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Abstract. Data Envelopment Analysis (DEA) technique is widely applied for perfor-
mance assessment of Decision-Making Units (DMUs). Revenue E�ciency (RE) evaluation
is one of the controversial subject matters that can be performed through DEA context.
The amount of production and its prices are crucial factors in the RE. The classical DEA
models consider the prices �xed and known, which are not the case in the real world. Also,
the classical DEA models consider linear pricing in revenue assessment. However, most of
real-world problems deal with nonlinear prices. This paper evaluates the RE given the piece-
wise linear theory in non-competitive situations. In doing so, a stepwise pricing function
is introduced that allows the prices to vary with respect to the amount of production. As
an innovative idea, a more accurate mathematical modeling for the RE is proposed. A
dynamic weight function is de�ned in the maximum revenue optimization model that no
longer considers prices �xed. A case study validates our proposed model.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Data Envelopment Analysis (DEA) technique is a
Linear Programming (LP) problem that assesses the
performance of Decision-Making Units (DMUs) involv-
ing multiple inputs/outputs. DEA is used in dealing
with theoretical and practical problems. The e�ciency
measure was �rst introduced by Farell [1] and then,
developed by Charnes et al. [2] in the DEA framework.
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Following the presentation of the �rst DEA mod-
els, di�erent modi�cations in terms of many factors/
aspects have been provided to strengthen the power
of DEA. Kuosmanen and Post [3] computed relative
e�ciency score bounds considering upper and lower
scores. They noted that these bounds reveal more ac-
curate approximations for the relative e�ciency score.
They computed these bounds using LP problems. Ku-
osmanen and Post [4] corrected existing technical error
in their previous work. Mostafaee and Saljooghi [5]
considered the cost e�ciency measure in the presence
of inadequate price details. Chakraborty et al. [6] em-
phasized that the products' requirements would alter
over time. Fang and Li [7] assessed the cost e�ciency
in the presence of uncertain prices. They utilized cone-
ratio models in DEA with the price information and
added weight bounds to the model. Also, Moza�ari
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et al. [8] introduced cost and revenue models in
DEA. Ghiyasi [9] introduced inverse DEA models for
assessing both cost and revenue values. Moreover,
Fang and Li [10] considered a duality study to build
theoretical attributes of envelopment and multiplier
models of cost e�ciency assessment assuming uncertain
price. Aparicio et al. [11] demonstrated that an
output-oriented version of the weighted additive model
could satisfactorily ensure Revenue E�ciency (RE).
They introduced an inequality to de�ne the market
output price vector. Sahoo et al. [12] claimed
that �rms' e�ciency as well as inputs and outputs
varying prices were questionable. They developed new
directional measures for assessment of cost and RE.
According to Aparicio et al. [13], in the case that
�rms face price 
uctuations, the overall ine�ciency
measurement and decomposition would be of great
importance. Cook and Zhu [14] suggested a piece-
wise linear pricing DEA model to evaluate the relative
e�ciency of DMUs. Hosseinzadeh Lot� et al. [15]
developed a modi�ed version of the DEA model that
derived suitable benchmarks for ine�cient DMUs.

The RE is one of the in
uential indices for
managers and analysts who sought new strategies for
gaining more bene�ts. Konara et al. [16] discussed
the RE in banking and emerging markets. Deng et
al. [17] utilized DEA to assess the RE of Spanish hotels.
Cao et al. [18] studied the decreasing marginal revenue
analysis in the agriculture sector.

In the previous RE analysis by DEA models, the
prices are assumed to be known and �xed for the
inputs/outputs of DMUs. However, the prices are
variable in real-world problems. Aroche-Reyes [19]
reviewed some essential speci�cations of the price
designation methods while considering an input-output
model with focus on internal price designation pro-
cedure. Johnson and Ruggiero [20] considered a
nonparametric measurement of allocative e�ciency.
They assumed that the output prices were endogenous.
Moura [21] presented a two-sector model with two
key ingredients for assessing investment shocks with
endogenous relative prices. Din and Sun [22] assessed
the endogenous choice of prices while taking quantities
into account. Cellini et al. [23] proposed a dynamic
model of price and quality competition for assessing the
cause of competition on quality.

The objective of this paper is to develop a rev-
enue e�ciency DEA model to evaluate the relative
e�ciency of DMUs when the output prices are not
�xed. In the conventional DEA models, to assess the
RE, linear pricing is assumed. However, in real-world
problems, the variables have nonlinear behavior. This
study assumes a non-competitive context for the RE
assessment. This is the main contribution of this paper
that has been considered for the �rst time in DEA.
In doing so, here, stepwise pricing of weight function

is introduced to deal with the nonlinear behavior of
variables. A mixed integer LP model is developed.
Then, the developed model is used for assessing RE
using Malmquist Productivity Index (MPI). The MPI
analyzes the progress and regress of DMUs. This paper
makes the following contributions:

� This paper assumes non-competitive context for the
RE assessment;

� For the �rst time, a DEA model is introduced to
consider the nonlinear behavior of variables;

� It is shown that linear pricing does not adequately
de�ne the inherent concept of variables;

� In our new model, the prices are not assumed �xed;

� A stepwise pricing method is developed considering
the theory of piece-wise linear functions;

� A case study is given.

This paper proceeds as follows: In Section 2, the
DEA preliminaries are reviewed. Section 3 presents
our new model. A case study is given in Section 4.
Managerial implications are discussed in Section 5.
Section 6 concludes the paper.

2. DEA preliminaries

2.1. Revenue E�ciency (RE)
DEA is a mathematical method for assessing the per-
formance of a set of DMUs. One of the hot applications
of DEA is to calculate the RE. Capability of producing
maximum outputs given current inputs is called RE.
Here, a concise review of RE is given in the DEA
context. DMUl is the DMU under evaluation. The
used notations in this paper are as follows:

- xij : The ith input of DMUj

- yrj : The rth output of DMUj

- xil: The ith input of DMUl

- yrl: The rth output of DMUl

- �j : Intensi�er variables for DMUj

- ': The maximum increase in all outputs

- �: The maximum decrease in all inputs

- yr: The rth output variable

- Dt(xtl ; ytl ): �� when DMUl and technology are in
period t

- Dt+1(xtl ; ytl ): �� when DMUl is in period t and
technology is in period t+ 1

- Dt(xt+1
l ; yt+1

l ): �� when DMUl is in period t+1 and
technology is in period t

- Dt+1(xt+1
l ; yt+1

l ): �� when DMUl and technology are
in period t+ 1
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- PL:RE:MPI(xt+1
l ; yt+1

l ; xtl ; ytl ): Piece-wise linear
revenue Malmquist productivity index

- M(xt+1
l ; yt+1

l ; xtl ; ytl ): Malmquist productivity index

- xfij : The ith input of DMUj in period f , f 2 ft; t+1g
- yfrj : The rth output of DMUj in period f , f 2 ft; t+

1g
- xkil: The ith input of DMUl in period k, k 2 ft; t+1g
- ykrl: The rth output of DMUl in period k, k 2 ft; t+

1g
- ykrr : The krth element of rth output variable
- M : A big scalar
- tkrr : The krth element of rth output for the variable
t

- vkr : The krth binary variable
- yqkrr : The krth element of the rth output variable

for DMUj in period q, q 2 ft; t+ 1g
- yfkrrj : The krth element of the rth output of DMUj

in period f , f 2 ft; t+ 1g
- ykrrj : The krth element of the rth output of DMUj

Assume that there are n DMUs with m inputs
and s outputs that are semi-positive vectors. For each
DMUj , the input and output vectors are denoted by
Xj = (x1j ; x2j ; :::; xmj) and Yj = (y1j ; y2j ; :::; ysj),
respectively, for all j's.

To evaluate the DMU under evaluation (DMUl)
in constant returns to scale environment, Charnes et
al. [2] proposed the following LP problem:

max '

s.t.:
nX
j=1

xij�j � xil i = 1; :::;m;

nX
j=1

yrj�j � 'yrl r = 1; :::; s;

�j � 0 j = 1; :::; n: (1)

As addressed by Cooper et al. [24], RE can be
obtained using the following procedure which leads to
solving the following LP problem. To estimate the RE,
output prices are assumed �xed and known although
it is possible for them to change from one DMU to
another DMU. Model (2) implies maximal revenue
model, as stated by Wang et al. [25]:

max
sX
r=1

wryr

s.t. :
nX
j=1

xij�j � xil i = 1; :::;m;

nX
j=1

yrj�j = yr r = 1; :::; s;

yr � 0 r = 1; :::; s;

�j � 0 j = 1; :::; n; (2)

where wr is the price of each output yr. Each DMU
produces outputs yr, r = 1; :::; s at maximal revenue
using inputs xi, i = 1; :::;m. Therefore, for each DMUl,
the RE is de�ned as the ratio of its current revenue to
the maximum revenue, which is the optimal solution of
Model (2) as de�ned below:

Revenue e�ciency =

sP
r=1

wryrl
sP
r=1

wry�r
: (3)

Note that Eq. (3) should be less than, or equal
to, 1 and it should also be greater than 0. The RE,
considering the same level of inputs, shows the extent
to which the DMU's revenue is close to the best DMU's
revenue.

2.2. Malmquist Productivity Index (MPI)
DEA models can be used for estimating the e�ciency
and productivity changes over period using MPI [26].
The MPI considers two periods (t and t + 1) and
calculates e�ciency variations over time. MPI can be
computed by solving the following model proposed by
Caves et al. [26] for evaluation of DMUl:

D(xl; yl) = minf� : (�xl; yl) 2 Tg: (4)

Given the resultant distance function Eq. (4),
consider the following input-oriented CCR (Charnes-
Cooper-Rhodes) model:

Df (xkl ; y
k
l ) = min �

s.t.:
nX
j=1

xf ij�j � �xkil i = 1; :::;m;

nX
j=1

yf rj�j � ykrl r = 1; :::; s;

�j � 0 j = 1; :::; n: (5)

Accordingly, four LP problems can be de�ned.
Consider l to be the notion of the unit under evaluation
and each of k and f shows periods t and t + 1. For
instance, to assess DMUl, let k = t and f = t + 1,
Dt+1(xtl ; ytl ) which shows the coordinates of DMUl
in period t and technology in period t + 1. To
demonstrate the progress and regress of DMUs, Caves
et al. [26] (1982) proposed MPI as given below:
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M(xt+1
l ; yt+1

l ; xtl ; y
t
l ) =�

Dt(xt+1
l ; yt+1

l )Dt+1(xt+1
l ; yt+1

l )
Dt(xt+1

l ; yt+1
l )Dt+1(xtl ; ytl )

�1=2

: (6)

The decomposition of this index shows technical
e�ciency alteration and technology frontier shift while
two periods are taken into account (t and t+ 1).

M(xt+1
l ; yt+1

l ; xtl ; y
t
l ) =

�
Dt+1(xt+1

l ; yt+1
l )

Dt(xtl ; ytl )

�
�
Dt(xt+1

l ; yt+1
l )Dt+1(xt+1

l ; yt+1
l )

Dt(xtl ; ytl )Dt+1(xtl ; ytl )

�1=2

: (7)

If M(xt+1
l ; yt+1

l ; xtl ; ytl ) > 1, then the total pro-
ductivity of DMU experiences progress. If M(xt+1

l ;
yt+1
l ; xtl ; ytl ) < 1, then the total productivity of DMU

experiences regress. If M(xt+1
l ; yt+1

l ; xtl ; ytl ) = 1, then
the total productivity remains unchanged.

3. Proposed method

3.1. Stepwise pricing for evaluating RE
At this juncture, a new method for evaluating the
RE is presented. To the best of our knowledge, RE
has not yet been discussed so far, given nonlinear
behavior of sales prices. Consider a non-competitive
situation. For instance, at a power plant, it is expected
that revenue be increased by producing greater electric
power. If a power plant produces 9 Mega Watt per
Hour (MWH) of electric power, this power will be sold
for $100 per unit for the �rst 5 units and $140 per
unit for the 4 units beyond the �rst 5 units. This
is a unique case that is discussed in this paper. The
existing DEA models deal with linear pricing. Linear
pricing is not applicable to all situations because it
may lead to inaccurate results for enterprises like power
plants that should use a stepwise pricing system. The
average price is not a suitable replacement as the
nonlinear behavior of pricing is not considered. This
paper considers the conditions in which increments in
value are automatically taken into account and occur
frequently in real-life situations. So far, in DEA, for
calculating RE, a linear function has been considered.
Linear function gives an approximate solution. Here,
to assess RE, we present a model in which incremental
revenue is considered.

Note that the values depend on the number of
products called stepwise rating. Although the values
are stable in standard RE measurement, this is not
the case in real-world problems. Consider yrj as the
rth output of the jth DMU. In addition, let wr be
the value of this product. In such a situation, the
producer will obtain higher revenue, if a larger number

Figure 1. A convex function.

of products are produced and sold. In this case, when
a stepwise rating system is contemplated, a larger
number of products are sold at higher prices. To get
accurate results, it is essential that a general framework
be established for RE which considers the real-life
market situations. Cook and Zhu [14] argued that
in the multiplier DEA model, linear weighting is not
adequately capable of indicating the innate behaviors
of variables. They maintained that some variables had
non-linear behavior and linear weighting might lead to
a bias. Hosseinzadeh Lot� et al. [15] presented a
modi�ed version of the model in the envelop form of
CCR model. In Figure 1, the convex function indicates
that the greater the output, the higher the revenue.

According to the piece-wise linear function theory,
the estimation of this function can be enhanced by
breaking down the scale of the rth output into kr
segments in which they are assumed to behave linearly
in their segments (see Figure 2).

R1 and R2 represent sets of regular and piece-wise
linear outputs with increasing magnitude, respectively.
Thus, the scale of variable, which reveals piece-wise
linear behavior, should be considered as kr ranges such
as [0; L1]; (L1; L2]; :::; (Lkr�1; Lkr]. Consider:

tkr i =

(
Lkr ; if kr = 1
Lkr � Lkr�1; if kr = 2; :::; lkr

(8)

An expert should determine the number and
width of ranges. The vector of pro�ts corresponding to
yr (r 2 R2), which shows nonlinear behavior, consists
of kr ranges as wkrr ; kr = 1; :::; lkr ; r 2 R2, where
wkrr < wkr+1

r ; kr = 1; :::; lkr ; r 2 R2. We can represent
the contribution of the rth output to the weighted
aggregate of all outputs in the objective function of
maximal revenue model as

Plkr
kr=1 w

kr
r ykrr instead of a

single wryr.
Assume that yr is the rth output (r 2 R2) which

has stepwise pricing and wr is the corresponding vector
of prices. For instance, let kr = 3 and consider
three ranges for yr including (y1

r ; y2
r ; y3

r). We de�ne
ranges as [0, 300), [300, 700), and [700, 1000] for
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Figure 2. A convex piece-wise linear function.

y1
r , y2

r , and y3
r , respectively. For wr = (w1

r ; w2
r ; w3

r),
consider (650,700,750), respectively. In the traditional
approach, yr = 800 and wr = 800 are assumed. In our
approach, given the ranges and Eq. (8), yr should be
replaced with (y1

r ; y2
r ; y3

r) = (300; 400; 100). Also, wr
should be replaced with (w1

r ; w2
r ; w3

r) = (650; 700; 750).
This conveys the meaning of stepwise pricing in which
the output is sold $650 per unit for the �rst range,
$700 per unit for the second range, and $750 per
unit for the third range. However, in the traditional
approach, the whole 800 units of outputs are sold $800
per unit.

Our new model (Model (9)) can �nd the optimal
ykrr ; kr = 1; :::; lkr ; r 2 R2, which complies with the
theory of piece-wise function. It means that ykrr ; kr =
1; :::; lkr ; r 2 R2 should be a sequence of sequential
values in their speci�ed ranges. Therefore, lower ranges
should be �lled before higher ones are �lled. The
stated concepts comply with the reasoning that the
scale should be divided to show the nonlinear behavior
of the outputs. In Model (9), let v0 = 0 and M be a big
positive constant. Note that kr;r 2 R2 illustrates the
number of intervals (Lkr�1; Lkr]. The binary variable
vk forces ykrr to become zero. It is obvious that in the
case that the lower ranges have not been completely
met, the result would be vk = 1 in which ykrr is forced to
become zero. To con�ne ykrr in a way that each portion
of this kind of output gets a value according to Eq. (8),
Constraints (a), (b), and (c) in Model (9) are added to
the mathematical model. Furthermore, these variables
control the lower ranges to be completed before the
upper ranges. In the objective function of Model (9), it
is clear that each portion of the de�ned output includes
distinct values, which are in an increasing order and is
based on its magnitude.

Max
X
r2R1

wryr +
X
r2R2

(w1
ry

1
r + w2

ry
2
r + :::+ wkrr y

kr
r )

S.t.:

Figure 3. Linearizations of a piece-wise function.

nX
j=1

�jxij � xil i = 1; :::;m;

nX
j=1

�jyrj � yr r 2 R1;

nX
j=1

�krjy
kr
rj � ykrr r2R2; kr=1; :::; lkr ;

ykrr � tkrr (1�vkr�1) r 2 R2; kr = 1; :::; lkr ; (a)

vkr�(tkrr �ykrr ) :M r2R2; kr=1; :::; lkr ; (b)

(tkrr �ykrr )�vkr :M r 22; kr = 1; :::; lkr ; (c)

�j � 0; yr � 0 j = 1; :::; n; r 2 R1;

�krj�0; ykrr �0 j=1; :::; n; r2R2; kr=1; :::; lkr ;

vkr 2 f0; 1g r 2 R2; kr=1; :::; lkr : (9)

The linearization of revenue function may di�er
among various amounts of yr. This is shown in
Figure 3. As is seen, the linearization function di�ers
between yr = 400 and yr = 750. Note that when
y(k+1)r
r ; kr = 1; :::; lkr ; r 2 R2 has a positive value,
ykrr ; kr = 1; :::; lkr ; r 2 R2 has also a positive value.
Hence, we have w1

ry1
r + w2

ry2
r + w3

ry3
r .

In Model (9), the �rst output has nonlinear
behavior in pricing. Thus, in this model, instead
of single expression w1y1o, a linear combination like
w1
ry1

1l + w2
ry2

1l + ::: + wlkrr ylkr1l is replaced. Note that
lkr shows the number of de�ned intervals for variations
of the �rst output. Consider r = 2; :::; s and r = 1
to be the sets of regular and piece-wise linear outputs,
respectively. Model (9) is a mixed integer nonlinear
programming as there are integer variables vkr, r = 1.
Finally, a piece-wise linear RE for DMUl is the ratio
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of piece-wise linear maximum revenue of the current
revenue of DMUl divided by the optimal solution of
Model (9) which is as follows:

Revenue e�ciency =P
r2R1

wryrl+
P
r2R2

(w1
ry1
rl+w2

ry2
rl+:::+wkrr y

kr
rl )P

r2R1

wry�r+
P
r2R2

(w1
ry�1r +w2

ry�2r +:::+wkrr y�krr )
:
(10)

Theorem 3.1. Model (9) is always feasible and the
objective function is bounded.

Proof: Let �l = 1, �j = 0, 8j = l, �krl = 1, �krj = 0,
8j 6= l, 8r = 2; :::; s, ylkrr = tkri , 8r = 1, 8kr = 1; :::; lkr,
v0 = 0, vkr = 0, vkr�1 = 0, 8r = 1, kr = 1; :::; lkr.
Therefore, it can be concluded that Model (9) is feasible
and the objective function is bounded. After solving
Model (9), the optimal solution is as y�2 ; r = 2; :::; s,
y�kr1 ; r = 1; kr = 1; :::; lkr . �

Theorem 3.2. The obtained target point (xl; y�r ; y�krr )
after solving Model (9) is Pareto e�cient.

Proof: An important point in DEA is that each
DMU is compared with the rest of DMUs. Suppose
that (y�r ; y�krr ) is not Pareto e�cient. Thus, there is
a feasible solution (�yr; �ykrr ) that dominates (y�r ; y�krr ).
Therefore, it can be concluded that this feasible solu-
tion has a greater objective function than the obtained
optimal (y�r ; y�krr ), which is con
ict with optimality
of (y�r ; y�krr ). As a result, it can be concluded that
the obtained target point (xl; y�r ; y�krr ), after solving
Model (9), is Pareto e�cient. �

Theorem 3.3. Given Model (9) and Eq. (10), at least
one DMU is revenue e�cient.

Proof: In Model (9), at least one inequality constraint
related to the outputs should be binding. Otherwise, it
is concluded that all the outputs' inequality constraints

are
nP
j=1

�krjy
kr
rj > y�krr ( r 2 R2; kr = 1; :::; lkr ). It

is assumed that there is a feasible solution in which
nP
j=1

�krjy
kr
rj � �ykrr (r 2 R2; kr = 1; :::; lkr ). In this

case, �ykrr > y�krr (r 2 R2; kr = 1; :::; lkr ), which is
a contradiction. Therefore, at least for one DMU,
the output inequality constraints are binding, meaning
that the current revenue is equal to the maximum
revenue and it is revenue e�cient. �
3.2. Stepwise pricing in revenue MPI
Here, Piece-wise Linear Revenue MPI (PLREMPI) is
introduced based on Model (9). Consider periods t
and t + 1. Note that l is similar to the DMU under
evaluation and q and f denote t and t+1, respectively.

Assume k = t and f = t+1, Df (xql ; y
q
l ) = Dt+1(xtl ; ytl ),

which shows DMUl in period t while technology is
considered in period t+1. The new model is as follows:

Df (xql ; y
q
l ) = MaxX

r2R1

wryqr +
X
r2R2

(w1
ry
q1
r + w2

ry
q2
r + :::+ wkrr y

qkr
r )

S.t.:

nX
j=1

�jxf ij � xqil i = 1; :::;m;

nX
j=1

�jyf rj � yqr r 2 R1;

nX
j=1

�krjy
fkr
rj � yqkrr r 2 R2; kr = 1; :::; lkr ;

yqkrr � tkrr (1� vkr�1) r 2 R2; kr = 1; :::; lkr ; (a)

vkr � (tkrr � yqkrr ) :M r 2 R2; kr = 1; :::; lkr ; (b)

(tkrr � yqkrr ) � vkr :M r 2 R2; kr = 1; :::; lkr ; (c)

�j � 0; yr � 0 j = 1; :::; n; r 2 R1;

�krj�0; yqkrr �0 j=1; :::; n; r2R2; kr=1; :::; lkr ;

vkr 2 f0; 1g r 2 R2; kr = 1; :::; lkr : (11)

To calculate PLREMPI, Eq. (12) is used. Note
that DMU is in period t while technology is in period
t+ 1.

PLREMPI(xt+1
l ; yt+1

l ; xtl ; y
t
l ) =�

Dt(xt+1
l ; yt+1

l )Dt+1(xt+1
l ; yt+1

l )
Dt(xtl ; ytl )Dt+1(xtl ; ytl )

�1=2

: (12)

If the score is higher than one, then there is a
progress in the productivity from period t to period
t + 1. If the score is less than one, then there is a
regress in the productivity from period t to period t+1.
If the score is equal to one, then there is no progress
or regress in the productivity from period t to period
t+ 1.

3.3. Illustrative example
Consider �ve DMUs with one input (I1) and one output
(O1). For the output, three ranges are considered as
o1

1 = [0; 11), o2
1 = [11; 17), and o3

1 = [17; 80). Numbers
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Table 1. Dataset of the example.

DMUs Current revenue I1 o1
1 o2

1 o3
1 O1

1 11000 12 11 0 0 11
2 14600 24 11 3 0 14
3 9000 25 9 0 0 9
4 19700 17 11 6 1 18
5 24200 26 11 6 4 21

are in MWH. Table 1 depicts the dataset. Price vector
of the output is (w1

1; w2
1; w3

1) = (1000; 1200; 1500).
In the classical evaluation, the price is considered as
$1000. Note that the sum of the three ranges is equal to
the initial output (O1). In Table 2, the piece-wise linear
evaluation of the maximum revenue is represented.
Also, the results of classical maximum revenue and the
optimal values of output (O�1) are reported in Table 3.

For DMU1, the output is 11 and the current
revenue is 11000. After evaluation by Model (9), the
optimal output is 17.71 and the corresponding revenue
is 19265. Given the classical revenue analysis (Model
(2)), the optimal maximum revenue is 12705.88 and the
optimal output is 12.71. By comparing Tables 2 and
3, it is seen that Model (2) overestimates the outputs.
Note that the outputs of DMU4 in both Models (9)
and (2) are the same. However, for DMU5, Model (2)
overestimates the output.

Here, we deal with outputs for presenting stepwise
pricing to reach revenue evaluation in DEA context.
Thus, some modi�cations are made to \maximum
revenue" optimization model to get a new RE score. A
good property of our model is that it does not present a
�xed value for the outputs. Instead, given the outputs,
it presents di�erent values to get possible maximum
revenue score.

4. Case study

Here, we wish to assess Iranian power plants. Most of
the Iranian power plants are owned by government and
the government sells electricity. Due to high electricity
consumption in Iran, the generated electricity is insu�-
cient. Here, 20 public power plants in Iran are assessed.
Since consumption is higher than electricity generation,
Iranian government faces lack of electricity. Thus, it

Table 3. Results of classical maximum revenue.

DMUs Maximum revenue I1 O�1
1 12705.88 12 12.71
2 25411.76 24 25.41
3 26470.59 25 26.47
4 18000.00 17 18.00
5 27529.41 26 27.53

should buy electricity from private power plants and
sell it to consumers at a subsidized rate. Thus, the
price is considered as a penalty paid by the government
for over-consumption of consumers. In some seasons,
there might be periods that demand is less than supply.
Thus, the government can sell the extra generated
electricity to neighboring countries.

Here, the stepwise pricing for the electricity is
considered in the non-competitive Iranian power gen-
eration market. Therefore, the higher the price, the
greater the income. In this case, the intervals for
changing amount of electricity are considered. At each
interval, a speci�c price is considered. Note that the
number and length of the intervals and corresponding
prices are determined by the experts. Furthermore,
assuming that �xed prices are not applicable in the
real world, biased e�ciency scores may be generated.

The dataset is obtained from Tavanir Manage-
ment Organization [27]. Dataset dates back to the year
2004 to 2006. The inputs and outputs are given below:

I1 Capacity (MW)
I2 Internal usage (MWH)
I3 Fuel (Tera Joule (TJ))
O1 Electrical power production (MWH)

The dataset related to 2004 is depicted in Table 4.
In Table 5, given the opinions of experts, the O1
is divided into four ranges. There is a nonlinear
relation between power generation and revenues of the
power plants. Therefore, linear pricing cannot give
a favorable result. However, using a stepwise rating
system, a greater amount of electricity power can be
sold for higher prices in noncompetitive situations.

Table 2. The results of piece-wise linear evaluation.

DMUs Maximum revenue I1 o1
1 o2

1 o3
1 Sum of output ranges

1 19265 12 11 6 0.71 17.71
2 23195 24 11 6 3.33 20.33
3 23705 25 11 6 3.67 20.67
4 19700 17 11 6 1.00 18.00
5 24200 26 11 6 4.00 21.00
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Table 4. Input and output data related to 2004.

Power plants
(DMUs)

I1 I2 I3 O1

1 625.88 241139 30.95308 3297100

2 247.5 139505 17.00441 1500253

3 50.0 13039 3.412765 212403

4 1760 301276 107.1448 11000000

5 1300 642909 57.30782 7438002

6 1000 421015 54.61188 6342203

7 240 85307 14.06063 1435991

8 736 361080 42.82585 4341330

9 1000 390708 46.37235 5134547

10 640 350154 38.2554 4210280

11 1890 636643 93.29557 11000000

12 290 81674 7.886569 922587

13 1280 588855 73.2442 7196540

14 60 29698 4.322743 341402

15 835 422673 52.77859 5621431

16 1600 796262 102.4223 11000000

17 600 271901 37.45617 3831065

18 120 63050 7.955432 665887

19 256 140940 15.76105 1492847

20 1000 390708 46.37228 5134547

Table 5. The output ranges de�ned for the �rst output.

DMUs o1
1 o2

1 o3
1 o4

1

1 3000000 297000 0 0
2 1500253 0 0 0
3 212403 0 0 0
4 3000000 2000000 2000000 4000000
5 3000000 2000000 2000000 438002
6 3000000 2000000 1342203 0
7 1435991 0 0 0
8 3000000 1341330 0 0
9 3000000 2000000 134547 0
10 3000000 1210280 0 0
11 3000000 2000000 2000000 4000000
12 922587 0 0 0
13 3000000 2000000 2000000 196540
14 341402 0 0 0
15 3000000 2000000 621431 0
16 3000000 2000000 2000000 4000000
17 3000000 831065 0 0
18 665887 0 0 0
19 1492847 0 0 0
20 3000000 2000000 134547 0

Table 6. The e�ciency scores obtained from Model (9).

DMUs PL-RE RE DMUs PL-RE RE

1 0.400 0.891 11 1.000 1.000
2 0.180 0.881 12 0.110 0.917
3 0.031 0.661 13 1.000 0.866
4 1.000 1.000 14 0.020 0.828
5 0.982 1.000 15 0.750 0.985
6 0.881 1.000 16 1.000 1.000
7 0.170 0.931 17 0.480 0.947
8 0.541 0.901 18 0.083 0.807
9 0.670 0.905 19 0.180 0.865
10 0.531 0.991 20 0.670 0.904

Current DEA models cannot consider stepwise pricing
in revenue evaluation. Thus, previous DEA models
may produce erroneous results.

Given Eq. (8) and to apply our model, four output
ranges are taken into consideration:

O1
1 = [0; 3]; O2

1 = (3; 5];

O3
1 = (5; 7]; and O4

1 = (7;1): (13)

The numbers are in MWH. For example, as is
depicted in Table 4, the output of DMU1 is 3297100.
The intervals of this output, given in Eq. (13), are
de�ned as (3000000, 297100, 0, 0). The corresponding
prices for each of the de�ned intervals are 1000, 1200,
1500, and 1800, respectively (100 Rials). Hence, it can
be said that we deal with a stepwise pricing system.

Table 6 shows classical RE and Piece-wise Linear-
Revenue E�ciency (PL-RE). The results are obtained
by solving Model (9) and using Eq. (10). GAMS
software is employed to solve the problem. As is seen
in Table 6, compared with the results of classical RE
evaluations, the results of PL-RE might be increasing,
decreasing, or unchanged. This could be similar to the
classical RE �ndings in which outputs follow a nonlin-
ear behavior. It is clear that our proposed model yields
substantial improvement in the RE measurement.

There is a di�erence between the results of Models
(2) and (9). Generally, the e�ciency scores obtained
from the piece-wise linear DEA analysis can be either
lower or higher than the standard DEA peers. In the
results, compared with the standard RE model, some
DMUs have higher e�ciency scores, while some have
lower e�ciency scores. The results are obtained using
GAMS software.

Figure 4 compares the results of RE and PL-
RE. Now, consider the output of DMU5 (7438002)
as indicated by (3000000, 2000000, 2000000, 438002).
According to the experts' opinions, the corresponding
prices are in an increasing order (1000, 1200, 1500, and
1800). The PL-RE for DMU5 is 0.98. This measure
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Figure 4. The results of Revenue E�ciency (RE) and
Piece-wise Linear Revenue E�ciency (PL-RE).

is derived from dividing the revenue obtained from the
current level of the output by the result of Eq. (8). It
shows the best possible revenue for DMU5. The result
of Eq. (8) for DMU5 is (3000000, 2000000, 2000000,
and 218496.09). Given the de�ned values for each
of these ranges, the obtained revenue is 9188403600.
However, by multiplying the amount of each interval by
the vector value, we obtain 9057003000. In addition,
by dividing 9057003000 by 9188403600, the PL-RE
is obtained. This measure indicates a crucial debate
that DMU5 can increase its output given the same
inputs. This is the most important result that can
be obtained from peer revenue evaluation. Another
important �nding is that the managers can understand
the capability of the system better for producing
products.

At this juncture, let us contemplate the classical
method for deriving RE. The RE score for DMU5 in the
classical method is equal to 1. This score is obtained
from Eq. (10) by dividing the revenue obtained from
the current output (7438002000) by the best possible
revenue for DMU5 which is obtained from Model (9).

This measure demonstrates that the obtained output is
the best for DMU5 and it cannot produce more output
given the similar level of inputs. However, by using
Model (2) and Expression (3), the RE score of DMU17
is 0.48. This score shows that DMU17 can increase its
output. Given the classical Model (2) and Eq. (3), this
measure is obtained by dividing the revenue obtained
from the current output by the best possible revenue
for DMU17. In piece-wise linear pricing, the revenue
obtained from the current output is 3997278000 and
the best possible revenue for DMU17 is 3997278000.
Therefore, by dividing these two numbers, we get 1.
In Table 6, the optimal solution of Eq. (8) is reported.
There is a signi�cant di�erence between the two sets of
results. The convex function, as illustrated in Figure 1,
denotes an increasing function. To estimate the convex
function by a linear function, the characteristics of the
convex function cannot be displayed precisely. Thus,
the results are inaccurate. However, estimating the
convex function by a piece-wise linear convex function
leads to more accurate results. A similar analysis can
be repeated for 2005 and 2006. The dataset is reported
in Table 7.

The optimal maximum piece-wise linear revenue
and e�ciency scores are depicted in Table 8. In Table 8,
the optimal maximum piece-wise linear revenues for
2004, 2005, and 2006 are listed.

Table 9 shows the PL-RE scores in 2005 and
2006. For example, in 2004, the optimal values of
DMU1 for each divided range are (3000000, 2000000,
2000000, and 0). The sum of ranges is 7000000.
Upon comparing the obtained target for the output

Table 7. The dataset (2005 and 2006).

2005 2006
DMUs I1 I2 I3 O1 I1 I2 I3 O1

1 260 615989 3.20 2222273 1465 606125 5.780 7528574
2 241 725654 99.340 2692987 1584 54636 45.764 9722169
3 365 285942 57.230 7904814 1271 889503 84.562 9163596
4 627 652939 46.300 1571045 959 440922 45.873 4177877
5 676 323994 38.987 6629453 240 759745 43.673 4448964
6 442 352884 92.345 6789916 279 865304 12.673 6077669
7 1538 41414 53.456 2165922 884 401264 98.563 6948107
8 1088 230039 100.453 2229153 1415 312014 34.674 9642639
9 1931 381196 36.765 6651760 1614 972120 45.632 7206031
10 1978 320838 38.987 11480340 596 693166 89.234 4577178
11 1541 584695 95.980 5699805 961 349921 13.452 7320412
12 835 288844 13.456 1216457 690 468501 103.452 2317777
13 851 203257 7.849 9776371 1241 429415 76.34 6034480
14 1080 23631 62.56 11468004 345 26308 57.836 1285188
15 384 350528 93.456 2056659 805 250166 37.893 6158195
16 1123 740735 85.912 6751574 118 438411 16.75 3046098
17 1042 311695 76.843 11575914 1189 456237 97.543 4964059
18 1540 53701 18.453 8448269 1345 329387 48.341 2964572
19 981 104550 19.457 846810 263 386149 15.894 2866023
20 1931 381196 36.757 6651760 1614 972120 45.602 7206031
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Table 8. Optimal maximum piece-wise linear revenues for each year.

DMUs 2004 2005 2006

1 15600000000.00 2222273000.0000 9351433200.0000
2 1500253000.000 2692987000.0000 13299904200.000
3 219488279.0000 10028665200.000 12294472800.000
4 15600000000.00 12184718052.617 7386842138.6930
5 9188403600.000 12473798836.527 4738756800.0000
6 7413304500.000 10780237519.055 7016503500.0000
7 1435991000.000 15621206779.588 8322160500.0000
8 4609596000.000 16581585566.974 13156750200.000
9 5601820500.000 16245741346.381 13298200293.057
10 4452336000.000 16464612000.000 7700624605.7850
11 15600000000.00 16636645200.000 8976741600.0000
12 922587000.0000 13372816127.548 7512657957.4250
13 8753772000.000 13397467800.000 11639050395.669
14 362147158.0.00 16442407200.000 1285188000.0000
15 6332146500.000 10214118109.897 7137292500.0000
16 15600000000.00 16636645200.000 3055317600.0000
17 3997278000.000 16636645200.000 11178711052.722
18 725157139.0000 11006884200.000 12521705809.707
19 1537630716.000 1093548938.9070 2866023000.0000
20 5601820500.000 16245741346.378 13298200293.042

(7000000) with its initial amount (3297100), we �nd
out that DMU1 should increase its output to become
e�cient. In 2005, the initial output is 2222273 and the
obtained output target is 7500465.270. The divided
ranges are (3000000.000, 2000000.000, 2000000.000,
and 500465.27). For the output, we can increase the
output by 3.37%. In 2006, the target output is 7528574
and compared with the initial amount (7528574), it is
�xed.

As another example, consider DMU8 In 2004,
the obtained target for each of the divided outputs
is (3000000, 2000000, 2000000, and 500465.27) whose
sum is 7500465.27. Note that the initial output is
4341330 (3000000, 1341330, 0, and 0). Thus, DMU8
can increase its output by 1.73%. In 2005, DMU8 can
increase its output by 5.17%. Its initial output and
target are 2229153 and 11545325.31, respectively. In
2006, it cannot increase its output as its initial output
and target are 9642639 and 9642639, respectively.

Therefore, to assess the performance of the power
plants during three years, the MPI can be utilized.
Note that the MPI can determine situations where
there is no change.

In Table 10, the optimal maximum piece-wise
linear output resulting from Model (9) is listed. The
optimal maximum piece-wise linear outputs for DMU1,
DMU8, DMU11, DMU13, and DMU15 are depicted in
Table 10 as instances. The ranges are obtained by

Table 9. Piece-wise linear revenue e�ciency scores in
2005 and 2006.

DMUs 2005 2006 DMUs 2005 2006

1 0.24 1.00 11 0.39 1.00
2 0.27 1.00 12 0.09 0.26
3 1.00 1.00 13 1.00 0.60
4 0.13 0.49 14 1.00 0.10
5 0.63 0.54 15 0.20 0.85
6 0.75 0.78 16 0.48 0.34
7 0.14 0.93 17 1.00 0.48
8 0.13 1.00 18 1.00 0.24
9 0.52 0.66 19 0.06 0.32
10 1.00 0.55 20 0.52 0.67

Eq. (8). Similarly, we can obtain the results for other
DMUs. The optimal values of the piece-wise linear
output o1 are reported in Table 10. Moreover, the
summation of these values for years 2004, 2005, and
2006 is calculated. These results are then used in
Eq. (10) as y� for calculating the PL-RE for years 2004,
2005, and 2006.

Knowing progress and regress of DMUs in di�er-
ent periods helps decision-makers to better recognize
the shortcomings of DMUs. After obtaining the opti-
mal objective function of Model (11), using Eq. (12),
the MPI is calculated. The MPIs are listed in Tables
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Table 10. Optimal maximum piece-wise linear output.

Outputs DMU1 DMU8 DMU11 DMU13 DMU15

2004 o1
1 3000000 3000000 3000000 3000000 3000000
o2

1 2000000 2000000 2000000 2000000 2000000
o3

1 2000000 2000000 2000000 2000000 2000000
o4

1 0 67354.51 4000000 196540 3272.77
Sum 7000000 7067354.51 11000000 7196540 7003272.77

2005 o1
1 3000000 3000000 3000000 3000000 3000000
o2

1 2000000 2000000 2000000 2000000 2000000
o3

1 2000000 2000000 2000000 2000000 2000000
o4

1 500465.27 4545325.31 4575914 2776371 1007843.39
Sum 7500465.27 11545325.31 11575914 9776371 8007843.39

2006 o1
1 3000000 3000000 3000000 3000000 3000000
o2

1 2000000 2000000 2000000 2000000 2000000
o3

1 2000000 2000000 2000000 2000000 2000000
o4

1 528574 2642639 320412 1799472.44 0
Sum 7528574 9642639 7320412 8799472.44 7000000

Table 11. Malmquist Productivity Index (MPI) comparing the year 2004 with 2005.

DMU D2004(x2004
l ; y2004

l ) D2005(x2005
l ; y2005

l ) D2004(x2005
l ; y2005

l ) D2005(x2004
l ; y2004

l ) MPI
(2004{2005)

1 0.3996 0.2389 0.202 0.142 0.65
2 0.1786 0.2685 0.09 0.173 1.696
3 0.0253 1 0.013 0.643 44.612
4 1 0.1289 0.938 0.101 0.118
5 0.9857 0.6289 0.552 0.503 0.762
6 0.8825 0.75 0.446 0.518 0.994
7 0.171 0.1387 0.086 0.139 1.142
8 0.541 0.1344 0.277 0.143 0.358
9 0.6669 0.5154 0.337 0.537 1.11
10 0.53 1 0.268 1.055 2.728
11 1 0.3877 0.938 0.413 0.413
12 0.1098 0.091 0.055 0.078 1.08
13 1 1 0.526 0.859 1.278
14 0.0219 1 0.021 1.054 48.428
15 0.7533 0.2014 0.381 0.132 0.304
16 1 0.4825 0.938 0.515 0.515
17 0.4759 1 0.242 1.066 3.046
18 0.0793 1 0.04 0.706 14.91
19 0.1777 0.0563 0.09 0.054 0.438
20 0.6649 0.5144 0.338 0.5372 1.112

11 and 12. Upon comparing the years 2004 and 2005 as
well as the years 2005 and 2006, as depicted in Tables
11 and 12, some DMUs have regressed while some have
progress. Note hat our method deals with the nonlinear
behavior of variables and it a�ects progress and regress
of DMUs during periods.

5. Managerial implications

Energy consumption reduction is an important issue.

This issue should be accepted as a principle in society in
both energy production and consumption. An impor-
tant measure that can help producers to evaluate their
performances is the RE score. This study addressed
the main shortcoming of the classical RE, which is the
�xed price assumption. Also, the previous DEA models
are modi�ed to face the stepwise pricing. The proposed
DEA model functions based on mixed integer program-
ming and the big M technique. In the case study, it
is shown that the results of our model are di�erent
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Table 12. Malmquist Productivity Index (MPI) comparing the year 2005 with 2006.

DMU D2005(x2005
l ; y2005

l ) D2006(x2006
l ; y2006

l ) D2005(x2006
l ; y2006

l ) D2006(x2005
l ; y2005

l ) MPI
(2005{2006)

1 0.2389 1.0000 0.1670 0.5620 3.7530
2 0.2685 1.0000 0.2040 0.7990 3.8170
3 1.0000 1.0000 0.7540 0.7390 0.9900
4 0.1289 0.4917 0.1180 0.2650 2.9270
5 0.6289 0.5402 0.5900 0.2850 0.6440
6 0.7500 0.7816 0.6080 0.4220 0.8500
7 0.1387 0.9271 0.1630 0.5000 4.5310
8 0.1344 1.0000 0.1680 0.7910 5.9250
9 0.5154 0.6596 0.6300 0.5270 1.0350
10 1.0000 0.545 1.2380 0.2940 0.3600
11 0.3877 1.0000 0.4850 0.5400 1.6940
12 0.0910 0.2582 0.0910 0.1390 2.0790
13 1.0000 0.5973 1.0070 0.4180 0.4980
14 1.0000 0.0967 1.2360 0.0770 0.0780
15 0.2014 0.8497 0.1550 0.4290 3.4210
16 0.4825 0.3404 0.6040 0.1840 0.4630
17 1.0000 0.4792 1.2510 0.3220 0.3510
18 1.0000 0.2368 0.8280 0.1780 0.2260
19 0.0563 0.3193 0.0640 0.1720 3.9170
20 0.5156 0.6598 0.6332 0.5272 1.0354

Table 13. The results of our new approach.

DMUs Y �

in Model (9)
Output

(O1)
Maximum revenue

Model (9)
Current revenue

Eq. (8)
PL-RE
Eq. (10)

1 7000000 3297100 15600000000 3356400000 0.4
8 7067354 4341330 4609596000 4609596000 0.541
11 1100000 11000000 15600000000 15600000000 1
13 7196540 7196540 8753772000 8753772000 1
15 700327277 5621431 6332146500 6332146500 0.75

Table 14. The results of the classical approach.

DMUs Y �

in Model (2)
Output

(O1)
Maximum revenue

Model (2)
Current revenue

(WY)
RE

Eq. (3)
1 3700169 3297100 3700169133 3297100000 0.891
8 4816983 4341330 4816983946 4341330000 0.901
11 1100000 11000000 11000000000 11000000000 1
13 8307347 7196540 8307347694 7196540000 0.866
15 5702484 5621431 5702484640 5621431000 0.985

from those of the classical model. Furthermore, the
progress and regress of DMUs were discussed that gave
important implications to managers for making crucial
decisions.

In Tables 13 and 14, the results of Models (9)
and (2) for DMUs 1, 8, 11, 13, and 15 are reported,
respectively. Given Tables 13 and 14, it is clear that

our model (Model (9)) in most of the DMUs increases
the output compared with Model (2). At the upper
intervals, since higher prices are considered, our model
tries to reach higher amounts. The maximum revenue
obtained from Model (9) is higher than that from
Model (2). This is an important �nding for managers
as they are responsible for performance evaluation.
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Another important �nding is the RE score that may
decrease, increase, or remain unchanged. This shows
the di�erent capability of DMUs for producing prod-
ucts according to the stepwise pricing.

6. Conclusions

This study modi�ed the classical Revenue E�ciency
(RE) in Data Envelopment Analysis (DEA). The clas-
sical RE in DEA had two critical issues. Firstly, its
linear pricing could not show the reality of variables
with a nonlinear behavior. Secondly, the classical RE
assumed the �xed prices not being applicable to real-
world problems. This research employed DEA for
evaluating the RE and addressed the shortcomings.
Our model dealt with stepwise pricing systems to
get more accurate results in RE assessments. We
demonstrated that the results might increase, decrease,
or remain unchanged compared with the previous RE
models. Decision-Making Units (DMUs) could produce
more products with higher prices to get more revenues.

For further researches, we suggest developing new
DEA models that can deal with competitive settings.
Finding an optimal value of the big M will be another
interesting research topic.
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