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Abstract. Traditionally, the performance of �rms is evaluated based on �nancial criteria;
however, the present study aims to propose a new qualitative comprehensive framework
that incorporates ethical criteria into the portfolio models and is widely matched with the
preferences of socially responsible investors. The increasing trend of corporate deceptions
has made investors or fund managers consider the ethical assessments in their investment
management. Therefore, it is essential to develop models capable of capturing the ethical
and �nancial criteria in investment processes. In this study, a multi-stage methodology was
proposed and linguistic Z-numbers were applied to represent the evaluation information. In
addition, Muirhead Mean (MM) aggregation operators were employed to fuse the input data
into the linguistic Z-number environment. To accomplish the objectives of this study, �rst,
four linguistic Z-number MM operators were developed. Then, through the max-score rule
and score-accuracy trade-o� rule, three qualitative portfolio models were proposed. These
models were established to maximize the �nancial performance of portfolio as their main
objective, and they were distinguished by the ethical goal the investor follows. The obtained
results of numerical example validated the capability of the models in constructing more
diversi�ed portfolio based on a trade-o� between �nancial and ethical criteria according to
the investors' preferences.
© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Modern portfolio theory, �rst introduced by
Markowitz [1], emphasizes only �nancial criteria to
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manage assets and selects optimal portfolios. In
other words, traditional approaches to asset selection
are one-dimensional and they merely concentrate on
�nancial criteria as the basis of evaluation. However,
according to existing evidence, the traditional portfolio
theory cannot capture all related data only in the form
of �nancial criteria [2]. In addition, there are some
growing samples of environmental hazards, corporate
deceptions, and social pressures that encourage
consideration of social responsibilities in investment
processes so as to reinforce the assessment of ethical
and �nancial criteria in investment management.
Nowadays, the ethical and social principles such as
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environment, civil rights protection, transparency,
and credibility of corporations are regarded as the
necessities in the investment processes that should be
taken into account.

Therefore, both �nancial and ethical criteria
should be captured simultaneously to construct a
more diversi�ed portfolio according to the investors'
preferences. An ethical-�nancial demeanor in invest-
ment management called ethical investment or Socially
Responsible Investment (SRI) has become widespread
around the world since 1960, and the compliance of
Environmental, Social, and Governance (ESG) require-
ments has considerably increased in the last decade.
Nowadays, a majority of asset owners, asset managers,
and �rms publish ESG and sustainability information
in their annual reports. According to the latest Global
Sustainable Investment Alliance (GSIA) report in 2016,
the global sustainable investment assets reached $22.89
trillion [3]. The increasing number of SRI bonds
is indicative of the growing interest of issuers and
investors for sustainable development plans. However,
a serious challenge in the ethical investment is the con-

ict between the ethical and �nancial objectives that
might have negative impacts on the �nancial objectives
such as pro�tability of investment. In this regard,
to better utilize the high potential of SRI markets
and carry out a more accurate investigation of the
e�ects of ESG criteria on the portfolio management,
some researchers combined the ethical approaches with
the investment processes and analyzed their e�ects on
the investors' decisions [4{8]. Therefore, to ensure a
trade-o� between the ethical and �nancial criteria in
problems of portfolio selection, this study combined
the ESG and �nancial criteria with the asset allocation
problem.

Given the inadequacy of their available informa-
tion, �nancial markets always encounter uncertainty.
Hence, exact quantitative estimation of input param-
eters is di�cult and sometimes impossible. Of note,
given that there are some �rms that have recently
been constituted or newly added to the �nancial
markets, their relative quantitative information is not
adequately accessible. These limitations in the perfor-
mance evaluation of the �rms can be omitted through
fuzzy set theory [9] and its extended forms, namely the
interval-valued fuzzy sets [10], type-2 fuzzy sets [11],
intuitionistic fuzzy sets [12], hesitant fuzzy sets [13],
and interval-valued hesitant fuzzy sets [14]. The fuzzy
set theory and its developed forms are widely used to
model portfolio selection problems [15{17]. Despite the
signi�cant roles of fuzzy set theory and its extended
forms in improving the means of human knowledge
representation, they may fail to verify the reliability of
information. To overcome this shortcoming, Zadeh [18]
introduced the concept of Z-numbers. In total, studies
whose main focus is on Z-numbers can be catego-

rized into two groups. The �rst group is the basic
studies that discuss the conversion techniques [19,20],
arithmetic operations [21{23], ranking methods [24{
28], and development researches [29,30]. The second
one use Z-numbers in the optimization and decision-
making problems [31{37]. The main advantage of the
Z-numbers is their ability to model the uncertainty and
reliability of relevant information simultaneously. With
the increasing complexity of �nancial markets, this
characteristic of Z-numbers can help investors and fund
managers make more fruitful decisions. Therefore, this
study employed the concept of Z-number to evaluate
the information related to the ethical-�nancial criteria.

Given the fuzziness, uncertainty, and ambiguity of
�nancial markets, linguistic terms assist Decision Mak-
ers (DMs) or experts in real information assessment.
For instance, when evaluating the �nancial and/or
ethical performance of a �rm, the expert in charge uses
linguist terms such as \low", \medium", and \high".
These linguistic terms usually include both vagueness
and uncertainty. Both fuzziness and randomness are
the most signi�cant aspects of uncertainty in linguistic
terms [38] that completely match with the possibilistic
and probabilistic constraints in Z-numbers [39]. In this
regard, Peng and Wang [40] introduced uncertain hesi-
tant Linguistic Z-Numbers (LZNs). Wang et al. [39]
improved the concept of Z-numbers and introduced
a subclass of Z-numbers called linguistic Z-numbers
that could represent the fuzzy constraint through
linguistic terms such as \low", \medium", and \high"
and characterize the measure of reliability through
linguistic terms such as \seldom", \frequently", and
\usually". To be speci�c, LZN (medium, usually) is
applied to evaluate the �nancial performance of a �rm
or estimate the future return of an asset. LZNs enjoy
several advantages; for instance, they not only reduce
information loss by creating a more 
exible, holistic,
and accurate structure but also capture the possibilistic
and probabilistic constraints simultaneously. These
properties make the LZNs suitable for evaluating the
ethical-�nancial information in �nancial markets. In
this respect, this study employed the LZNs to evaluate
the ethical and �nancial performances of each �rm.

One of the most useful and powerful tools for
solving decision-making problems in di�erent uncer-
tain environments is aggregation operator. The main
advantage of such operators in comparison with the
traditional decision-making techniques is that they can
obtain the comprehensive values for alternatives and
rank them. Of note, the decision-making techniques
modeled based on aggregation operators are preferred
over the traditional ones [41]. Over the last decade,
aggregation operators have received increased focus for
investigation. Some aggregation operators, such as
Prioritized Average (PA) operator [42], were developed
in positions with exact input arguments. In this regard,
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many scholars have extended aggregation operators
in di�erent types of fuzzy environment [43{51]. So
far, there are only two aggregation operators in LZN
environment called Hesitant Uncertain Linguistic Z-
numbers Power Weighted Average (HULZPWA) op-
erator and Hesitant Uncertain Linguistic Z-numbers
Power Weighted Geometric (HULZPWG) operator
[40]. All the mentioned aggregation operators are ine�-
cient when it comes to considering the interrelationship
between the input arguments and all arguments are
assumed to be independent. Hence, some operators
such as Bonferroni Mean (BM) [52], Heronian Mean
(HM) [41,53], and Geometric Bonferroni Mean (GBM)
operators [54] were developed to consider the interre-
lationship among the input arguments. However, all of
these operators have a shortcoming: they fail to cap-
ture the interrelationship between all input arguments
and consider the interrelationship between only two
arguments. Here, the necessity of developing a more
holistic operator with the capability of capturing the
interrelationship between all input arguments comes
to the fore. Muirhead Mean (MM) operator [55]
can capture the interrelationship between every input
argument. Recently, Liu and Teng [56] proposed some
MM operators in a probabilistic linguistic environment.
However, no MM operator was proposed in a Z-
number environment. In this regard, the current study
employed the MM operator to fuse the information
about LZNs.

As mentioned earlier, the LZNs are more e�-
cient and 
exible in information assessment than oth-
ers, mainly because they can simultaneously capture
the possibilistic and probabilistic constraints used for
evaluating the information modeling and reduce the
information loss due to their more 
exible, holistic,
and accurate structure. On the other hand, MM
operator is able to aggregate the LZN information,
and Linguistic Scale Functions (LSFs) are applied
to describe di�erent semantic measures. Therefore,
the integration of the asset allocation problems with
LZNs and MM aggregation operators is very useful.
The main motivations behind this study are brie
y
highlighted in the following:

1. Applying LZNs to evaluate the information related
to the ethical and �nancial performances of �rms.
This feature makes the proposed approach and
models more general and 
exible than the tradi-
tional portfolio models owing to their ability to
capture the reliability of evaluation information in
the modeling process;

2. Developing MM operator in a LZN environment
and introducing Linguistic Z-number Muirhead
Mean (LZMM), Linguistic Z-number Weighted
Muirhead Mean (LZWMM), Linguistic Z-number
Dual Muirhead Mean (LZDMM), and Linguistic

Z-number Dual Weighted Muirhead Mean (LZD-
WMM) operators;

3. Proposing three qualitative ethical-�nancial port-
folio models based on LZMM, LZWMM, LZDMM,
and LZDWMM operators in a LZN environment.
The proposed models consider the investors' prefer-
ences to construct more diversi�ed portfolios, thus
making them suitable for both general and risky
socially-responsible investors.

The rest of this paper is organized as follow.
Section 2 includes the necessary prerequisite de�ni-
tions. Section 3 introduces some aggregation operators
and their properties in a LZN environment. Section
4 proposes a multi-stage methodology to assign the
suitable assets in the portfolio and develops three new
qualitative portfolio models in a LZN environment.
Section 5 provides the required actual data as the case
study and presents the results from sensitivity analysis.
Finally, Section 6 concludes this study and suggests
further issues to be covered in future studies.

2. Preliminaries

2.1. Linguistic terms set and LSFs
Suppose that tl 2 T is a conceivable value of linguistic
variable where T = ftljl = 0; 1; : : : ; 2mg. T should
contain the following properties [57,58]:

a) T is ordered: tl < tk if and only if l < k.

b) T conforms to the negation operator: neg (tl) =
t2m�l.

T is a discrete linguistic term set. Since the compu-
tational results do not usually match the members of
T . Xu [59,60] introduced a continuous linguistic term
set �T to prevent the loss of obtained information where
�T = ftiji 2 [0; l]g.

Since computation with linguistic terms is cate-
gorized as Computing with Words (CWW), it is quite
hard to perform an arithmetic operation; therefore,
some functions called LSFs were proposed to simplify
the computation in a linguistic environment [46,60]. In
order to obtain more 
exible and e�cient information,
di�erent semantics were allocated to linguistic terms
using LSFs under di�erent circumstances. There
is a strictly and monotonically ascending connection
between each t1 2 T and its label [46,60].

De�nition 1. Let T = ftljl = 0; 1; : : : ; 2mg be a set
of discrete linguistic terms with odd cardinality. The
LSF f is de�ned as [46]:

f : tl ! �l (l = 0; 1; : : : ; 2m) ;

where �1 is a positive real number and 0 � �0 � �1 �
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: : : � �2m. In addition, �l characterizes the priorities of
DMs when t1 2 T is chosen to express their opinions.

Some LSFs are introduced as [39,46]:

LSF1: f1 (tl) = �l =
l

2m
(l = 0; 1; : : : ; 2m)

and �l 2 [0; 1] ; (1)

LSF2: f2 (tl) = �l =
�

l
2m

�m
(l = 0; 1; : : : ; 2m) ;

(2)

LSF3: f3 (tl) = �l =
�

l
2m

� 1
m

(l = 0; 1; : : : ; 2m) ;
(3)

LSF4: f4 (tl) = �l

=

(
m��(m�l)�

2m� (l = 0; 1; : : : ;m)
m�+(l�m)�

2m� (l = m+ 1; : : : ; 2m)
(4)

where � and � 2 (0; 1].

2.2. Z-numbers and linguistic Z-numbers
This subsection de�nes the Z-numbers, uncertain
LZNs, and their operation.

2.2.1. Z-numbers
Uncertainty is an inseparable characteristic of real
problems. DMs always consider their uncertain data,
knowledge, and experiments while looking for the best
solutions. In order to make more bene�cial decisions,
such information must be reliable. Hence, Zadeh [18]
introduced the concept of Z-numbers to represent the
uncertain data better by adding partial reliability and
fussiness.

De�nition 2 [18] (Z-number). An ordered pair of
fuzzy numbers ( ~A; ~B) shows a Z-number where ~A, as
a fuzzy constraint, represents the values that can be
assigned to an uncertain variable X, and ~B determines
a soft restriction on a partial reliability of the �rst
component. Both ~A and ~B are often expressed through
linguistic terms.

2.2.2. Linguistic Z-numbers
Followed by the study conducted by Zadeh [18], two
forms of Z-numbers were developed to better describe
the uncertain data considering the partial reliability.
Peng and Wang [40] introduced the hesitant uncertain
LZNs based on the concept of Z-numbers and linguistic
terms. Wang et al. [39] extended a new form of Z-
numbers called linguistic Z numbers to measure the
reliability of the real phenomena and describe the
qualitative data simultaneously.

De�nition 3 [39] (Linguistic Z-numbers). Con-
sider a universe of discourse U . Let two �nite discrete

linguistic term sets that are indicative of di�erent
preference data be de�ned as T = ft0; t1; : : : ; t2mg
and T 0 = ft00; t01; : : : ; t02ng where m and n are the
nonnegative integers. Therefore, a LZN set in U is
de�ned as follows:

Z =
��
u;A�(u); B'(u)

� ju 2 U	 ; (5)

where A�(u) is a fuzzy constraint on the values assigned
to the uncertain variable, and characterizes a reliability
measure of the �rst component. A�(u) and B'(u) are
described using uncertain linguistic terms.

2.2.3. The arithmetic operations over uncertain LZNs
Wang et al. [39] developed some arithmetic operations
for LZNs. The proposed operations maintain both the

exibility of linguistic term sets and reliability value of
Z-numbers.

De�nition 4 [39]. Suppose that two LZNs are de�ned
as zi =

�
A�(i); B'(i)

�
and zj =

�
A�(j); B'(j)

�
, where

f� and g� functions are selected from f1(tl), f2(tl),
f3(tl), and f4(tl). Hence, some operations in a LZN
environment are de�ned as follows:

neg (zi) =

 
f��1

�
f�
�
A2m

�� f� �A�(i)
��
;

g��1
�
g� (B2n)� g� �B'(i)

��!
; (6)

zi + zj =

 
f��1

�
f�
�
A�(i)

�
+ f�(A�(j))

�
; g��1

�
f�(A�(i))�g�(B'(i))+f�(A�(j))�g�(B'(j))

f�(A�(i))+f�(A�(j))

�!
;
(7)

�zi =

 
f��1 ��f� �A�(i)

��
; B'(i)

!
� � 0; (8)

zi � zj =
�
f��1 �f� �A�(i)

�
f�
�
A�(j)

��
;

g��1 �g� �B'(i)
�
g�
�
B'(j)

���
; (9)

z�i =
�
f��1 �f��A�(i)

��� ;
g��1 �g��B'(i)

���� � � 0: (10)

De�nition 5 [39]. Suppose that zi =
�
A�(i); B'(i)

�
contains LZNs. Then, the score function of the LZN is
equal to:
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S (zi) = f�
�
A�(i)

�� g� �B'(i)
�
: (11)

The accuracy function of the LZN is as follows:

A (zi) = f�
�
A�(i)

�� 1� g� �B'(i)
�!
: (12)

Based on the score and accuracy functions, a compari-
son technique is de�ned for two LZNs as follows [39]:

I. If S (zi) > S (zj), then zi > zj ;
II. If S (zi) = S (zj), then

If A (zi) > A (zj), then zi > zj ;
If A (zi) < A (zj), then zi < zj .

2.3. MM operator
De�nition 6 [55]. Let ai (i = 1; : : : ; k) be a set of
nonnegative real numbers and P = (P1; P2; : : : ; Pk) 2
Rk a parametric vector. Then, the MM operator is
de�ned as follows:

MMp (a1; a2; : : : ; ak) =

 
1
k!

X
�2Sk

kY
r=1

aPr�(r)

! 1Pk
r=1 Pr

;
(13)

where (� (1) ; � (2) ; : : : ; � (k)) 2 Sk and Sk is the set of
all permutation of (1; 2; :::; k).

De�nition 7 [61]. Let ai(i = 1; :::; k) be the set of
nonnegative real numbers and P = (P1; P2; : : : ; Pk) 2
Rk a parametric vector. Then, the Dual Muirhead
Mean (DMM) operator is de�ned as follows:

DMMP (a1; a2; : : : ; ak) =

1Pk
r=1 Pr

 Y
�2Sk

Xk

r=1
Pra�(r)

! 1
k!

; (14)

where (� (1) ; � (2) ; : : : ; � (k)) 2 Sk and Sk is the set of
all permutation of (1; 2; :::; k).

3. LZMM aggregation operators

In this section, four types of MM aggregation operators

are developed in a LZN environment. The description
of MM operators as well as their related properties and
theorems are shown in the following.

3.1. LZMM operator
De�nition 8. Let Z = fzi = (A�(i); B'(i))ji = 1;
: : : ; kg be a set of LZNs and P = (P1; P2; : : : ; Pk) 2 Rk
a parametric vector. Then, the LZMM operator can be
de�ned as follows:

LZMMp (Z1; Z2; : : : ; Zk)=

 
1
k!

X
�2Sk

kY
i=1

ZPi�(i)

! 1Pk
i=1 Pi

;
(15)

where (� (1) ; � (2) ; : : : ; � (k)) 2 Sk and Sk is a set of all
permutation of (1; 2; :::; k).

Theorem 1. Let zi =
�
A�(i); B'(i)

�
(i = 1; : : : ; k)

be a set of LZNs and P = (P1; P2; : : : ; Pk) 2 Rk
a parametric vector. Then, the aggregated result
obtained based on the LZMM operator is an LZN; this
is presented by Eq. (16) shown in Box I. The proof of
Theorem 1 is given in Appendix A.

Theorem 2 (Commutativity). Let zi=(A�(i); B'(i))
and z0i =

�
A0�(i); B

0
'(i)

�
(i = 1; : : : ; k) be two sets of

LZNs, where z0i =
�
A0�(i); B

0
'(i)

�
(i = 1; : : : ; k) is any

permutation of zi =
�
A�(i); B'(i)

�
(i = 1; : : : ; k) and

P = (P1; P2; : : : ; Pk) 2 Rk is a parametric vector.
Then:

LZMMp (Z1; Z2; : : : ; Zk)

= LZMMp (Z 01; Z 02; : : : ; Z 0k) : (17)

Proof.

LZMMp (Z 01; Z 02; :::; Z 0k)

=

 
1
k!

X
�2Sk

kY
i=1

�
Z 0�(i)

�pi! 1
kP
i=1

pi

LZMMp (Z1; Z2; :::; Zk) =

0@f��1

0@ 1
k!

 X
�2Sk

 
kY
i=1

�
f�
�
A�(�(i))

��pi!!! 1
kP
i=1

pi

1A ;

g��1

0BBBBB@
0BBBB@
P
�2Sk

 
kQ
i=1

�
f�
�
A�(�(i))

��pi � kQ
i=1

�
g�
�
B'(�(i))

��pi!
P
�2Sk

 
kQ
i=1

�
f�
�
A�(�(i))

��pi!
1CCCCA

1
kP
i=1

pi

1CCCCCA
1CCCCCA : (16)

Box I
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=

 
1
k!

X
�2Sk

kY
i=1

�
Z�(i)

�pi! 1
kP
i=1

pi

= LZMMp (Z1; Z2; :::; Zk) :

3.2. LZWMM operator
De�nition 9. Let Z = fzi =

�
A�(i); B'(i)

� ji = 1;
: : : ; kg be a set of LZNs and P = (P1; P2; : : : ; Pk) 2 Rk
a parametric vector. In addition, assume that wi 2
[0; 1] is the weight of the ith input parameter such thatPk
i=1 wi = 1. Then, the LZWMM operator is de�ned

as:
LZWMMp (Z1; Z2; : : : ; Zk)

=

 
1
k!

X
�2Sk

kY
i=1

�
kw�(i)Z�(i)

�Pi! 1Pk
i=1 Pi

; (18)

where (� (1) ; � (2) ; : : : ; � (k)) 2 Sk and Sk is a set of all
permutation of (1; 2; :::; k).

Theorem 3. Let zi =
�
A�(i); B'(i)

�
(i = 1; : : : ; k)

be a set of LZNs and P = (P1; P2; : : : ; Pk) 2 Rk a
parametric vector. Let wi 2 [0; 1] be the weight of the
ith input parameter such that

Pk
i=1 wi = 1. Then,

the aggregated result based on LZWMM operator is
an LZN, which is presented by Eq. (19), as shown in
Box II. Similarly, Theorem 3 can easily be proven
based on De�nition 4 and mathematical induction
technique.

Theorem4 (Commutativity). Let zi=
�
A�(i); B'(i)

�
and z0i =

�
A0�(i); B

0
'(i)

�
(i = 1; : : : ; k) be two sets of

LZNs, where z0i =
�
A0�(i); B

0
'(i)

�
(i = 1; : : : ; k) is any

permutation of zi =
�
A�(i); B'(i)

�
(i = 1; : : : ; k) and

P = (P1; P2; : : : ; Pk) 2 Rk a parametric vector. Then,
we have:
LZWMMp (Z1; Z2; : : : ; Zk)

= LZWMMp (Z 01; Z 02; : : : ; Z 0k) : (20)

3.3. LZDMM operator
De�nition 10. Assume that Z = fzi =

�
A�(i); B'(i)

�
ji = 1; : : : ; kg is a set of LZNs, and P = (P1;
P2; : : : ; Pk) 2 Rk a parametric vector. Then, the
LZDMM operator is de�ned as follows:

LZDMMp (Z1; Z2; : : : ; Zk)

=
1Pk
i=1 Pi

 Y
�2Sk

Xk

i=1

�
PiZ�(i)

�! 1
k!

; (21)

where (� (1) ; � (2) ; : : : ; � (k)) 2 Sk and Sk is a set of all
permutation of (1; 2; :::; k).

Theorem 5. Let zi =
�
A�(i); B'(i)

�
(i = 1; : : : ; k)

be a set of LZNs and P = (P1; P2; : : : ; Pk) 2 Rk
a parametric vector. Then, the aggregated result
acquired based on LZDMM operator is an LZN, which
is presented by Eq. (22) shown in Box III. The proof
of Theorem 5 is given in Appendix B.

Theorem6(Commutativity). Let zi=
�
A�(i); B'(i)

�
and z0i =

�
A0�(i); B

0
'(i)

�
(i = 1; : : : ; k) be two sets of

LZNs, where z0i =
�
A0�(i); B

0
'(i)

�
(i = 1; : : : ; k) is any

permutation of zi =
�
A�(i); B'(i)

�
(i = 1; : : : ; k) and

P = (P1; P2; : : : ; Pk) 2 Rk a parametric vector. Then,
we have:

LZDMMp (Z1; Z2; : : : ; Zk)

= LZDMMp (Z 01; Z 02; : : : ; Z 0k) : (23)

3.4. LZDWMM operator
De�nition 11. Suppose that Z = fzi =

�
A�(i); B'(i)

�
ji = 1; : : : ; kg be a set of LZNs and P =
(P1; P2; : : : ; Pk) 2 Rk be a parametric vector. Let
wi 2 [0; 1] be the weight of the ith input parameter
such that

Pk
i=1 wi = 1. Then, the LZDWMM operator

can be de�ned as:

LZDWMMp (Z1; Z2; : : : ; Zk)

LZWMMp (Z1; Z2; :::; Zk) =

0@f��1

0@ 1
k!

 X
�2Sk

 
kY
i=1

�
kw�(i)f�

�
A�(�(i))

��pi!!! 1
kP
i=1

pi

1A ;

g��1

0BBBBB@
0BBBB@
P
�2Sk

 
kQ
i=1

�
kw�(i)f�

�
A�(�(i))

��pi � kQ
i=1

�
g�
�
B'(�(i))

��pi!
P
�2Sk

 
kQ
i=1

�
kw�(i)f�

�
A�(�(i))

��pi!
1CCCCA

1
kP
i=1

pi

1CCCCCA
1CCCCCA : (19)

Box II
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LZDMMp (Z1; Z2; :::; Zk) =

0BBB@f��1

0BBB@ 1
kP
i=1

pi

0@ Y
�2Sk

 
kX
i=1

pif�
�
A�(�(i))

�!! 1
k!
1A
1CCCA ;

g��1

0BBBB@
0BBB@Y
�2Sk

0BBB@
kP
i=1

�
pif�

�
A�(�(i))

�� g� �B'(�(i))
��

kP
i=1

�
pif�

�
A�(�(i))

��
1CCCA
1CCCA

1
k!
1CCCCA
1CCCCA : (22)

Box III

=
1Pk
i=1 Pi

 Y
�2Sk

Xk

i=1

�
Pi
�
Z�(i)

�kw�(i)�! 1
k!

;
(24)

where (� (1) ; � (2) ; : : : ; � (k)) 2 Sk and Sk is a set of all
permutation of (1; 2; :::; k).

Theorem 7. Let zi =
�
A�(i); B'(i)

�
(i = 1; : : : ; k)

be a set of LZNs, and P = (P1; P2; : : : ; Pk) 2
Rk a parametric vector. Let wi 2 [0; 1] be
the weight of the ith input parameter such thatPk
i=1 wi = 1. Then, the aggregated result ac-

quired based on LZDWMM operator is an LZN,
as presented by Eq. (25) shown in Box IV.
Similarly, Theorem 7 can easily be proven us-
ing De�nition 4 and mathematical induction tech-
nique.

Theorem8 (Commutativity). Let zi=(A�(i); B'(i))
and z0i =

�
A0�(i); B

0
'(i)

�
(i = 1; : : : ; k) be two sets of

LZNs, where z0i =
�
A0�(i); B

0
'(i)

�
(i = 1; : : : ; k) is any

permutation of zi =
�
A�(i); B'(i)

�
(i = 1; : : : ; k) and

P = (P1; P2; : : : ; Pk) 2 Rk a parametric vector. Then,

we have:

LZDWMMp (Z1; Z2; : : : ; Zk)

= LZDWMMp (Z 01; Z 02; : : : ; Z 0k) : (26)

4. Ethical-�nancial portfolio selection under
LZN environment

In this section, a qualitative framework is proposed
to construct ethical-�nancial portfolios based on the
mentioned aggregation operations in a LZN environ-
ment. Experts' experience and opinions are the most
important source of data in assessing the ethical-
�nancial performance of assets that can be applied to
determine the uncertainty and reliability of information
simultaneously. The proposed aggregation operators
are powerful tools for considering the expert's opinions
in a LZN environment. Figure 1 shows the total
schematic of the proposed method.

This approach is composed of three stages. In
the �rst stage, the �rms are evaluated based on their
ethical and �nancial criteria and then, experts express
their opinions about the ethical-�nancial performance
of each �rm as a LZN. In the second stage, the ethical

LZDWMMp (Z1; Z2; :::; Zk) =

0BBB@f��1

0BBB@ 1
kP
i=1

pi

0@ Y
�2Sk

 
kX
i=1

pi
�
f�
�
A�(�(i))

��kw�(i)!! 1
k!
1A
1CCCA ;

g��1

0BBBB@
0BBB@Y
�2Sk

0BBB@
kP
i=1

�
pi
�
f�
�
A�(�(i))

��kw�(i) � �g� �B'(�(i))
��kw�(i)�

kP
i=1

�
pi
�
f�
�
A�(�(i))

��kw�(i)�
1CCCA
1CCCA

1
k!
1CCCCA
1CCCCA :

(25)

Box IV
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Figure 1. Typical 
owchart for the ethical-�nancial portfolio selection based on the linguistic Z-number aggregation
operators.

and �nancial criteria are separately aggregated using
the proposed aggregation operators, and their score
and accuracy values are computed. Finally, three qual-
itative portfolio selection models are developed based
on the expert's opinions and investor's preferences in
the third stage.

4.1. The �rst stage: Ethical and �nancial
assessment of assets

Assume that there are n risky assets as fx1; x2; : : : ; xng
to which investors can devote their capital. These
assets are separately evaluated by the expert based on
m qualitative �nancial criteria ff1; f2; : : : ; fmg and r
qualitative ethical criteria fe1; e2; : : : ; erg. The evalua-
tion information is expressed through the LZNs as zfij
and zeik(i = 1; : : : ; n; j = 1; : : : ;m and k = 1; : : : ; r),
respectively. In addition, it can be represented as two
LZN matrices Zf =

h
zfij
i
n�m and Ze = [zeik]n�r.

4.2. The second stage: Computing the
comprehensive value of each asset and its
corresponding score and accuracy values

In this stage, the �nancial and ethical comprehen-
sive values of each asset are separately obtained
based on the proposed aggregation operators �zfi =�

�Af�(i); �Bf'(i)

�
and �zei =

�
�Ae�(i); �Be'(i)

�
(i = 1; : : : ; n),

respectively. The aggregated values are calculated
using the proposed aggregation operators, as shown
below:

�zfi = LZMMp
�
zfi1; : : : ; z

f
im

�
;

�zei = LZMMp (zei1; : : : ; z
e
ik) ;

or:

�zfi = LZWMMp
�
zfi1; : : : ; z

f
im

�
;

�zei = LZWMMp (zei1; : : : ; z
e
ik) ;

or:

�zfi = LZDMMp
�
zfi1; : : : ; z

f
im

�
;

�zei = LZDMMp (zei1; : : : ; z
e
ik) ;

or:

�zfi = LZDWMMp
�
zfi1; : : : ; z

f
im

�
;

�zei = LZDWMMp (zei1; : : : ; z
e
ik) :

Consequently, two LZN matrices Zf =
h
zfij
i
n�m

and Ze = [zeik]n�r are transformed into two qualitative

column vectors �Zf =
h
�zfi
i
n�1

and �Ze = [�zei ]n�1 by
fusing all �nancial LZNs and all ethical LZNs on one
line, respectively. Then, the values of �nancial score,
�nancial accuracy, ethical score, and ethical accuracy
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are separately obtained based on De�nition 5, as shown
in the following:

S
�

�zfi
�

= f�
�

�Af�(i)

�� g� � �Bf'(i)

�
;

A
�

�zfi
�

= f�
�

�Af�(i)

�� �1� g� � �Bf'(i)

��
;

S (�zei ) = f�
�

�Ae�(i)

�� g� � �Be'(i)

�
;

A (�zei ) = f�
�

�Ae�(i)

�� �1� g� � �Be'(i)

��
:

The obtained values can be represented as four-
column vectors:

Sf =
h
S
�

�zfi
�i

n�1
; Af =

h
A
�

�zfi
�i

n�1
;

Se = [S (�zei )]n�1; Ae = [A (�zei )]n�1:

4.3. The third stage: Portfolio selection based
on aggregation operators in a LZN
environment

In this stage, three qualitative portfolio models are
proposed to allocate the optimal assets. These models
are considered as the alternative procedures of con-
structing more diversi�ed portfolios based on a trade-
o� between the ethical and �nancial criteria. In the
proposed optimization models, the diversi�cation of
portfolio can be handled considering the lower and
upper bounds of the capital budget portion in each
asset along with a prede�ned number of assets assigned
to the selected portfolio. Moreover, the portfolios
can be selected based on the �nancial goal as the
objective function and ethical goal as the constraint.
In addition, they are selected based on a bi-objective
optimization model. Furthermore, the trade-o� among
the �nancial and ethical criteria is tested using a bi-
objective optimization portfolio model along with an
admissible accuracy level of portfolio as a risk con-
straint. In this study, these three circumstances were
taken into consideration to formulate the qualitative
portfolio models. Hong and Choi [62] illustrated that
the relation between the score and accuracy functions
was equivalent to that between the mean and variance
of the quantitative information in the statistics. In this
regard, the score and accuracy values were employed
to measure the expected return and risk values of the
portfolios in a LZN environment. In the following,
three qualitative portfolio selection models are formu-
lated based on the max-score and score-accuracy trade-
o� rules. To this end, �rst, the objective function
and constraints, which are common in all the three
proposed qualitative portfolio models, are introduced
as follows:

� Objective function (�nancial goal)
The �nancial objective function based on the max-
score rule is de�ned as follows:

Max
Xn

i=1

��
S
�

�zfi
��

xi
�

=
Xn

i=1

��
f�
�

�Af�(i)

�
�g� � �Bf'(i)

��
xi
�
: (27)

� Constraints:Xs

i=1
xi = 1; (28)Xs

i=1
yi = h; (29)

liyi � xi � uiyi; i = 1; : : : ; s; (30)

yi 2 f0; 1g ; i = 1; : : : ; s; (31)

xi � 0; i = 1; : : : ; s: (32)

Constraint (28) is the budget constraint. Con-
straint (29), called the cardinality constraint, guar-
antees that the portfolio is con�ned to preserve a
prede�ned number of assets such as h. Here, li(� 0) is
the minimum fraction of the total capital to be invested
in the ith asset, and ui (0 � li � ui) the maximum
fraction of the total investment to be assigned to the
ith asset. Assume that xi is the weight of the ith asset
in the portfolio and yi is the binary variable equal to
one when the corresponding asset is allocated to the
portfolio; otherwise, it is zero. Eventually, Constraint
(32) shows the prohibition of short selling.

Here, three hybrid optimization models are pro-
posed. The �rst two models (Models 1 and 2) are
formulated based on the max-score rule. These pro-
posed models can be used in situations where the
investors aim to obtain the maximum �nancial goal
with a desirable ethical level. Therefore, the �rst two
models are appropriate for general socially responsible
investors. Similarly, the third model (Model 3) is
formulated based on the score-accuracy trade-o� rule.
This model can be used when the investors wish
to obtain both the maximum �nancial and ethical
goals with an admissible accuracy level as the risk of
portfolio. Therefore, the third model is suitable for the
risky socially responsible investors.

4.3.1. Model 1: The portfolio selection optimization
model

To combine the ethical criteria with the portfolio
selection problem, an ethical constraint is added to this
model, as shown in the following.

� Ethical constraint
If investors or fund managers specify a desirable
level for the ethical performance of the portfolio, an
ethical constraint can be added to the portfolio se-
lection model. The ethical constraint is formulated
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based on the max-score rule, as shown below:Xn

i=1
((S (�zei ))xi) =

Xn

i=1

��
f�
�

�Ae�(i)

�
�g� � �Be'(i)

��
xi
�
� 
; (33)

where 
 2 [0;max1�i�n (S (�zei ))] is the minimum
desirable level of the ethical performance of the
portfolio determined by the investors. Three cases
may show up while determining the desirable ethical
level 
:
1. If 
 > max1�i�n (S (�zei )), no portfolio is con-

structed because no feasible solution can be
found;

2. If 
 = max1�i�n (S (�zei )), only one portfolio can
be generated;

3. If 0 � 
 � max1�i�n (S (�zei )), the greater the 
,
the greater the e�ect of the desirable ethical level
in the portfolio performance, and vice versa.

The portfolio selection optimization model
(Model 1) can be formulated as follows:

Model 1:

Max
Xn

i=1

��
S
�

�zfi
��

xi
�

=
Xn

i=1

��
f�
�

�Af�(i)

��g� � �Bf'(i)

��
xi
�
; (34)

s.t.: Constraints (28){(33).

Model 1 is usually employed by the general socially
responsible investors when they aim to obtain the
maximum �nancial goal with the desirable ethical level

.

4.3.2. Model 2: The portfolio selection optimization
model

When investors or fund managers decide to choose their
portfolios based on the maximization of both �nancial
and ethical performances simultaneously, they employ
a bi-objective portfolio optimization model. In this
regard, Model 2 can be formulated based on both
�nancial and ethical criteria as follows:
Model 2:

Max
Xn

i=1

��
S
�

�zfi
��

xi
�

=
Xn

i=1

��
f�
�

�Af�(i)

�� g� � �Bf'(i)

��
xi
�
;(35)

Max
Xn

i=1
((S (�zei ))xi) =

Xn

i=1

��
f�
�

�Ae�(i)

�
�g� � �Be'(i)

��
xi
�
; (36)

s.t.: Constraints (28){(32).

Model 2 is usually used by the general socially
responsible investors who aim to obtain both the
maximum �nancial and ethical goals simultaneously.

4.3.3. Model 3: The portfolio selection optimization
model

Subsection 4.3.2 presents a bi-objective qualitative
portfolio optimization model based on the max-score
rule in a LZN environment. As mentioned earlier, this
model is suitable for the general socially responsible in-
vestors as they want to simultaneously maximize both
�nancial and ethical goals in the selected portfolio.
Hence, we can further extend these models using the
score-accuracy trade-o� rule. Obviously, this extended
qualitative portfolio model is employed by the risky
socially responsible investors as they wish to ful�ll both
maximum �nancial and maximum ethical goals along
with an admissible accuracy level as the portfolio risk in
the investment processes. This subsection formulates
a bi-objective qualitative portfolio optimization model
(Model 3) for the risky socially responsible investors
based on the score-accuracy trade-o� rule in a LZN
environment. In order for the risky socially responsible
investors to obtain the optimal portfolio, Model 3 is
formulated as follows:

Model 3:

Max
Xn

i=1

��
S
�

�zfi
��

xi
�

=
Xn

i=1

��
f�
�

�Af�(i)

�� g� � �Bf'(i)

��
xi
�
;
(37)

Max
Xn

i=1
((S (�zei ))xi) =

Xn

1

��
f�
�

�Ae�(i)

�
�g� � �Be'(i)

��
xi
�
; (38)

s.t.:Xn

i=1

��
A
�

�zfi
��

xi
�

=
Xn

i=1

��
f�
�

�Af�(i)

�
��1� g� � �Bf'(i)

���
xi
�
� �; (39)

Xn

i=1
((A (�zei ))xi) =

Xn

i=1

��
f�
�

�Ae�(i)

�
��1� g� � �Be'(i)

���
xi
�
� ': (40)

Constraints (28){(32).

� 2 h0;max1�i�n
�
A
�

�zfi
��i

is the minimum admis-
sible level of the �nancial accuracy value, and ' 2
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[0;max1�i�n (A (�zei ))] the minimum admissible level of
the ethical accuracy value. Both �- and '-values are
determined by investors or fund managers. While de-
termining the �- and '-values, three cases may show up:

1. If � > max1�i�n
�
A
�

�zfi
��

and ' > max1�i�n
(A (�zei )), no portfolio is constructed because no
feasible solution can be found;

2. If � = max1�i�n
�
A
�

�zfi
��

and ' = max1�i�n
(A (�zei )), only one portfolio can be generated;

3. If 0 � � � max1�i�n
�
A
�

�zfi
��

and 0 � ' �
max1�i�n (A (�zei )) , the greater the �-value, the
greater the e�ect of admissible level of the �nancial
accuracy value in the portfolio performance. Simi-
larly, the greater the '-value, the greater the e�ect
of admissible level of the ethical accuracy value in
the portfolio performance.

5. Case study and computational results

In this section, Thomson Reuters ASSET database
is used as the information source. It provides the
standardized and simpli�ed ESG information that
covers over 6000 companies and involves 400 ESG
metrics. Serval researchers including Miras-Rodr��guez
et al. [63], Ferrero-Ferrero et al. [64], and Escrig-
Olmedo et al. [65] applied Thomson Reuters ASSET
database in their studies. Thomson Reuters suggests
an ESG score to measure the ESG performance of each
company based on its published data and categorizes
the criteria into 10 topics within three groups that
include social performance (workforce, human rights,
community, and product responsibility), environmental
performance (resource use, emissions, and innovation),
and corporate governance performance (management,
shareholders, and CSR strategy). In order to examine

the proposed qualitative framework, this study applies
the information available in the ESG database from
September 2018 for the water and other utility industry
companies. This example includes 20 listed �rms.

5.1. The �rst stage: ESG and �nancial
assessment of assets

The Thomson Reuters database contains the criteria
necessary for each foresaid domain. However, there are
di�erent restrictions such as the balancing of scores
among the domains [64]. Therefore, the Thomson
Reuters information can be used as the input of a fuzzy
system in order to evaluate ESG and �nancial criteria
[64]. In this stage, to better represent the intricate
concepts, the given linguistic variables in Tables 1{4
[64] are employed to evaluate the performance of each
asset with respect to the ESG and �nancial criteria.
Further, the experts' experience and knowledge can
e�ciently be indicated by fuzzy if-then rules [66]. In
this regard, these rules were utilized in this study to
better evaluate the performance of �rms with respect to
the ethical and �nancial criteria based on the linguistic
variables.

This study was conducted based on the assump-
tion that investors aim to compare these 20 �rms in
terms of their performance based on four �nancial
criteria namely Short-Term Returns (STR), Long-
Term Returns (LTR), External Reputation (ER), and

Table 4. Linguistic variables for evaluating the �nancial
performance of the �rms (Tf ).

Very Very Low (VVL) Almost High (AH)
Very Low (VL) High (H)
Low (L) Very High (VH)
Almost Medium (AM) Perfect (P)
Medium (M)

Table 1. Linguistic variables for evaluating the social performance of the �rms (Ts).

Poor Social Performance (PSP) High Social Performance (HSP)
Low Social Performance (LSP) Top Social Performance (TSP)
Medium Social Performance (MSP)

Table 2. Linguistic variables for evaluating the environmental performance of the �rms (Te).

Poor Environmental Performance (PEP) High Environmental Performance (HEP)
Low Environmental Performance (LEP) Top Environmental Performance (TEP)
Medium Environmental Performance (MEP)

Table 3. Linguistic variables for evaluating the corporate governance performance of the �rms (Tg).

Poor Corporate Governance Performance (PCGP) High Corporate Governance Performance (HCGP)
Low Corporate Governance Performance (LCGP) Top Corporate Governance Performance (TCGP)
Medium Corporate Governance Performance (MCGP)
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Table 5. Linguistic variables for evaluating the experts'
reliability (T 0).

Seldom (S) Regularly (R)
Occasionally (O) Usually (U)
Frequently (F)

Liquidity (L) and to evaluate their performance based
on the Environmental (E), Social (S), and corporate
Governance (G) criteria. Then, one expert evaluates
the performance of each �rm considering the mentioned
criteria, and his/her opinions are captured using the
linguistic terms provided in Tables 1{5. To be spe-
ci�c, the linguistic term sets Ts = fts0; ts1; ts2; ts3; ts4g,
Te = fte0; te1; te2; te3; te4g, and Tg = ftg0; tg1; tg2; tg3; tg4g,
shown in Tables 1{3, are used to evaluate the per-
formances of these �rms based on the social, envi-
ronmental, and corporate governance criteria, respec-
tively. In addition, the linguistic terms set Tf =n
tf0 ; t

f
1 ; t

f
2 ; t

f
3 ; t

f
4 ; t

f
5 ; t

f
6 ; t

f
7 ; t

f
8

o
, given in Table 4, can be

employed to evaluate the performance of �rms in terms
of their �nancial criteria. Moreover, the linguistic
terms set T 0 = ft00; t01; t02; t03; t04g, given in Table 5, is
used to determine the reliability measure of the related
information.

An expert evaluates the performance of the as-

sets fx1; x2; : : : ; x20g based on both �nancial criteria
ff1; f2; f3; f4g = fSTR;LTR;ER;Lg and ethical cri-
teria fe1; e2; e3g = fE;S;Gg. The assessment infor-
mation is represented by the LZNs as zfij and zeik(i =
1; : : : ; 20; j = 1; 2; 3; 4, and k = 1; 2; 3) and then, two
LZN matrices Zf =

h
zfij
i

20�4
and Ze = [zeik]20�3 are

generated based on the zfij and zeik. These matrices
characterize the performance of assets regarding the
�nancial criteria as well as the ESG criteria, the results
of which are shown in Tables 6 and 7, respectively.
This information used to evaluate the performance of
each �rm based on the mentioned criteria simulates
the expert's opinions and decision-maker's preferences.
Therefore, the performance of the proposed models as
a qualitative technique for combining the priorities of
each decision-maker or investor in the asset allocation
process is examined.

5.2. The second stage: Calculating the
comprehensive value of each asset and its
corresponding score and accuracy values

In this stage, two linguistic Z-number matrices Zf =h
zfij
i

20�4
and Ze = [zeik]20�3 are transformed into

two qualitative column vectors �Zf =
h
�zfi
i

20�1
and

Table 6. The evaluation data of assets relative to �nancial criteria expressed by LZNs.

Asset
ID

Short-term
return

Long-term
return

External
reputation

Liquidity Asset
ID

Short-term
return

Long-term
return

External
reputation

Liquidity

1
�
tf6 ; t

0
3

� �
tf5 ; t

0
4

� �
tf4 ; t

0
3

� �
tf5 ; t

0
4

�
11

�
tf5 ; t

0
1

� �
tf3 ; t

0
4

� �
tf5 ; t

0
4

� �
tf6 ; t

0
1

�
2

�
tf7 ; t

0
3

� �
tf4 ; t

0
4

� �
tf2 ; t

0
3

� �
tf6 ; t

0
3

�
12

�
tf1 ; t

0
1

� �
tf3 ; t

0
2

� �
tf5 ; t

0
3

� �
tf5 ; t

0
1

�
3

�
tf5 ; t

0
1

� �
tf3 ; t

0
2

� �
tf6 ; t

0
3

� �
tf5 ; t

0
2

�
13

�
tf6 ; t

0
2

� �
tf5 ; t

0
3

� �
tf2 ; t

0
4

� �
tf5 ; t

0
3

�
4

�
tf2 ; t

0
4

� �
tf4 ; t

0
3

� �
tf6 ; t

0
4

� �
tf3 ; t

0
3

�
14

�
tf6 ; t

0
4

� �
tf4 ; t

0
3

� �
tf4 ; t

0
4

� �
tf5 ; t

0
3

�
5

�
tf3 ; t

0
2

� �
tf1 ; t

0
2

� �
tf5 ; t

0
3

� �
tf5 ; t

0
1

�
15

�
tf5 ; t

0
1

� �
tf2 ; t

0
4

� �
tf6 ; t

0
4

� �
tf2 ; t

0
3

�
6

�
tf4 ; t

0
4

� �
tf5 ; t

0
2

� �
tf4 ; t

0
3

� �
tf4 ; t

0
2

�
16

�
tf7 ; t

0
4

� �
tf3 ; t

0
4

� �
tf4 ; t

0
3

� �
tf5 ; t

0
3

�
7

�
tf7 ; t

0
3

� �
tf5 ; t

0
4

� �
tf3 ; t

0
4

� �
tf6 ; t

0
3

�
17

�
tf4 ; t

0
4

� �
tf6 ; t

0
3

� �
tf5 ; t

0
2

� �
tf6 ; t

0
4

�
8

�
tf3 ; t

0
4

� �
tf4 ; t

0
3

� �
tf5 ; t

0
3

� �
tf3 ; t

0
4

�
18

�
tf5 ; t

0
1

� �
tf3 ; t

0
2

� �
tf5 ; t

0
4

� �
tf1 ; t

0
4

�
9

�
tf7 ; t

0
4

� �
tf6 ; t

0
3

� �
tf4 ; t

0
4

� �
tf7 ; t

0
4

�
19

�
tf3 ; t

0
4

� �
tf7 ; t

0
2

� �
tf2 ; t

0
2

� �
tf6 ; t

0
3

�
10

�
tf3 ; t

0
4

� �
tf2 ; t

0
2

� �
tf6 ; t

0
3

� �
tf4 ; t

0
1

�
20

�
tf1 ; t

0
4

� �
tf3 ; t

0
3

� �
tf7 ; t

0
3

� �
tf2 ; t

0
2

�
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Table 7. The evaluation data of assets relative to ESG criteria expressed by LZNs.

Asset ID Social Environmental Governance Asset ID Social Environmental Governance

1 (ts4; t03) (te4; t04) (tg3; t
0
2) 11 (ts3; t02) (te2; t02) (tg2; t

0
1)

2 (ts3; t03) (te4; t03) (tg3; t
0
1) 12 (ts3; t02) (te4; t03) (tg4; t

0
3)

3 (ts2; t03) (te1; t03) (tg3; t
0
3) 13 (ts2; t02) (te2; t03) (tg3; t

0
1)

4 (ts4; t03) (te3; t03) (tg4; t
0
4) 14 (ts4; t04) (te3; t01) (tg3; t

0
1)

5 (ts2; t02) (te3; t02) (tg4; t
0
3) 15 (ts2; t03) (te3; t03) (tg3; t

0
1)

6 (ts3; t02) (te4; t03) (tg3; t
0
1) 16 (ts4; t03) (te3; t02) (tg4; t

0
4)

7 (ts3; t01) (te1; t04) (tg3; t
0
3) 17 (ts3; t01) (te3; t01) (tg3; t

0
3)

8 (ts4; t04) (te0; t04) (tg2; t
0
3) 18 (ts1; t04) (te2; t01) (tg1; t

0
3)

9 (ts0; t04) (te2; t01) (tg2; t
0
2) 19 (ts3; t03) (te2; t02) (tg3; t

0
1)

10 (ts0; t04) (te3; t01) (tg3; t
0
3) 20 (ts3; t03) (te4; t03) (tg3; t

0
2)

�Ze = [�zei ]20�1 by fusing all the �nancial LZNs with
ESG linguistic Z-numbers on one line based on LZMM,
LZWMM, LZDMM, and LZDWMM operators, re-
spectively. Therefore, two qualitative vectors �Zf =h
�zfi
i

20�1
and �Ze = [�zei ]20�1, shown in Tables 8{11, are

calculated based on the LZMM, LZWMM, LZDMM,
and LZDWMM operators, respectively. Then, the
�nancial score, �nancial accuracy, ESG score, and
ESG accuracy values are separately obtained through
De�nition 5, and the results of which are listed in
Tables 8{11.

According to Tables 8{11, if we consider only the
�nancial criteria for calculating the score and accuracy
values of assets, then assets are ranked according to
their �nancial performance in a descending order, as
shown below:

� LZMM operator

x9 > x7 > x1 > x17 > x14 > x16 > x2 > x8

> x13 > x4 > x6 > x9 > x11 > x15 > x3

> x10 > x20 > x18 > x5 > x12

� LZWMM operator

x9 > x7 > x1 > x17 > x14 > x16 > x2 > x8

> x13 > x4 > x6 > x9 > x11 > x15 > x3

> x10 > x20 > x18 > x5 > x12

� LZDMM operator

x9 > x7 > x1 > x17 > x14 > x16 > x2 > x4

> x8 > x13 > x19 > x6 > x11 > x15 > x3

> x10 > x20 > x18 > x5 > x12

� LZDWMM operator

x9 > x7 > x1 > x16 > x14 > x17 > x2 > x4

> x8 > x13 > x19 > x6 > x15 > x11 > x3

> x20 > x10 > x18 > x5 > x12

As observed, some assets (such as 14 and 17 under
LZMM operator; 14 and 17 under LZWMM opera-
tor; and 11 and 15 under LZDMM operator) have
the same score values. Hence, they are ranked based
on their accuracy values. Now, if we consider only
the ESG criteria to calculate the score and accuracy
values of assets, then the assets are ranked based
on their ESG performance in a descending order, as
shown below:

� LZMM operator

x4 > x1 > x16 > x12 > x20 > x8 > x2 > x5

> x6 > x15 > x3 > x14 > x7 > x10 > x19
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Table 8. The aggregated values and their corresponding score and accuracy values resulting from LZMM operator for
f� (xi) = LSF1 and g� (xi) = LSF1.

Financial criteria ESG criteria
Parameter

vector
Asset

ID
Aggregated

value
Score
value

Accuracy
value

Aggregated
value

Score
value

Accuracy
value

1
�
tf9:898; t

0
3:464

�
1.072 0.166

�
tESG9:158; t02:884

�
1.651 0.638

2
�
tf9:476; t

0
2:912

�
0.863 0.322

�
tESG8:32 ; t02:08

�
1.082 0.998

3
�
tf9:211; t

0
1:861

�
0.536 0.616

�
tESG4:579; t03

�
0.859 0.286

4
�
tf6:928; t

0
3:464

�
0.750 0.116

�
tESG9:158; t03:301

�
1.890 0.400

5
�
tf5:885; t

0
1:861

�
0.342 0.393

�
tESG7:268; t02:289

�
1.040 0.777

6
�
tf8:458; t

0
2:632

�
0.696 0.362

�
tESG8:32 ; t01:817

�
0.945 1.135

7
�
tf10:019; t

0
3:464

�
1.085 0.168

�
tESG5:241; t02:289

�
0.750 0.560

8
�
tf7:325; t

0
3:464

�
0.793 0.123

�
tESG5:04 ; t03:634

�
1.145 0.115

9
�
tf11:712; t

0
3:722

�
1.362 0.102

�
tESG4 ; t02

�
0.500 0.500

P f = (0:25; 0:25; 0:25; 0:25) 10
�
tf6:928; t

0
2:213

�
0.479 0.387

�
tESG5:241; t02:289

�
0.750 0.560

PESG = (0:33; 0:33; 0:33) 11
�
tf9:211; t

0
2

�
0.576 0.576

�
tESG5:769; t01:587

�
0.572 0.870

12
�
tf5:885; t

0
1:565

�
0.287 0.447

�
tESG9:158; t02:62

�
1.500 0.789

13
�
tf8:323; t

0
2:912

�
0.758 0.283

�
tESG5:769; t01:817

�
0.655 0.787

14
�
tf9:361; t

0
3:464

�
1.013 0.157

�
tESG8:32 ; t01:587

�
0.825 1.255

15
�
tf6:619; t

0
2:632

�
0.544 0.283

�
tESG6:604; t02:08

�
0.859 0.792

16
�
tf9:054; t

0
3:464

�
0.980 0.152

�
tESG9:158; t02:884

�
1.651 0.638

17
�
tf10:36; t

0
3:13

�
1.013 0.282

�
tESG7:56 ; t01:442

�
0.681 1.208

18
�
tf5:885; t

0
2:378

�
0.437 0.298

�
tESG3:175; t02:289

�
0.454 0.339

19
�
tf7:968; t

0
2:632

�
0.655 0.341

�
tESG6:604; t01:817

�
0.750 0.901

20
�
tf5:091; t

0
2:912

�
0.463 0.173

�
tESG8:32 ; t02:62

�
1.363 0.717

> x17 > x13 > x11 > x9 > x18

� LZWMM operator

x4 > x1 > x16 > x12 > x20 > x8 > x2 > x5

> x6 > x15 > x3 > x14 > x19 > x7 > x10

> x17 > x13 > x11 > x9 > x18

� LZDMM operator

x4 > x1 > x16 > x12 > x20 > x8 > x2 > x14

> x5 > x6 > x15 > x3 > x19 > x7 > x10

> x17 > x13 > x11 > x9 > x18

� LZDWMM operator

x4 > x1 > x16 > x12 > x8 > x20 > x2 > x14 > x5

> x6 > x15 > x3 > x7 > x19 > x10 > x17

> x13 > x11 > x9 > x18

Obviously, the ranking based on the �nancial
criteria is absolutely di�erent from that based on the
ESG criteria. For example, assets 7 and 9 always
exhibit the best �nancial performance, while their ESG
performance is poor. Therefore, we can use the main
advantage of the proposed portfolio models and select
the optimal assets based on a trade-o� between the
�nancial and ESG criteria according to the investor's
preferences.

5.3. The third stage: Portfolio selection based
on aggregation operators under LZN
environment

In this step, the qualitative portfolio models are estab-
lished based on Model 1, Model 2, and Model 3. These
models can select the optimal combinations of assets by
considering a trade-o� among the �nancial and ESG
criteria according to the investors' preferences. The
parameters of the proposed models are h = 8, li = 0:05,
and ui = 0:5. Clearly, the proposed models are mixed
integer programming models. Speranza [67] indicated
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Table 9. The aggregated values and their corresponding score and accuracy values resulting from LZWMM operator for
f� (xi) = LSF1, g� (xi) = LSF1, wf = (0:3; 0:3; 0:25; 0:15), and wESG = (0:4; 0:3; 0:3).

Financial criteria ESG criteria
Parameter

vector
Asset

ID
Aggregated

value
Score
value

Accuracy
value

Aggregated
value

Score
value

Accuracy
value

1
�
tf9:543; t

0
3:464

�
1.033 0.160

�
tESG7:205; t02:884

�
1.299 0.502

2
�
tf9:136; t

0
2:912

�
0.832 0.310

�
tESG6:546; t02:08

�
0.851 0.786

3
�
tf8:881; t

0
1:861

�
0.517 0.594

�
tESG3:602; t03

�
0.675 0.225

4
�
tf6:68; t

0
3:464

�
0.723 0.112

�
tESG7:205; t03:301

�
1.487 0.314

5
�
tf5:674; t

0
1:861

�
0.330 0.379

�
tESG5:719; t02:289

�
0.818 0.611

6
�
tf8:155; t

0
2:632

�
0.671 0.349

�
tESG6:546; t01:817

�
0.743 0.893

7
�
tf9:66; t

0
3:464

�
1.046 0.162

�
tESG4:124; t02:289

�
0.590 0.441

8
�
tf7:063; t

0
3:464

�
0.765 0.118

�
tESG3:965; t03:634

�
0.901 0.091

9
�
tf11:292; t

0
3:722

�
1.314 0.098

�
tESG3:147; t02

�
0.393 0.393

P f = (0:25; 0:25; 0:25; 0:25) 10
�
tf6:68; t

0
2:213

�
0.462 0.373

�
tESG4:124; t02:289

�
0.590 0.441

PESG = (0:33; 0:33; 0:33) 11
�
tf8:881; t

0
2

�
0.555 0.555

�
tESG4:539; t01:587

�
0.450 0.684

12
�
tf5:674; t

0
1:565

�
0.278 0.432

�
tESG7:205; t02:62

�
1.180 0.621

13
�
tf8:025; t

0
2:912

�
0.731 0.273

�
tESG4:539; t01:817

�
0.515 0.619

14
�
tf9:025; t

0
3:464

�
0.977 0.151

�
tESG6:546; t01:587

�
0.649 0.987

15
�
tf6:382; t

0
2:632

�
0.525 0.273

�
tESG5:194; t02:08

�
0.675 0.623

16
�
tf8:729; t

0
3:464

�
0.945 0.146

�
tESG7:205; t02:884

�
1.299 0.502

17
�
tf9:988; t

0
3:13

�
0.977 0.272

�
tESG5:948; t01:442

�
0.536 0.951

18
�
tf5:674; t

0
2:378

�
0.422 0.288

�
tESG2:498; t02:289

�
0.357 0.267

19
�
tf7:683; t

0
2:632

�
0.632 0.328

�
tESG5:196; t01:817

�
0.590 0.709

20
�
tf4:909; t

0
2:912

�
0.447 0.167

�
tESG6:546; t02:62

�
1.072 0.564

that the computational complexity of the Mixed In-
teger Linear Programming (MILP) model depended
on the number of integer and binary variables. He
also proved that obtaining the optimal solutions for
MILP models in a rational time was impossible in
the case of the number of variables greater than 15.
In addition, Mansini and Speranza [68] proved that
solving the portfolio selection model with round lots
was NP-hard. Therefore, Genetic Algorithm (GA) was
employed to solve Model 1, and the second version of
Non-dominated Sorting Genetic Algorithm II (NSGA-
II) was used to solve Models 2 and 3. The parameters
of GA and NSGA-II are adjusted as follows: POPsize
of 100, crossover rate of 0.8, mutation rate of 0.4, and
maximum iteration of 500. In addition, GA and NSGA-
II were run 10 times for each case in MATLAB R2014a
on a PC with Pentium(R) Dual core-CPU 2.0 GHz
Processor and 2 GB of RAM memory.

� Asset allocation using Model 1
In this case, 
 = 0:5 should be taken into account
to establish Model 1 based on the four proposed
aggregation operators. Then, Model 1 is solved
based on f� (xi) = LSF1, g� (xi) = LSF1, P f =
(0:25; 0:25; 0:25; 0:25), PESG = (0:33; 0:33; 0:33), wf
(0:3; 0:3; 0:25; 0:15), and wESG (0:4; 0:3; 0:3). The
selected portfolios are reported in Table 12. Accord-
ing to Figure 2, while using LZMM and LZWMM
operators, the performance of asset 9 is better than
that of the others. In addition, while using LZDMM
and LZDWMM operators, more budget is allocated
to assets 1, 4, and 16. All of these assets (1, 4, 9,
and 16) have high �nancial score values and their
ESG score values are placed within the admissible
limits. Moreover, as observed, the portfolios selected
based on the four proposed aggregation operators
are slightly di�erent. This di�erence is indicative
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Table 10. The aggregated values and their corresponding score and accuracy values resulting from LZDMM operator for
f� (xi) = LSF1 and g� (xi) = LSF1.

Financial criteria ESG criteria
Parameter

vector
Asset

ID
Aggregated

value
Score
value

Accuracy
value

Aggregated
value

Score
value

Accuracy
value

1
�
tf3:125; t

0
3:063

�
0.299 0.092

�
tESG3:358; t02:388

�
0.501 0.338

2
�
tf3:125; t

0
2:326

�
0.227 0.164

�
tESG2:775; t01:44

�
0.250 0.444

3
�
tf2:82; t

0
1:053

�
0.093 0.260

�
tESG0:999; t02:25

�
0.140 0.109

4
�
tf1:785; t

0
3:121

�
0.171 0.048

�
tESG3:358; t02:829

�
0.594 0.246

5
�
tf1:531; t

0
1

�
0.048 0.144

�
tESG2:248; t01:494

�
0.210 0.352

6
�
tf2:258; t

0
1:83

�
0.129 0.153

�
tESG2:775; t01:103

�
0.191 0.503

7
�
tf3:445; t

0
2:858

�
0.308 0.123

�
tESG1:36 ; t01:306

�
0.111 0.229

8
�
tf1:758; t

0
2:89

�
0.159 0.061

�
tESG1:36 ; t03:449

�
0.293 0.047

9
�
tf4:5; t

0
3:516

�
0.494 0.068

�
tESG0:694; t01

�
0.043 0.130

P f = (0:25; 0:25; 0:25; 0:25) 10
�
tf1:758; t

0
1:604

�
0.088 0.132

�
tESG1:36 ; t01:306

�
0.111 0.229

PESG = (0:33; 0:33; 0:33) 11
�
tf2:82; t

0
1:28

�
0.113 0.240

�
tESG1:36 ; t00:735

�
0.062 0.278

12
�
tf1:531; t

0
0:93

�
0.044 0.147

�
tESG3:358; t01:86

�
0.390 0.449

13
�
tf2:531; t

0
1:929

�
0.153 0.164

�
tESG1:36 ; t00:862

�
0.073 0.267

14
�
tf2:82; t

0
3:109

�
0.274 0.079

�
tESG2:775; t01:21

�
0.210 0.484

15
�
tf1:758; t

0
2:054

�
0.113 0.107

�
tESG1:776; t01:266

�
0.140 0.304

16
�
tf2:82; t

0
3:109

�
0.274 0.079

�
tESG3:358; t02:388

�
0.501 0.338

17
�
tf3:445; t

0
2:621

�
0.282 0.148

�
tESG2:248; t00:694

�
0.098 0.464

18
�
tf1:531; t

0
1:563

�
0.075 0.117

�
tESG0:444; t01:266

�
0.035 0.076

19
�
tf2:531; t

0
1:778

�
0.141 0.176

�
tESG1:776; t01

�
0.111 0.333

20
�
tf1:32; t

0
2:136

�
0.088 0.077

�
tESG2:775; t01:823

�
0.316 0.378

Figure 2. The selected assets and their investment ratio
based on Model 1.

of the advantage of our proposed aggregation oper-
ators. In addition, more diversi�ed portfolios can
be constructed by changing the 
-value in Model 1
according to the investor's preferences.

� Asset allocation using Model 2
In this case, f� (xi) = LSF1, g� (xi) = LSF1, P f =
(0:25; 0:25; 0:25; 0:25), PESG = (0:33; 0:33; 0:33),

Figure 3. The selected assets and their investment ratio
(Pareto solution 1) based on Model 2.

wf (0:3; 0:3; 0:25; 0:15), and wESG (0:4; 0:3; 0:3) are
used to construct Model 2 based on the four pro-
posed aggregation operators. Table 13 lists the
selected portfolios. Figure 3 indicates that assets
1 and 9 outperform others when using LZMM and
LZWMM operators. In addition, more budget is
allocated to assets 1, 9, and 16 when using LZDMM
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Table 11. The aggregated values and their corresponding score and accuracy values resulting from LZDWMM operator
for f� (xi) = LSF1, g� (xi) = LSF1, wf = (0:3; 0:3; 0:25; 0:15), and wESG = (0:4; 0:3; 0:3).

Financial criteria ESG criteria
Parameter

vector
Asset

ID
Aggregated

value
Score
value

Accuracy
value

Aggregated
value

Score
value

Accuracy
value

1
�
tf3:204; t

0
3:02

�
0.302 0.098

�
tESG3:411; t02:344

�
0.500 0.353

2
�
tf3:134; t

0
2:387

�
0.234 0.158

�
tESG2:731; t01:453

�
0.248 0.435

3
�
tf2:836; t

0
1:196

�
0.106 0.248

�
tESG0:991; t02:27

�
0.141 0.107

4
�
tf1:862; t

0
3:158

�
0.184 0.049

�
tESG3:411; t02:763

�
0.589 0.264

5
�
tf1:566; t

0
1:194

�
0.058 0.137

�
tESG2:163; t01:552

�
0.210 0.331

6
�
tf2:341; t

0
1:905

�
0.139 0.153

�
tESG2:731; t01:102

�
0.188 0.495

7
�
tf3:478; t

0
2:925

�
0.318 0.117

�
tESG1:386; t01:325

�
0.115 0.232

8
�
tf1:85; t

0
2:908

�
0.168 0.063

�
tESG1:476; t03:482

�
0.321 0.048

9
�
tf4:449; t

0
3:465

�
0.482 0.074

�
tESG0:706; t01

�
0.044 0.132

P f = (0:25; 0:25; 0:25; 0:25) 10
�
tf1:819; t

0
1:691

�
0.096 0.131

�
tESG1:334; t01:35

�
0.113 0.221

PESG = (0:33; 0:33; 0:33) 11
�
tf2:764; t

0
1:442

�
0.124 0.220

�
tESG1:407; t00:709

�
0.062 0.289

12
�
tf1:566; t

0
1:145

�
0.056 0.140

�
tESG3:256; t01:871

�
0.381 0.433

13
�
tf2:602; t

0
1:957

�
0.159 0.166

�
tESG1:349; t00:896

�
0.076 0.262

14
�
tf2:874; t

0
3:219

�
0.289 0.070

�
tESG2:873; t01:288

�
0.231 0.487

15
�
tf1:889; t

0
2:116

�
0.125 0.111

�
tESG1:739; t01:294

�
0.141 0.294

16
�
tf2:915; t

0
3:231

�
0.294 0.070

�
tf3:406; t

0
2:567

�
0.500 0.353

17
�
tf3:406; t

0
2:567

�
0.273 0.153

�
tESG2:251; t00:714

�
0.101 0.462

18
�
tf1:601; t

0
1:664

�
20.083 0.117

�
tESG0:455; t01:246

�
0.035 0.078

19
�
tf2:535; t

0
1:804

�
0.143 0.174

�
tESG1:804; t01:005

�
0.113 0.338

20
�
tf1:447; t

0
2:14

�
0.097 0.084

�
tESG2:731; t01:851

�
0.316 0.367

and LZDWMM operators. All of these assets are
allocated to the optimal portfolios based on a trade-
o� between the �nancial and the ethical goals con-
sidering the expert's reliability under the proposed
aggregation operators. Moreover, the chosen assets
in Model 2 based on these operators are the same;
however, their corresponding investment ratios are
slightly di�erent. This feature highlights an advan-
tage of our proposed aggregation operators. The
result reported in Table 13 is only one of the Pareto
solutions obtained from NSGA-II. As observed, the
�nancial goals of the portfolios listed in Table 13 are
greater than the ethical goals in all situations. Now,
if the investor prefers to choose the portfolios with
higher ethical performance, he/she should consider
the assets listed in Table 14. According to Figure 4,
more capital is devoted to assets 1, 4, and 16 in
all the proposed aggregation operators. Moreover,
some assets such as 5, 8, 12, and 20 selected in
Table 14 have higher ESG score values than those
of the other assets such as 7, 9, 14, and 17 chosen

Figure 4. The selected assets and their investment ratio
(Pareto solution 2) based on Model 2.

in Table 13. On the contrary, assets 7, 9, 14, and
17 chosen in Table 13 have higher �nancial score
values than those of assets 5, 8, 12, and 20 selected
in Table 14. Therefore, it can be concluded that
Model 2 can generate far more diversi�ed portfolios
based on the investor's preferences and examine the
trade-o� among the �nancial and ethical goals.
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Table 12. The selected assets and their investment ratio in the portfolio by Model 1.

Operator Financial goal Selected assets and their investment ratio

LZMM 1.153 ID 1 2 7 8 9 14 16 17
Portions 0.079 0.073 0.079 0.079 0.460 0.077 0.077 0.077

LZWMM 1.114 ID 1 2 7 8 9 14 16 17
Portions 0.078 0.077 0.077 0.076 0.469 0.070 0.077 0.076

LZDMM 0.2358 ID 1 2 4 8 12 14 16 20
Portions 0.279 0.050 0.159 0.050 0.050 0.082 0.279 0.050

LZDWMM 0.2503 ID 1 2 4 8 12 14 16 20
Portions 0.285 0.049 0.138 0.049 0.049 0.096 0.285 0.049

Table 13. The selected assets and their investment ratio (Pareto solution 1) in the portfolio using Model 2.

Operator Financial
goal

Ethical
goal

Selected assets and their investment ratio

LZMM 1.123 0.925 ID 1 2 4 7 9 14 16 17
Portions 0.391 0.048 0.048 0.048 0.302 0.048 0.067 0.048

LZWMM 1.087 0.905 ID 1 2 4 7 9 14 16 17
Portions 0.396 0.048 0.048 0.048 0.313 0.048 0.048 0.048

LZDMM 0.364 0.249 ID 1 2 4 7 9 14 16 17
Portions 0.200 0.049 0.049 0.049 0.413 0.049 0.143 0.049

LZDWMM 0.361 0.259 ID 1 2 4 7 9 14 16 17
Portions 0.202 0.049 0.051 0.049 0.397 0.049 0.154 0.049

Table 14. The selected assets and their investment ratio (Pareto solution 2) in the portfolio using Model 2.

Operator Financial
goal

Ethical
goal

Selected assets and their investment ratio

LZMM 0.834 1.294 ID 1 2 4 5 8 12 16 20

Portions 0.319 0.049 0.303 0.049 0.049 0.049 0.134 0.049

LZWMM 0.796 1.129 ID 1 2 4 5 8 12 16 20

Portions 0.333 0.048 0.347 0.048 0.048 0.048 0.078 0.048

LZDMM 0.227 0.471 ID 1 2 4 8 12 14 16 20

Portions 0.303 0.047 0.259 0.047 0.047 0.047 0.201 0.047

LZDWMM 0.239 0.474 ID 1 2 4 8 12 14 16 20

Portions 0.296 0.048 0.249 0.048 0.048 0.048 0.217 0.048

� Asset allocation using Model 3
In this case, � = 0:2 and ' = 0:4 are employed
to establish Model 3 based on the four proposed
aggregation operators. The selected portfolios are
listed in Table 15. According to Figure 5, assets 1
and 9 outperform the others when using LZMM op-
erator and LZWMM operator to fuse the evaluation
information. In addition, more budget is devoted
to assets 2, 3, and 11 when using LZDMM and
LZDWMM operators to aggregate the evaluation
information. Moreover, �nancial score and ESG
score values of the selected assets (1, 2, 3, 9, and

11) are high, and their �nancial accuracy and ESG
accuracy values are within the admissible bounds.

In case the diversi�cation of the selected portfolios
does not satisfy the investor, more portfolios are
constructed by changing the prede�ned �- and '-values
in Model 3.

5.4. Discussion and sensitivity analysis
The main feature of portfolio optimization problems
emphasizes the trade-o� between two con
icting goals.
In the traditional portfolio theory, con
ict is observed
between the return and risk. However, the con
ict in



1610 A.H. Mahmoodi et al./Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 1592{1621

Table 15. The selected assets and their investment ratio in the portfolio using Model 3.

Operator Financial
goal

Ethical
goal

Selected assets and their investment ratio

LZMM 1.059 0.962 ID 1 2 3 7 9 14 16 17

Portions 0.396 0.066 0.064 0.067 0.229 0.058 0.055 0.066

LZWMM 1.012 0.911 ID 1 2 3 7 9 14 16 17

Portions 0.375 0.089 0.071 0.074 0.170 0.070 0.076 0.075

LZDMM 0.1403 0.1403 ID 2 3 6 11 12 13 17 19

Portions 0.155 0.276 0.089 0.179 0.069 0.073 0.079 0.080

LZDWMM 0.1435 0.045 ID 2 3 6 11 12 13 17 19

Portions 0.103 0.237 0.076 0.345 0.055 0.050 0.083 0.051

Table 16. Ranking orders for di�erent parameter vectors P based on LZMM operator (�nancial criteria).

P vector Ranking

P f = (1; 0; 0; 0) x9 > x7 > x1 > x17 > x14 > x16 > x2 > x4 > x8 > x13 > x19 > x6 > x11 > x15 > x3 > x10 > x20 > x18 > x5 > x12

P f = (2; 0; 0; 0) x9 > x7 > x16 > x1 > x17 > x14 > x2 > x4 > x15 > x19 > x13 > x8 > x11 > x6 > x20 > x10 > x3 > x18 > x5 > x12

P f = (1; 1; 0; 0) x9 > x7 > x1 > x17 > x14 > x16 > x2 > x8 > x4 > x13 > x19 > x6 > x11 > x15 > x3 > x20 > x10 > x18 > x5 > x12

P f = (1; 1; 1; 0) x9 > x7 > x1 > x17 > x14 > x16 > x2 > x8 > x4 > x13 > x19 > x6 > x11 > x15 > x3 > x10 > x20 > x18 > x5 > x12

P f = (1; 1; 1; 1) x9 > x7 > x1 > x17 > x14 > x16 > x2 > x8 > x13 > x4 > x6 > x19 > x11 > x15 > x3 > x10 > x20 > x18 > x5 > x12

Table 17. Ranking orders for di�erent parameter vectors P based on LZDMM operator (�nancial criteria).

P vector Ranking

P f = (1; 0; 0; 0) x9 > x7 > x1 > x17 > x14 > x16 > x2 > x8 > x13 > x4 > x6 > x19 > x11 > x15 > x3 > x10 > x20 > x18 > x5 > x12

P f = (2; 0; 0; 0) x9 > x7 > x1 > x17 > x14 > x16 > x2 > x8 > x13 > x4 > x6 > x19 > x11 > x15 > x3 > x10 > x20 > x18 > x5 > x12

P f = (1; 1; 0; 0) x9 > x7 > x1 > x17 > x14 > x16 > x2 > x8 > x4 > x13 > x19 > x6 > x11 > x15 > x3 > x10 > x20 > x18 > x5 > x12

P f = (1; 1; 1; 0) x9 > x7 > x1 > x17 > x14 > x16 > x2 > x4 > x8 > x13 > x19 > x6 > x11 > x15 > x3 > x10 > x20 > x18 > x5 > x12

P f = (1; 1; 1; 1) x9 > x7 > x1 > x17 > x14 > x16 > x2 > x4 > x8 > x13 > x19 > x6 > x11 > x15 > x3 > x10 > x20 > x18 > x5 > x12

Figure 5. The selected assets and their investment ratio
based on Model 3.

this study is between the �nancial and ESG goals as
well as the score values and accuracy values. These
trade-o�s are adequately considered in all three pro-
posed models to generate more diversi�ed portfolios.
In the following, the impact of critical parameters on
the proposed qualitative portfolio models is analyzed.

5.4.1. The in
uence of parameter vector P on the
asset allocation by Model 1

In this subsection, di�erent parameters of vector are
used to fuse the evaluation information and analyze the
ranking orders in terms of only �nancial criteria based
on LZMM and LZDMM operators. Tables 16 and 17
present the results obtained from LZMM and LZDMM
operators, respectively. Obviously, the ranking orders
in the LZMM and LZDMM operators are slightly
di�erent. This di�erence is indicative of an advantage
of our proposed aggregation operators. In addition, the
larger the values for parameter vector P , the lower the
score values in LZMM operator; on the contrary, the
greater the values of parameter vector P , the larger
the score values in LZDMM operator. Consequently,
parameter vector indicates the idea of decision-makers
or investors. Di�erent parameters of vector P are used
for further analysis and establishment of Model 1 based
on the LZMM and LZDMM operator for 
 = 0:3.
Table 18 shows the �nancial and ESG goals for di�erent
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Table 18. Financial and ESG goals corresponding to di�erent parameter vectors P in Model 1 for 
 = 0:3.

Operator Parameter vector Financial goal ESG level

LZ
M

M

C1: P f = (1; 0; 0; 0) 1.206 0.694
PESG = (1; 0; 0)

C2: P f = (2; 0; 0; 0) 0.8844 0.543
PESG = (2; 0; 0)

C3:P f = (1; 1; 0; 0) 0.8324 0.526
PESG = (1; 1; 0)

C4: P f = (1; 1; 1; 0) 0.7447 0.4786
PESG = (1; 1; 0)

C5: P f = (1; 1; 1; 1) 0.6817 0.421
PESG = (1; 1; 1)

LZ
D

M
M

C1: P f = (1; 0; 0; 0) 0.281 0.3
PESG = (1; 0; 0)

C2: P f = (2; 0; 0; 0) 0.6571 0.36
PESG = (2; 0; 0)

C3: P f = (1; 1; 0; 0) 0.7166 0.375
PESG = (1; 1; 0)

C4: P f = (1; 1; 1; 0) 1.096 0.393
PESG = (1; 1; 0)

C5: P f = (1; 1; 1; 1) 1.483 0.577
PESG = (1; 1; 1)

Figure 6. The e�ect of di�erent parameter vectors in
Model 1 based on LZMM operator for 
 = 0:3.

values of P . As shown in Figure 6, both �nancial
and ESG performances of portfolios obtained based
on LZMM operator are weakened with larger values of
vector P . On the contrary, according to Figure 7, both
�nancial and ESG performance of portfolios obtained
based on LZDMM operator are enhanced with larger
values of vector P . Therefore, if an investor is a risk-
seeker, the parameter vector can generally be set as
either P = (1; 0; : : : ; 0) in the LZMM operator or as
P = (0; 0; : : : ; 1) in the LZDMM operator. On the
contrary, if an investor is a risk-averter, the parameter
vector can generally be set as either P = (0; 0; : : : ; 1)

Figure 7. The e�ect of di�erent parameter vectors in
Model 1 based on LZDMM operator for 
 = 0:3.

in the LZMM operator or as P = (1; 0; : : : ; 0) in the
LZDMM operator. Finally, in the case of a neutral
investor, the parameter vector can generally be set
as P =

� 1
n ;

1
n ; : : : ;

1
n

�
. Consequently, every investor

can set the value of vector P according to his/her
preferences.

5.4.2. The in
uence of desirable ESG level 
 on the
asset allocation by Model 1

To investigate the role of Desirable Ethical (ESG) level

 on the asset allocation through Model 1, di�erent 
-
values are used to analyze the results that are given in
Table 19.
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Table 19. Asset allocation to di�erent prede�ned ESG levels in Model 1.

Operator 
 Financial goal Selected assets and their investment ratio

LZ
M

M

0.1 1.156 1 2 7 8 9 14 16 17

0.076 0.074 0.076 0.076 0.469 0.076 0.076 0.077

0.5 1.142 1 2 7 8 9 14 16 17

0.081 0.081 0.081 0.081 0.432 0.082 0.082 0.081

0.7 1.137 1 2 7 8 9 14 16 17

0.099 0.079 0.084 0.081 0.416 0.075 0.092 0.075

0.9 1.112 1 2 4 7 9 14 16 17

0.315 0.055 0.064 0.062 0.299 0.058 0.086 0.062

1.25 0.887 1 2 4 8 12 14 16 20

0.271 0.055 0.190 0.050 0.050 0.065 0.271 0.050

� 1:5 Infeasible

LZ
D

M
M

0.1 0.367 1 2 4 7 9 14 16 17

0.078 0.077 0.078 0.078 0.454 0.075 0.079 0.081

0.2 0.365 1 2 4 7 9 14 16 17

0.085 0.076 0.083 0.070 0.455 0.075 0.085 0.071

0.3 0.323 1 2 4 7 9 14 16 17

0.230 0.067 0.129 0.069 0.259 0.068 0.111 0.067

0.4 0.271 1 2 4 7 8 14 16 17

0.313 0.053 0.052 0.079 0.051 0.080 0.313 0.059

0.45 0.2387 1 2 4 8 12 14 16 20

0.297 0.051 0.132 0.051 0.050 0.071 0.297 0.050

� 1:5 Infeasible

Figure 8. Trade-o� among the �nancial goal and ESG
level using Model 1 based on LZMM operator.

In this subsection, sensitivity analysis is carried
out by changing the desirable ESG level of the portfolio

. According to Figures 8 and 9, upon increasing the 
-
value, the attainment level of the �nancial goal becomes
lower in Model 1 established based on both LZMM and
LZDMM operators. This is in line with the trade-o�
among the �nancial and ESG goals of the portfolio. In
addition, Model 1 selects the assets with better ESG
performance resulting from an increase in the desirable

Figure 9. Trade-o� between the �nancial goal and ESG
level using Model 1 based on LZDMM operator.

ESG level of the portfolio 
. For example, asset 9
that exhibits high �nancial performance is not chosen
when increasing the 
-value due to its low ethical
performance. Moreover, the cardinality constraint
as well as the minimum and maximum fraction of
investment in each asset (li and ui) are employed
to construct more diversi�ed portfolios. In other
words, more diversi�ed portfolios can be constructed
by changing the maximum and minimum fraction (li
and ui) in Model 1 based on the investor's preferences.
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Table 20. Asset allocation using Model 3 based on the LZMM operator.

' � Financial goal ESG goal Selected assets and investment ratio

0.1

0.1 1.128 0.911 1 2 4 7 9 14 16 17

0.393 0.048 0.048 0.048 0.317 0.048 0.048 0.048

0.3 0.9446 0.702 1 2 3 7 9 11 14 17

0.153 0.100 0.144 0.101 0.141 0.115 0.103 0.144

0.5 0.597 0.604 2 3 5 6 10 11 12 19

0.050 0.382 0.050 0.063 0.055 0.094 0.252 0.054

0.3

0.1 1.107 0.961 1 2 4 7 9 14 16 17

0.397 0.049 0.049 0.049 0.260 0.049 0.097 0.049

0.3 0.927 0.796 1 2 3 6 9 11 16 17

0.159 0.097 0.111 0.100 0.179 0.124 0.127 0.103

0.5 0.517 0.647 2 3 5 6 10 11 12 19

0.050 0.310 0.052 0.050 0.050 0.102 0.338 0.050

0.5

0.1 1.111 0.943 1 2 4 7 9 14 16 17

0.398 0.050 0.057 0.052 0.275 0.052 0.065 0.050

0.3 0.939 0.69 1 2 3 7 9 11 14 17

0.124 0.124 0.123 0.125 0.109 0.116 0.106 0.175

0.5 0.486 0.608 2 3 5 6 10 11 12 19

0.058 0.346 0.062 0.057 0.057 0.102 0.259 0.059

0.7

0.1 0.944 1.032 1 2 4 6 12 14 16 17

0.196 0.092 0.081 0.090 0.070 0.152 0.188 0.130

0.3 0.938 0.608 2 3 6 7 9 11 14 17

0.129 0.087 0.089 0.086 0.134 0.088 0.118 0.269

0.5 0.569 0.556 3 5 6 10 11 12 17 19

0.131 0.066 0.069 0.058 0.480 0.070 0.062 0.064

5.4.3. The e�ect of admissible �nancial accuracy
level � and admissible ESG accuracy level ' on
the asset allocation by Model 3

In this case, sensitivity analysis is conducted by chang-
ing the minimum admissible accuracy level of the
�nancial goal � as well as the minimum admissible
accuracy level of ESG goal ' in the portfolio. Table 20
reports the computational results according to which
the attainment level of both �nancial and ESG goals
decreases upon increasing the �- and '-values. This
issue is in accordance with the trade-o� between the

score and accuracy values in the portfolio, as ob-
served in Figures 10{12. As mentioned in Section 4,
the relation between the score and accuracy values
is similar to that between the mean and variance
in statistics. Model 3 generates a comprehensive
convergence between the �nancial score and �nancial
accuracy values and ESG score and ESG accuracy
value. Therefore, Model 3 is more suitable for risky
socially responsible investors when they aim to obtain
both the maximum �nancial and ethical goals along
with a limited accuracy level.



1614 A.H. Mahmoodi et al./Scientia Iranica, Transactions E: Industrial Engineering 29 (2022) 1592{1621

Figure 10. Trade-o� between the �nancial and ESG
goals and �nancial accuracy level using Model 3 with the
ESG accuracy level of ' = 0:1.

Figure 11. Trade-o� between the �nancial and ESG
goals and �nancial accuracy level using Model 3 with the
ESG accuracy level of ' = 0:5.

Figure 12. Trade-o� between �nancial goal and ESG
goal and �nancial accuracy level using Model 3 with the
ESG accuracy level of ' = 0:7.

5.5. Managerial results
As discussed earlier, the proposed qualitative frame-
work includes application of aggregation methods to
integrate the ethical criteria with asset allocation
problems in a LZN environment. The three proposed
models are developed for socially responsible investors.
The �rst model (Model 1) is more suitable for general
socially responsible investors who aim to obtain the
maximum �nancial goal with the desirable ethical
level. The second model (Model 2) is more suitable

for general socially responsible investors who wish
to achieve both maximum �nancial and ethical goals
simultaneously. Finally, the third model (Model 3)
is more proper for risky socially responsible investors
who wish to obtain both the maximum �nancial goal
and ethical goals with a con�ned accuracy level as
the portfolio risks. Furthermore, consideration of the
prede�ned number of assets allocated to the portfolio
along with the lower and upper bounds of the portion
of capital invested in each asset guarantees the diversi-
�cation of the portfolios.

The proposed approach enjoys several advantages
that are highlighted below:

1. The proposed approach is more holistic and 
ex-
ible than other approaches owing to the presence
of LZNs in the evaluation information modeling.
The LZNs not only reduce the information loss
due to creation of a more 
exible, holistic, and
accurate structure but also capture the possibilistic
and probabilistic constraints simultaneously. These
abilities make them suitable for evaluating the
information in �nancial markets;

2. The proposed aggregation methods take into ac-
count the interrelationships among all input argu-
ments in a decision-making environment. Although
there are some aggregation techniques for fusing the
evaluation information when the input arguments
are dependent, they are unable to solve decision-
making problems in a LZN environment. To over-
come this shortcoming, our proposed aggregation
operators namely LZMM, LZWMM, LZDMM, and
LZDWMM operators are more general and more

exible in aggregating the assessment information
than the others. The proposed aggregation op-
erators not only consider the interrelationships
among all input arguments, but also capture the
reliability of information, which can prevent the
loss of information in the evaluation information
aggregating;

3. The proposed approach functions based on the
max-score and score-accuracy trade-o� rules and
develops three qualitative ethical-�nancial portfolio
models in a LZN environment. Our proposed
models are suitable for both the general socially
responsible investors and risky socially responsible
investors. Moreover, compared to the traditional
portfolio models, our proposed models can generate
more diversi�ed portfolios according to investors'
preferences and examine the trade-o� between the
�nancial and ethical goals in addition to that be-
tween the score and accuracy values under di�erent
circumstances.
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6. Conclusion

In order to select the optimal combination of assets
in a portfolio based on the trade-o� between the
�nancial and ethical criteria when the qualitative
evaluation information was incomplete, vague, and
uncertain, the current study proposed a comprehensive
multi-stage methodology according to the investors'
preferences and experts' reliability in a linguistic Z-
number environment. The main stages of the extended
methodology are discussed in the following: (1) The
linguistic Z-number information was aggregated using
MM and DMM operators, and the extended four
new aggregation operators were called the Linguistic
Z-number Muirhead Mean (LZMM), Linguistic Z-
number Weighted Muirhead Mean (LZWMM), Lin-
guistic Z-number Dual Muirhead Mean (LZDMM),
and Linguistic Z-number Dual Weighted Muirhead
Mean (LZDWMM) operators; (2) The score and accu-
racy values were calculated for the �nancial and ethical
criteria; (3) Three qualitative portfolio optimization
models were developed for investors with di�erent
preferences. Two qualitative asset allocation models
(Models 1 and 2), suitable for the general socially re-
sponsible investors, were developed based on the max-
score rule. Finally, the third qualitative portfolio model
(Model 3), suitable for the risky socially responsible
investors, was designed based on the score-accuracy
trade-o� rule.

Then, the proposed qualitative models were em-
ployed to select portfolios based on a real case. The re-
sults indicate that the proposed approach can construct
more diversi�ed portfolios based on a trade-o� between
the �nancial and ethical criteria based on the investor's
preferences. Moreover, the proposed approach could
not only consider the interrelationships among all input
arguments but also capture the experts' reliability in
investment processes.

For future research, linguistic Z-numbers can be
combined with many aggregation operators such as
power aggregation operator, Heronian Mean (HM)
operator, etc. Our proposed approach can be developed
based on other assumptions, constraints, and objectives
such as entropy constraints and transaction cost. More-
over, the proposed approach can be applied to model a
multi-period portfolio selection problem.
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Appendix A

Theorem 1. Let zi =
�
A�(i); B'(i)

�
(i = 1; : : : ; k) be

a set of LZNs and P = (P1; P2; : : : ; Pk) 2 Rk be
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Box A.I

a parametric vector. Then, the aggregated result
acquired based on LZMM operator is an LZN and it
is indicated by Eq. (A.1) as shown in Box A.I.

Proof. According to De�nition 4, it is clear that the
aggregated value is an LZN. Now, by applying the
mathematical induction method, Eq. (A.1) is easily
proven in the following.
Firstly, it is assumed that k = 2. Hence, if k = 2,
then S2 = f(� (1) ; � (2)) ; (� (2) ; � (1))g. According to
De�nition 4, we have:�
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The rest of equations are shown in Box A.II.
Obviously, Theorem 1 is true for k = 2. Now,

it is assumed that this theorem be true for k = t;
therefore, we will have the equation shown in Box A.III.
Consequently, for k = t + 1, we can obtain the
expression shown in Box A.IV. Since this theorem is
true for k = t, it will be also true for k = t+1. Finally,
according to the mathematical induction, Eq. (A.1) is
true for all k. �

Appendix B

Theorem 5. Let zi =
�
A�(i); B'(i)

�
(i = 1; : : : ; k) be a

set of LZNs and P = (P1; P2; : : : ; Pk) 2 Rk be a para-
metric vector. Then, the aggregated result acquired
based on LZDMM operator is an LZN presented by
Eq. (B.1) shown in Box B.I.

Proof. According to De�nition 4, it is obvious that
the aggregated value obtained by LZDMM operator is
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an LZN. Now, by applying the mathematical induction
method, Eq. (B.1) is easily proven in the following.

Firstly, it is assumed k = 2. Hence, if k = 2,
then S2 = f(� (1) ; � (2)) ; (� (2) ; � (1))g. According to
De�nition 4, we have:

P1Z�(1) =
�
f��1 �

P1f�
�
A�(�(1))

��
; B'(�(1))

�
;

P2Z�(1) =
�
f��1 �

P2f�
�
A�(�(1))

��
; B'(�(1))

�
;

P1Z�(2) =
�
f��1 �

P1f�
�
A�(�(2))

��
; B'(�(2))

�
P2Z�(2) =

�
f��1 �

P2f�
�
A�(�(2))

��
; B'(�(2))

�
:

The rest of equations are shown in Box B.II.
Obviously, Theorem 5 is true for k = 2. Now,
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LZDMMp (Z1; Z2; :::; Zt) =

0BB@f��1

0BB@ 1
tP
i=1

pi

0@ Y
�2St

 
tX
i=1

pif�
�
A�(�(i))

�!! 1
t!
1A1CCA ;

g��1

0BBB@
0BB@Y
�2St

0BB@
tP
i=1

�
pif�

�
A�(�(i))

�� g� �B'(�(i))
��

tP
i=1

�
pif�

�
A�(�(i))

��
1CCA
1CCA

1
t!
1CCCA
1CCCA :

Box B.III

LZDMMp (Z1; Z2; :::; Zt; Zt+1) =

0BB@f��1

0BB@ 1
t+1P
i=1

pi

0B@0@ Y
�2St+1

 
t+1X
i=1

pif�
�
A�(�(i))

�!1A 1
(t+1)!

1CA
1CCA ;

g��1

0BBBB@
0BB@ Y
�2St+1

0BB@
t+1P
i=1

�
pif�

�
A�(�(i))

�� g� �B'(�(i))
��

t+1P
i=1

�
pif�

�
A�(�(i))

��
1CCA
1CCA

1
(t+1)!

1CCCCA
1CCCCA :

Box B.IV

it is assumed that this theorem be true for k = t;
therefore, we will have the equation shown in Box B.III.
Consequently, for k=k+1, we can obtain the expression
shown in Box B.IV. Since this theorem holds for k = t,
it will also hold for k = t + 1. Finally, according to
the mathematical induction, Eq. (B.1) is true for all
k's. �
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