, each sample corresponds
to a unique label. This model is called \single-label
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classi�cation". Currently, many investigations have
been conducted on single-label classi�cation such as
support vector machine, decision tree, naive Bayes
method, and neural network. Nevertheless, with
the advent of more e�cient technology, a single-
label classi�cation algorithm cannot deal with a large
amount of labeled data. Compared to the single-label
classi�cation problem, each sample in the multi-label
classi�cation task is associated with more than one
label. For example, a natural scene [1] can simulta-
neously correspond to mountain, tree, and sunset; a
movie may correspond to several genres. Multi-label
classi�cation is widely used in image annotation [2]
text classi�cation and many other areas [1{4]. Let
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X = Rd denote a d-dimensional input space of features
and each instance from X is assigned to a subset
of labels � � Y , where Y = fy1; y2; � � � ; yqg is a
�nite set of labels with jY j = q. Hence, multi-label
classi�cation is the task of mapping inputs x to binary
vectors y. Existing methods of multi-label classi�cation
are categorized into two groups [3]: the problem
transformation methods and the problem adaption
methods. In transformation methods, the multi-label
classi�cation problem converts into some single-label
classi�cation tasks such as binary relevance [4], random
k-label sets [5], and classi�er chain [6]. Generally,
the \transformation" methods ignore the correlation
between labels. On the other hand, the algorithm
adaptation methods adopt learning techniques to deal
with multi-label data directly. Representative algo-
rithms include Multi-Label k-Nearest Neighbor (ML-
KNN), which was proposed by Zhang and Zhou [7], and
it employs the maximum posterior probability of the k-
nearest neighbor samples to label prediction. Zhang [8]
extended the Radial Basis Function (RBF) to deal with
multi-label problems by performing the k-means clus-
tering algorithm to determine the centers of the RBF
functions and the number of hidden layer nodes in the
network. The Regularized Extreme Learning Machine
(RELM) [9] was introduced to improve the robustness
of Extreme Learning Machine (ELM). Zhang et al. [10]
proposed a deep network called multi-label extreme
learning machine with ML-ELM-RBF for multi-label
classi�cation. Moreover, ML-ELM-RBF staked ELMs
based on Auto Encoder (ELM-AE) in the �rst layers
is followed by a �nal layer of RBF for classi�cation.
Lately, a ML-ELM [11{13] was proposed in which
multiple layers of ELM-AE were used for representation
learning in the �rst layers and then, classi�cation was
employed in the last layer, as shown in Figure 1.

Furthermore, the weight of the output layer can
be determined in the closed form, while the input
parameters were randomly generated [14]. A signi�cant
advantage of the ML-ELM is its fast training rate and
e�cient generalization. From the literature [15], using
kernels in ELM shows very good e�ciency without the
need for random parameter assignment. Accordingly,
a kernel version of ML-ELM called Multi-Layer Kernel
ELM (ML-KELM) [16] was proposed for representation
learning in which the outputs of hidden layers were
encoded in the form of kernel matrix without the need
for tuning the input parameters. The key points of the
ML-KELM method can be listed as follows:

1. Randomly generated parameters (i.e., input weights
and bias) are not required. To be more speci�c, the
ML-KELM method makes use of an e�cient pro-
jection framework in order to produce an optimal
solution;

2. The ML-KELM method uses a non-singular trans-

formation matrix and avoids the reconstruction
error being generated by pseudoinverse solution;

3. ML-KELM utilizes only two transformation ma-
trices and therefore, memory and execution time
of transformation matrices can be reduced signi�-
cantly.

The multi-label classi�cation due to multi-modal
aspects of multi-label data requires a suitable kernel to
make a classi�er more stable. However, the use of a
speci�c kernel may be a source of bias and therefore,
allowing a classi�er to consider a set of kernels may lead
to �nding a better solution. In such a case, combining
kernels is one possible way to make use of multiple
information sources.

In this paper, considering the idea of linear
combinations of kernels, a novel Multi-Layer Extreme
Learning Machine using Combined Kernels (ML-CK-
ELM) is adopted to solve multi-label classi�cation
problems so that a linear combination of some base
kernels can be used in each layer. For this purpose, a
speci�c kernel is constructed in which some prede�ned
kernels (such as linear, sigmoid, and RBF kernels) are
combined to improve the performance of the multi-
label classi�cation. In addition, a multi-label kernel-
ized ELM model is proposed. In this regard, given
that our proposed model takes advantage of the ML-
KELM model, it exhibits a good level of robustness.
Experimental results on several di�erent multi-label
datasets justify that the proposed algorithm generally
outperforms other state-of-the-art methods.

The remainder of this paper is structured as
follows. Section 2 brie
y reviews the ML-ELM and
introduces the ML-KELM. The proposed method is de-
scribed in Section 3. In Section 4, experimental results
demonstrate the capabilities of ML-KELM. Eventually,
the conclusions are drawn in the last section.

2. Related work

This section brie
y introduces the fundamental
concepts and requirements that are used in our
proposed approach.

2.1. Multi-layer Extreme Learning Machine
(ML-ELM)

Suppose that X(i) = [x(i)
1 ; � � � ; x(i)

n ]T indicates the
input matrix, where x(i)

k is the ith data representation
for the input xk, i = 1; � � � ; L, and k = 1; � � � ; n.
Let H(i) be the output matrix of the ith hidden
layer node with respect to X(i). In ML-ELM, the
ith transformation matrix �(i) is considered as �(i) =
[
(i)

1 ; � � � ; 
(i)
n ], where 
(i)

k denotes the transformation
vector used for representation learning with respect to
x(i)
k . In addition, the matrix �(i) satis�es the following



M. Rezaei Ravari et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 3005{3018 3007

Figure 1. The architecture of Multi-Layer Extreme Learning Machine (ML-ELM) [16]: (a) The transformation matrix

(1) of ELM-AE for transformation learning, (b) the new representation input x(2) obtained by g(x(1)(
(1))T ), (c) x(2) the
input of ELM-AE for the next data representation, and (d) x(final) used to compute the output weight � for classi�cation
upon �nishing the representation learning.

equation:

H(i)�(i) = X(i); (1)

where H(i) is de�ned by:

H(i) =

26664
g(i)

1

�
a(i)

1 ; b(i)1 ; x(i)
1

� � � � g(i)
L

�
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L ; b(i)L ; x(i)

1

�
...

. . .
...

g(i)
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�
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n

� � � � g(i)
L

�
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L ; b(i)L ; x(i)

n

�
37775 ;

in which g(i)
i (a(i); b(i); x(i)) is an optional activation

function used in the ith layer, and both the input
weight a(i) and the bias b(i) are initialized randomly.
Accordingly, �i can be obtained as follows:

�(i) = (H(i))yX(i); (2)

where (H(i))y is the Moore-Penrose pseudo-inverse of
H(i). In this regard, in order to enhance the robustness
of ELM, the Frobenius norm of �(i) can be considered
as a regularization term to constrain �(i). Therefore,
the objective function of ELM can be represented as
follows:

min
�(i)

C
2




X(i) �H(i)�(i)



2

F
+

1
2




�(i)



2

F
; (3)

where C is the regularization constant and speci�ed by
users. Here, it can be shown that the solution �(i) can

be determined by:

�(i) =

8>>><>>>:
�
I
C +

�
H(i)�T�H(i)���1�

H(i)�TX(i); n�L
�
H(i)�T� I

C +
�
H(i)��H(i)�T��1

X(i); n<L (4)

where I represents an identity matrix.
The aim of using the transformation matrix �(i)

is representation learning and, as shown in Figure 1,
a new data representation X(i+1) can be calculated by
multiplying X(i) by �(i) as follows:

X(i+1) = g
�
X(i)

�
�(i)

�T�
: (5)

Then, the �nal data representation of the �rst data
representation X(1) is obtained. To be more speci�c,
Xfinal is used as a hidden layer output to calculate the
output �. Indeed:

min
�

C
2


T �Xfinal�



2
F +

1
2
k�k2F ; (6)

in which the output � is calculated by:

�=

8>>><>>>:
�
I
C +

�
Xfinal�T Xfinal

��1 �
Xfinal�T T; n�L

�
Xfinal�T � I

C +Xfinal�Xfinal�T��1
T; n<L(7)

The general framework of ML-ELM is summarized in
Figure 1.
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2.2. Multi-Layer Kernel Extreme Learning
Machine (ML-KELM)

Wong et al. [16] introduced ML-KELM for represen-
tation learning, which is the integrated form of kernel
learning and ML-ELM. The framework of ML-KELM
consists of two separate learning procedures. The �rst
procedure is the unsupervised representation learning
by stacking the Kernel ELM based on Auto Encoder
(KELM-AE). The second procedure is classi�cation
task (supervised procedure) using KELM. Similar to
ELM-AE, KELM-AE learns the data transformation
from the hidden layer to output. To this end, as
shown in Figure 2, by applying a kernel function to the
input matrix X(i), the kernel matrix 
(i) is obtained.
Then, similar to the relation given in Eq. (1), the ith
transformation matrix �(i) in KELM-AE is learned as
follows:


(i)�(i) = X(i); (8)

where �(i) can be obtained via the exact inverse of the
kernel matrix rather than the pseudoinverse as follows:

�(i) =
�
I
C

+ 
(i)
��1

X(i): (9)

Here, it should be noted that the matrix 
(i) is a
square matrix, and adding the term I

C guarantees that
the matrix I

C + 
(i) be invertible (in fact, symmetric
positive de�nite). For this reason, the exact inverse
of I

C + 
(i) exists, and the kernel matrix methods
avoid the reconstruction error being generated by the
pseudoinverse solution. Therefore, the reconstruction
error is reduced and the data representation X(i+1) is
calculated as follows:

X(i+1) = g
�
X(i)

�
�(i)
�T�

: (10)

In the supervised procedure, the �nal data represen-
tation Xfinal, which is obtained from the previous
procedure, is applied as the input in order to train K-
ELM classi�cation, i.e.:


final� = T; (11)

Figure 2. The architecture of the ith Kernel Extreme
Learning Machine-based Auto Encoder (KELM-AE) [16],
in which the hidden layer is replaced by a kernel matrix

(i).

where 
final is the kernel matrix, which is computed
based on Xfinal, and the output weight � can be
computed as follows:

� =
�
I
C

+ 
final
��1

T: (12)

Let us assume that Z(1) = [z(1)
1 ; � � � ; z(1)

m ]T 2 Rm�d
denotes a set of m test samples. In the �rst step, the
data representation Z(i+1) is obtained by multiplying
the ith transformation matrix �(i):

Z(i+1) = g
�
Z(i)

�
�(i)

�T�
: (13)

Then, the �nal data representation Zfinal =
[zfinal1 ; � � � ; zfinalm ]T is obtained and applied to calcu-
lating the test kernel matrix 
z 2 Rm�n whose entries
(
z)k;j are determined using the following relation:

(
z)k;j = K
�
zfinalk ; xfinalj ; �final

�
; (14)

where xfinalj is the jth data point from Xfinal and the
kernel function K can be de�ned as follows:

K
�
zfinalk ; xfinalj ; �final

�
=exp

0@�


zfinalk � xfinalj





2

2 (�final)2

1A :
(15)

In the end, the output of the network ~Y is given by:

~Y = 
z�: (16)

According to [12], if the ith and (i + 1)th layers have
the same dimension, the activation function g can be
chosen as a linear piecewise and given that each �(i),
for i = 2; � � � ; N , is a square matrix of the dimension
n, a single uni�ed transformation matrix �unified =
�(i):�(i�1) � � ��(2) can be obtained in ML-KELM so
that only the two transformation matrices �(1) and
�unified are required. From a practical point of view,
the �nal data representation is directly determined as
Z(final) = g(Z(1)(�(1))T ):�Tunified. Here, it is worth-
while to mention that this relation helps resolve the
problem of memory storage and improve the execution
time.

2.3. Motivation for linear kernel combination
Multi-label classi�cation data inherently has multi-
modal aspects due to the various labels assigned to each
instance [17{20]. A combination of di�erent kernels can
be used to implicitly assess the inherent multi-modal
aspects of multi-label data. In fact, each kernel can
be e�ectively applied to cover modals that are better
than the other kernels. Due to the recently performed
researches regarding the multi-modal aspects of multi-
label classi�cation tasks and owing to the capabilities of
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di�erent kernels for performing classi�cation, a fusion
of di�erent kernels is utilized in this paper. To be more
speci�c, di�erent linear combinations of three kernels,
namely linear, sigmoid, and RBF, are considered in
di�erent layers of the ML-ELM network. With this
end of view, let fK1; � � � ;Kpg be a �nite set of kernels
combined to de�ne more complex kernels. There are
di�erent ways that the combination can be performed.
In this paper, the linear combination is used such that
the combination function can be linearly parameterized
as follows:

K(xi; xj) =
PX

m=1

wmKm(xmi ; x
m
j ); (17)

where each weight wm can be considered as a real
number, and it is assumed that the sum of all wm's
is one, i.e.:

PX
m=1

wm = 1:

Then, it is replaced in the KELM method to make
it suitable for multi-label classi�cation. For the sake
of simplicity, the values of wm for di�erent layers
are coming from the set f0; 0:1; 0:2; 0:3; � � � ; 1g. This
assumption helps tune the parameters wm through the
cross validation process.

3. Proposed method

The 
owchart of our proposed method is given in
Figure 3. As it can be seen, the �rst box indicates the
inputs of our algorithm including training and test data
as well as the initial values of some parameters like the
regularization parameter C. To begin with, ML-KELM
procedure is called for the second box to perform the
training process of the ML-CK-ELM method. Then,
the training processes X(final), �(1), �unified, and �
are calculated. Afterward, in the test stage, the data
representation Z(final) associated with the test data is
obtained by using Eq. (12) in order to calculate the
test kernel matrix 
z. The model output is calculated
by Eq. (15) and �nally, a zero constant threshold is
employed to predict the labels of each sample. Indeed,
the label is set to 1, if the output label ~Y is greater
than zero. Moreover, it is set to �1 otherwise.

In ML-KELM, the transformation matrix �(i) and
the input matrix X(i) are obtained using KELM-AE
and then, the �nal kernel matrix 
final is calculated
with respect to Xfinal and is used as the input for
training. Finally, the output weight � is obtained using
Eq. (11). Figure 4 details the procedure of ML-KELM.

In KELM-AE, the input matrix X(i) is mapped
into a kernel matrix 
i by a weighted linear combina-
tion of base kernels sets. Then, the ith transformation

Figure 3. The 
owchart of Multi-Layer Combined Kernel
Extreme Learning Machine (ML-CK-ELM).

Figure 4. The training procedure via Multi-Layer Kernel
Extreme Learning Machine (ML-KELM) algorithm.
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matrix �(i) can be obtained by Eq. (8). In the last
step of KELM-AE, the new data representation Xi+1 is
calculated by Eq. (9). The implementation of KELM-
AE is depicted in Figure 5.

4. Experimental results and discussion

In this section, extensive experiments were conducted
to evaluate the performance of the proposed method,
which is compared with other relevant state-of-the-art
methods.

4.1. Performance metrics for comparison
Experiments in this paper employed the following �ve
evaluation indicators [4], which are extensively used in
multi-label learning:

1. Hamming loss: Evaluating how many times an
example-label pair is misclassi�ed:

Hamming loss (h) =
1
m0

m0X
i=1

1
q
jh(xi)�yij ; (18)

where � stands for the symmetric di�erence be-
tween the two sets;

2. One-error: Evaluating how many times the top-
ranked label is not in the set of relevant labels:
One error (h)

=
1
m0

m0X
i=1

1
q

��
arg max

y2Y (f(xi; y)
�
=2 Yi

�
:(19)

Figure 5. The algorithm of Kernel Extreme Learning
Machine-based Auto Encoder (KELM-AE) for the ith
layer.

For any predicate �; [[�]] if � satis�ed returns 1,
otherwise 0;

3. Coverage: Evaluating how many steps, on aver-
age, are needed to go down the ranked list of labels
to cover all relevant labels;

Covrage (h) =
1
m0

m0X
i=1

max
y2Yi rankf (xi; y)� 1:

(20)

4. Ranking loss: Evaluating the average fraction of
label pairs that are reversely ordered.

Rankin gloss (h)

=
1
m0

m0X
i=1

1
jYij ��Yi�� jf (y0; y00)j f (xi; y0)

� f (xi; y00) ; (y0; y00) 2 Yi � Yi	�� ; (21)

where Yi denotes the complementary set of Yi in
the label space Y ;

5. Average precision: Evaluating the average frac-
tion of relevant labels ranked above a particular
label:

Average precision (h) =
1
m0

m0X
i=1

1
jYij

X
y2Yi

jy0j rankf (x; y0) � rankf (x; y); y0 2 Yij
rankf (xi; y)

: (22)

Note that for the �rst four metrics, the smaller the
values, the better the performance, while for the last
one, the larger the values, the better the perfor-
mance. These metrics serve as a good indicator for
comprehensive comparative studies as they evaluate
the performance of the learned models from various
aspects.

4.2. Comparison methods
To investigate the e�ciency of the proposed ML-CK-
ELM method, we compare its classi�cation perfor-
mance with the following state-of-the-art and high-
performance methods:

� ML-KNN [7] (2007): Multi-label k-nearest neigh-
bors proposed by Zhang et al., employing the maxi-
mum posterior probability of the k-nearest neighbor
samples to label prediction;

� ML-RBF [8] (2009): Multi-Label Radial Basis
Function proposed by Zhang et al., extending the
RBF to deal with multi-label problems by perform-
ing the k-means clustering algorithm with the aim
of determining the centers of the RBF functions and
the number of hidden layer nodes in the network;
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� RELM [9] (2010): Regular Extreme Learning
Machine proposed by Deng et al., employing the
structural risk minimization and weighted least
square to improve the robustness of ELM;

� ML-ELM-RBF [10] (2016): Multi-Label Ex-
treme Learning Machine with Radial Basis Function
proposed by Zhang et al., adopting the idea of radial
basis function for multi-label learning (ML-RBF)
and weight uncertainty ELM-AE.

4.3. Experiments setup
The experiments are conducted using Python 3.6
running on a 2.4-GHz i7 CPU with 8 GB RAM. In
this paper, 5-fold Cross Validation (5-CV) is used for
parameter tuning and the regularization parameter C
is set as 2r, fr = �10;�9; � � � ; 10g in each layer. RBF,
linear, sigmoid, and polynomial kernels are combined
to form a fused kernel function. The kernel parameter
� for RBF is set as 2r, fr = �6;�5; � � � ; 4g in each
layer. Moreover, the weight of kernel wm is chosen

from the set f0; 0:1; 0:2; 0:3; � � � ; 1g. Moreover, based
on cross-validation results, in most of datasets, the
average weight of RBF kernel is greater than the others
in all layers. Moreover, for some datasets, the weights
of RBF and Polynomial kernels are equal.

The experiments were conducted on fourteen pub-
licly available benchmark datasets. The detailed infor-
mation about all the datasets is summarized in Table 1.

4.4. Evaluations and performance analysis
The results in Tables 2 to 15 illustrating the average of
di�erent metrics over test data for ML-ELM-RBF, ML-
RBF, ML-KNN, and RELM were adopted from [10].
The experimental results include the average of di�er-
ent performance measures for 10 runs over test data.
In all tables, the indicator # in front of one measure
means that the smaller value for that measure is the
better performance. In contrast, the " sign denotes
that the higher value for one measure is superior to
the smaller values. From the results shown in Table 2,

Table 1. Properties of benchmark datasets.

Data set Number of
training samples

Number of
test samples

Features Labels

Yeast 1500 917 103 14

Scene 2000 407 294 6

Delicious 12920 3185 500 983

Art 2000 3000 462 26

Business 2000 3000 438 30

Computer 2000 3000 681 33

Education 2000 3000 550 33

Entertainment 2000 3000 640 21

Health 2000 3000 612 32

Recreation 2000 3000 606 22

Reference 2000 3000 793 33

Science 2000 3000 743 40

Social 2000 3000 1047 39

Society 2000 3000 636 27

Table 2. Average test results of �ve multi-label algorithms on yeast dataset using 10 runs of 5-CV.

Evaluation criterion
Algorithm

ML-CK-ELM ML-ELM-RBF ML-RBF ML-KNN RELM

Hamming-loss# 0.1896 0.1899 0.1978 0.1962 0.1985

One-error# 0.2356 0.2297 0.2372 0.2334 0.2356

Coverage# 6.1985 6.2674 6.4963 6.4089 6.5691

Ranking-loss# 0.1599 0.1632 0.1736 0.1726 0.1776

Average-precision" 0.7702 0.7673 0.7586 0.7588 0.7555
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Table 3. Average test results of �ve multi-label algorithms on scene dataset using 10 runs of 5-CV.

Evaluation criterion
Algorithm

ML-CK-ELM ML-ELM-RBF ML-RBF ML-KNN RELM

Hamming-loss# 0.1095 0.1653 0.1614 0.1884 0.1664

One-error# 0.2867 0.2920 0.2916 0.3480 0.2908

Coverage# 0.5402 0.8751 0.8865 1.0320 0.8929

Ranking-loss# 0.0973 0.1521 0.1553 0.1923 0.1564

Average-precision" 0.8299 0.8121 0.8112 0.7738 0.8105

Table 4. Average test results of �ve multi-label algorithms on delicious dataset using 10 runs of 5-CV.

Evaluation criterion Algorithm
ML-CK-ELM ML-ELM-RBF ML-RBF ML-KNN RELM

Hamming-loss# 0.0166 0.0177 0.0178 0.0184 0.0178
One-error# 0.3437 0.3252 0.3344 0.4085 0.3358
Coverage# 547.0185 607.723 685.995 551.428 615.649
Ranking-loss# 0.1175 0.1216 0.1410 0.1186 0.1235
Average-precision" 0.3773 0.3820 0.3779 0.3276 0.3756

Table 5. Average test results of �ve multi-label algorithms on art dataset using 10 runs of 5-CV.

Evaluation criterion Algorithm
ML-CK-ELM ML-ELM-RBF ML-RBF ML-KNN RELM

Hamming-loss# 0.0567 0.0537 0.0542 0.0585 0.0545
One-error# 0.4703 0.4730 0.4759 0.5467 0.4803
Coverage# 4.5873 5.4506 5.7788 4.7650 5.5812
Ranking-loss# 0.1157 0.1401 0.1498 0.1262 0.1434
Average-precision" 0.6258 0.6122 0.6066 0.5717 0.6071

Table 6. Average test results of �ve multi-label algorithms on business dataset using 10 runs of 5-CV.

Evaluation criterion Algorithm
ML-CK-ELM ML-ELM-RBF ML-RBF ML-KNN RELM

Hamming-loss# 0.0253 0.0254 0.0255 0.0267 0.0254
One-error# 0.1163 0.1150 0.1146 0.1210 0.1168
Coverage# 2.4087 2.5083 2.7733 2.1407 2.5430
Ranking-loss# 0.0396 0.0418 0.0463 0.0359 0.0422
Average-precision" 0.8863 0.8844 0.8805 0.8822 0.8823

Table 7. Average test results of �ve multi-label algorithms on computer dataset using 10 runs of 5-CV.

Evaluation criterion Algorithm
ML-CK-ELM ML-ELM-RBF ML-RBF ML-KNN RELM

Hamming-loss# 0.0347 0.0345 0.0345 0.0373 0.0351
One-error# 0.3420 0.3549 0.3585 0.4083 0.3610
Coverage# 4.0757 4.7178 5.0634 3.9317 4.6083
Ranking-loss# 0.0823 0.0976 0.1058 0.0790 0.0949
Average-precision" 0.7109 0.6988 0.6960 0.6670 0.6995
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Table 8. Average test results of �ve multi-label algorithms on education dataset using 10 runs of 5-CV.

Evaluation criterion
Algorithm

ML-CK-ELM ML-ELM-RBF ML-RBF ML-KNN RELM

Hamming-loss# 0.0375 0.0377 0.0375 0.0397 0.0377

One-error# 0.4597 0.4735 0.4763 0.5117 0.4718

Coverage# 4.2243 4.7887 5.3682 3.050 4.4921

Ranking-loss# 0.0883 0.1005 0.1127 0.0770 0.093

Average-precision" 0.6410 0.6279 0.6211 0.6083 0.6331

Table 9. Average test results of �ve multi-label algorithms on entertainment dataset using 10 runs of 5-CV.

Evaluation criterion Algorithm
ML-CK-ELM ML-ELM-RBF ML-RBF ML-KNN RELM

Hamming-loss# 0.0525 0.0523 0.0515 0.0574 0.0525
One-error# 0.3990 0.4101 0.4067 0.4977 0.4130
Coverage# 2.9200 3.1524 3.3899 2.9623 3.3208
Ranking-loss# 0.0984 0.1085 0.1178 0.1060 0.1139
Average-precision" 0.6913 0.6811 0.6794 0.6255 0.6778

Table 10. Average test results of �ve multi-label algorithms on health dataset using 10 runs of 5-CV.

Evaluation criterion Algorithm
ML-CK-ELM ML-ELM-RBF ML-RBF ML-KNN RELM

Hamming-loss# 0.0337 0.03290 0.0335 0.0363 0.0347
One-error# 0.2573 0.2545 0.2602 0.3043 0.2716
Coverage# 3.1807 3.5523 3.7748 2.7877 3.5983
Ranking-loss# 0.0489 0.0557 0.0587 0.0473 0.0563
Average-precision" 0.7888 0.7866 0.7812 0.7560 0.7775

Table 11. Average test results of �ve multi-label algorithms on recreation dataset using 10 runs of 5-CV.

Evaluation criterion Algorithm
ML-CK-ELM ML-ELM-RBF ML-RBF ML-KNN RELM

Hamming-loss# 0.0557 0.0547 0.0547 0.0584 0.0565
One-error# 0.4577 0.4721 0.4712 0.5557 0.4684
Coverage# 4.140 4.4190 4.5297 4.2827 4.2339
Ranking-loss# 0.1397 0.1514 0.1549 0.1535 0.1436
Average-precision" 0.6354 0.6212 0.6201 0.5677 0.6269

Table 12. Average test results of �ve multi-label algorithms on reference dataset using 10 runs of 5-CV.

Evaluation criterion Algorithm
ML-CK-ELM ML-ELM-RBF ML-RBF ML-KNN RELM

Hamming-loss# 0.0254 0.0251 0.0252 0.0270 0.0257
One-error# 0.3583 0.3636 0.3648 0.4043 0.3762
Coverage# 3.0867 3.5390 3.9425 2.7340 3.7601
Ranking-loss# 0.0717 0.0824 0.0929 0.0678 0.0889
Average-precision" 0.7217 0.7134 0.7069 0.6886 0.7050



3014 M. Rezaei Ravari et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 3005{3018

Table 13. Average test results of �ve multi-label algorithms on science dataset using 10 runs of 5-CV.

Evaluation criterion Algorithm
ML-CK-ELM ML-ELM-RBF ML-RBF ML-KNN RELM

Hamming-loss# 0.0316 0.0309 0.0308 0.0334 0.0312
One-error# 0.5027 0.5046 0.5061 0.5590 0.4992
Coverage# 5.9303 7.1455 7.2828 5.7890 6.9849
Ranking-loss# 0.1079 0.1330 0.1362 0.1107 0.1300
Average-precision" 0.6000 0.5854 0.5830 0.5483 0.5880

Table 14. Average test results of �ve multi-label algorithms on social dataset using 10 runs of 5-CV.

Evaluation criterion Algorithm
ML-CK-ELM ML-ELM-RBF ML-RBF ML-KNN RELM

Hamming-loss# 0.0208 0.0203 0.0206 0.0126 0.0206
One-error# 0.2887 0.2849 0.2819 0.3133 0.2853
Coverage# 3.5127 3.8253 4.3701 2.9770 4.0361
Ranking-loss# 0.0608 0.0664 0.0770 0.0546 0.0709
Average-precision" 0.7715 0.7685 0.7644 0.7568 0.7664

on yeast dataset, ML-CK-ELM has achieved the best
performance except in the one-error evaluation criteria.
On scene dataset, Table 3 indicates that ML-CK-ELM
performs much better than all the other algorithms in
terms of all evaluation metrics. Table 4, on delicious
dataset, shows that ML-CK-ELM is inferior to ML-
ELM-RBF only in terms of one error and average
precision.

From the results shown in Table 5, on art dataset,
ML-CK-ELM achieves impressive performance except
in terms of hamming loss. As seen in Table 6, on
business dataset, the proposed method can reach sat-
isfactory results in hamming loss and average precision
metrics. On computer dataset in Table 8, ML-CK-
ELM achieves better performance in terms of one error
and average precision. Table 8, on education dataset,
shows that ML-CK-ELM reaches acceptable results
in terms of all evaluation metrics, except ranking-
loss. According to Tables 9 and 11 on entertainment
dataset and recreation dataset, respectively, ML-CK-
ELM has superior performance in terms of one error,

coverage, ranking loss, and average precision. On
health and social datasets presented in Tables 10
and 14, respectively, ML-CK-ELM has the optimal
indicator of average precision. Nonetheless, it performs
well in other criteria on the second rank. From the
results in Table 12, on reference dataset, ML-CK-ELM
is inferior to ML-ELM-RBF and ML-KNN in terms
of hamming loss, coverage, and ranking loss. As seen
from Table 13, on science dataset, the proposed method
obviously achieves superior results in terms of one
error, ranking loss, and average precision. Eventually,
from the result in Table 15, on society dataset, ML-
CK-ELM achieves a satisfactory result in terms of all
evaluation criteria, except coverage.

For the sake of making a fair and comprehen-
sive comparison between the proposed method and
the other methods, non-parametric statistical analyses
based on the Freidman tests are given in the following.
The Friedman test [21] is performed on the average
value of each metric over all datasets to rank the
algorithms and after that, post hoc is used to con�rm

Table 15. Average test results of �ve multi-label algorithms on society dataset using 10 runs of 5-CV.

Evaluation criterion
Algorithm

ML-CK-ELM ML-ELM-RBF ML-RBF ML-KNN RELM

Hamming-loss# 0.0507 0.0512 0.0515 0.0535 0.0519

One-error# 0.3970 0.3971 0.4045 0.4247 0.4007

Coverage# 5.5473 6.0138 6.3341 5.3110 6.2731

Ranking-loss# 0.1288 0.1416 0.1491 0.1318 0.1481

Average-precision" 0.6419 0.6345 0.6274 0.6181 0.6304



M. Rezaei Ravari et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 3005{3018 3015

Figure 6. Average ranks obtained by each method on
di�erent performance metrics in Friedman test over all
datasets (the lower rank is the better performance).

where the di�erences between algorithms occurred.
According to Figure 6, ML-CK-ELM is ranked the
�rst in terms of ranking loss, one error, coverage,
and average precision and it can be selected as a
control classi�er. As shown in Table 16 for ranking-
loss, the ML-CK-ELM is compared with the other
methods and the Holm's procedure rejects all default
hypotheses since the corresponding p-values are less
than or equal to 0.05. Therefore, all algorithms are
signi�cantly di�erent from ML-CK-ELM on ranking
loss metric. In Table 17, the comparison for one
error metric is presented, and Holm's procedure re-

Table 16. Post Hoc comparisons for � = 0:05 on
ranking-loss; Holm's p-value = 0.05. Control method is
Multi-Layer Combined Kernel Extreme Learning Machine
(ML-CK-ELM).

Algorithm Z p Holm

ML-RBF 5.49852 0 0.0125
RELM 3.705209 0.000211 0.016667
ML-ELM-RBF 2.390457 0.016827 0.025
ML-KNN 0.956183 0.33898 0.05

Table 17. Post Hoc comparisons for � = 0:05 on
one-error; Holm's p-value = 0.016667. Control method is
Multi-Layer Combined Kernel Extreme Learning Machine
(ML-CK-ELM).

Algorithm Z p Holm

ML-KNN 4.482107 0.000007 0.0125
RELM 1.553797 0.120233 0.016667
ML-RBF 1.25499 0.209482 0.025
ML-ELM-RBF 0.179284 0.857714 0.05

jects the �rst two hypotheses since the corresponding
p -values � 0:016667. Therefore, ML-KNN and RELM
are signi�cantly di�erent from ML-CK-ELM in terms
of one error. In Table 18, on coverage measure, Holm's
procedure rejects all default hypotheses because the
corresponding p -values are less than or equal to 0.05.
Thus, ML-CK-ELM outperforms ML-RBF, RELM,
ML-ELM-RBF, and ML-KNN signi�cantly. Regarding
the average-precision results presented in Table 19, the
Holm's procedure con�rms the superiority of ML-CK-
ELM to ML-KNN, ML-RBF, RELM, and ML-ELM-
RBF. However, on hamming loss metric, the proposed
method is given the third rank, ML-RBF the second,
and the ML-ELM-RBF the �rst, as shown in Figure 6.
According to Holm's procedure results of the hamming
loss given in Table 20, those default hypotheses whose
corresponding p-values are lower than or equal to 0.025
are rejected. Therefore, in terms of hamming loss, ML-
ELM-RBF is better than ML-CK-ELM.

According to the post-hoc procedures, our pro-
posed ML-CK-ELM is superior to other methods in

Table 18. Post Hoc comparisons for � = 0:05 on
coverage; Holm's p-value = 0.05. Control method is
Multi-Layer Combined Kernel Extreme Learning Machine
(ML-CK-ELM).

Algorithm Z p Holm

ML-RBF 5.259006 0 0.0125
RELM 3.107594 0.001886 0.016667
ML-ELM-RBF 2.629503 0.008551 0.025
ML-KNN 0.358569 0.719918 0.05

Table 19. Post Hoc comparisons for � = 0:05 on
average-precision; Holm's p-value = 0.05. Control method
is Multi-Layer Combined Kernel Extreme Learning
Machine (ML-CK-ELM).

Algorithm Z p Holm

ML-KNN 6.095666 0 0.0125
ML-RBF 4.1833 0.000029 0.016667
RELM 3.466163 0.000528 0.025
ML-ELM-RBF 1.792843 0.072998 0.05

Table 20. Post Hoc comparisons for � = 0:05 on
hamming loss; Holm's p-value = 0.025. Control method is
Multi-Layer Extreme Learning Machine-Radial Basis
Function (ML-ELM-RBF).

Algorithm Z p Holm

ML-KNN 4.422346 0.00001 0.0125
RELM 2.92831 0.003408 0.016667
ML-CK-ELM 0.956183 0.33898 0.025
ML-RBF 0.657376 0.5109939 0.05
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terms of average precision, coverage, and ranking loss
criteria. To be more speci�c, due to the average
precision considered in parameters tuning via cross
validation, ML-CK-ELM has better results in terms
of this criterion. Although ML-CK-ELM seems to be
better than the other methods according to Figure 6
in terms of one error, there is no signi�cant di�erence
among ML-CK-ELM, ML-RBF, and ML-ELM-RBF. It
is worth noting that ML-CK-ELM has a worse perfor-
mance than ML-ELM-RBF in terms of hamming loss.

In conclusion, the proposed method outperforms
the other algorithms in almost all cases in terms of four
evaluation criteria, namely average precision, one error,
ranking loss, and coverage and it is not better than ML-
ELM-RBF only for hamming loss measure. Obtained
results show quite an acceptable performance of ML-
CK-ELM compared to the other methods. For more
illustration, some radar charts are given in Figure 7. In
order to make a fair comparison between radar charts,
we �rst normalized the coverage measure by dividing

Figure 7. Radar charts for average precision and newly de�ned criteria of ranking loss, one error, coverage, and hamming
loss. The larger the area of radar charts for a method means the superiority of that method to all datasets.



M. Rezaei Ravari et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 3005{3018 3017

its values into maximum values for each dataset sep-
arately to scale them in the interval [0 1]. Then, the
reverse values of four criteria ranking including loss,
one error, coverage, and hamming loss are obtained
via (1-normalized value), showing the higher values of
these new measures to be better. Accordingly, the
radar chart for each new measure should have a larger
area. Based on Figure 7, the dashed line indicates
the radar chart of our proposed method that has the
maximum area, compared to the other methods. These
radar charts visually depict the performance of ML-
CK-ELM.

5. Concluding remarks

In this paper, an e�cient multi-label classi�cation
method based on kernel-based deep learning algorithm
called ML-CK-ELM was proposed, which resolved sev-
eral practical issues of Multi-Layer Extreme Learning
Machine (ML-ELM). First, due to kernel-based learn-
ing, no random parameter adjustment is necessary.
Next, there is no need for adjusting any manual
parameter. Finally, both computation time and mem-
ory storage were signi�cantly reduced. Furthermore,
when some base kernels were combined, an exceptional
ability of global approximation was represented, while
it showed a good generalized performance. The ex-
perimental results indicated that the proposed multi-
label classi�cation method enjoyed extremely enhanced
capability of multi-label classi�cation compared with
state-of-the-art algorithms. In brief, ML-CK-ELM
made a satisfactory improvement on the multi-label
classi�cation task over state-of-the-art algorithms. As
a framework of further investigations, it is recom-
mended that an extensive research be conducted by
employing di�erent ways of kernel combination such as
non-linear combinations and their advantages over the
linear combination.
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