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1. Introduction

Abstract. Higher dimensional accuracy along with better surface finish of various
advanced engineering materials has turned out to be the prime desideratum for the present-
day manufacturing industries. To this end, Non-Traditional Machining (NTM) processes
have become quite popular because of their ability to produce intricate shape geometries on
diverse difficult-to-machine materials. To allow these processes to operate at their fullest
capability, it is often recommended to set their different input parameters at optimal levels.
Thus, in this paper, a new technique combining grey correlation method with evaluation
based on distance from average solution is applied for simultaneous optimization of three
NTM processes, i.e., photochemical machining process, laser-assisted jet electrochemical
machining process, and abrasive water jet drilling process. The derived optimal parametric
combinations outperform those as identified by other popular multi-objective optimization
techniques with respect to the considered response values. The results of analysis of variance
also identify the most influencing parameters for the said NTM processes. Finally, the
developed surface plots would help the process engineers investigate the effects of different
NTM process parameters on the corresponding grey appraisal scores.

(© 2022 Sharif University of Technology. All rights reserved.

materials, excessive tool wear, undesirable distortion of
the workpiece, formation of burr, difficulty in generat-

In traditional machining processes, material from the
workpiece is removed in the form of chips by employ-
ing cutting forces with the help of a wedge-shaped
tool. These material removal processes have numerous
drawbacks, like inability to machine hard and brittle
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ing complex shape geometries, and poor surface finish.
To overcome these limitations, they have now been
replaced by the Non-Traditional Machining (NTM)
processes [1]. Unlike the conventional machining pro-
cesses, NTM processes utilize mechanical, electrical,
thermal, and chemical energies or a combination of
them to remove material from the workpiece. The
NTM processes employing mechanical energy involve
the erosion of work material using a high-velocity
stream of fluid or abrasive particles, like Abrasive
Jet Machining (AJM), Ultrasonic Machining (USM),
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etc. However, NTM processes including Electrical
Discharge Machining (EDM), Laser Beam Machining
(LBM), etc. convert electrical energy into thermal
energy with high intensity to remove material from
the workpiece by melting and vaporization or fusion
of material. In case of chemical machining, a specific
chemical acts as an etchant that removes material
from the workpiece while other portions are covered
by a suitable mask, e.g., Photo-Chemical Machin-
ing (PCM). Recently, hybrid NTM processes includ-
ing Electro-Chemical Discharge Machining (ECDM),
Abrasive Water Jet Machining (AWJIM), etc. have be-
come quite popular due to their higher machining rate
and capability of providing higher Material Removal
Rate (MRR). These processes combine different active
energy sources in the machining zone or integrate steps
of two or more machining processes or combine different
processes within a single machining platform.

Contrary to the typical material removal mecha-
nism, in NTM processes, the cutting tool needs not be
harder than the workpiece material, or even it may not
come in contact with the workpiece. In these processes,
the material removed from the workpiece may not
be in the form of chips. As in the PCM process,
which utilizes chemical etching through a photo-resist
stencil, material is eroded from the selected areas of the
workpiece by chemical corrosion action at the atomic
level. The LBM process employs thermal energy in the
form of high frequency monochromatic light, causing
surface heating, melting, and vaporizing of the material
due to impinged photons. These NTM processes are
widely used to machine various advanced engineering
materials, such as nimonics, metal matrix composites,
stainless steel, titanium and its alloys, etc., which
have found their applications in aerospace, automobile,
pharmaceutical, biotechnological, and chemical indus-
tries [2].

Selection of the most suitable combination of the
input parameters for a specific NTM process is often
considered a challenging task due to the availability of
a large number of control parameters and conflicting
responses. To exploit the fullest machining capabilities
of these NTM processes, identification of the optimal
parametric mix is very much desirable as a slight varia-
tion in the setting of a single parameter may adversely
affect the machining process in a multifaceted way.
Operators’ knowledge or manufacturers’ handbooks are
often referred to for selection of the best parametric
combination of an NTM process for a specific work
material and shape feature combination. However,
many a time, it has been observed that the referred
parametric combination leads to a near optimal or
sub-optimal solution. For a particular NTM process,
the best parametric combination may differ from that
provided in the manufacturer’s handbook, restricting
the process to operate at its fullest potential [3,4].

Selection of the optimal parametric combination for
an NTM process is considered as a multi-response
optimization problem where a set of conflicting ob-
jectives (process outputs) needs to be simultaneously
satisfied. In this direction, Grey Relational Analysis
(GRA) [5,6], Weighted Aggregated Sum Product As-
sessment (WASPAS) [7], Multi-Objective Optimization
using Ratio Analysis (MOORA) [7], Technique for
Order of Preference by Similarity to Ideal Solution
(TOPSIS) [8], desirability function approach [9], etc.
were effectively employed by the past researchers.
Evaluation based on Distance from Average Solu-
tion (EDAS) method has recently gained popularity
in solving different Multi-Criteria Decision Making
(MCDM) problems [10-15]. It basically evaluates
the positive and negative distances of each candidate
alternative from the average solution with respect to
each criterion. However, it has several weaknesses: it
evaluates the alternatives depending on the distance
relationships among data sequences, only considering
the location links. Although the performance scores
of each alternative differ from each other, the distance
between the primary alternative and average alterna-
tive is equal and their alternative assessment results
remain the same in this approach. Thus, it is not at all
suitable to deal with varied decision-making problems
because its measurement scale is distance. This method
both considers the location relationships among data
sequences and tracks the circumstance changes among
data sequences. To overcome these problems, grey
correlation method [16,17] is integrated here with
EDAS technique for the first time to determine the
optimal parametric combinations of different NTM
processes. Grey correlation method is an extension of
GRA technique, which basically measures the degree
of correlation among data sequences in the process of
changes and development. Grey correlation method
can more accurately measure the relation between data
sequences even with a small volume of data in hand. It
employs the similarity of the curve shape as the mea-
surement scale (grey relational grade) and is capable to
highlight the estimates of the situation changes among
the data sequences. Thus, the aim of this paper is
focus on the application of the Grey Correlation-based
EDAS (GC-EDAS) approach to identifying the optimal
parametric settings of three NTM processes, i.e., PCM,
Laser-Assisted Jet Electro-Chemical Machining (LA-
JECM) and Abrasive Water Jet Drilling (AWJD)
processes while avoiding subjectivity and irrationality
in the entire selection procedure. Furthermore, the
derived optimal settings are compared with those
obtained by the past researchers to validate the cor-
rectness and soundness of the proposed approach.
The rest of this paper is structured as follows.
Section 2 presents a detailed review of the existing
literature. Section 3 presents the proposed GC-EDAS
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method. Section 4 demonstrates the application of
GC-EDAS method to parametric optimization of three
NTM processes. Lastly, Section 5 offers conclusions.

2. Literature review

Obtaining optimal combinations of different input pa-
rameters for NTM processes has been the topic of
immense interest among the researchers since several
years. A good number of mathematical approaches
have already been proposed and efficiently applied
in this direction. Recently, MCDM techniques have
become much popular, being applied to various fields
of engineering study and also to attaining optimal
parametric combinations of different NTM processes
[18-23].

While considering concentration of the etchant,
etching time, and temperature of the etchant as the
three input parameters of a PCM process, Agrawal and
Kamble [24] implemented weighted GRA approach to
obtaining the best parametric combination to optimize
MRR, Surface Roughness (SR), Undercut (Uc) and
Etch Factor (EF) of stainless-steel work material.
Prasad et al. [7] employed WASPAS and MOORA
methods to optimize different interrelated responses,
such as MRR, SR, and taper angle (TAP) during
AJM operation of nickel 233 alloy. Pressure, stand-
off distance, and average grain size were the input
parameters. Ananthakumar et al. [8] adopted Response
Surface Methodology (RSM) and TOPSIS to determine
the optimal parametric combination for plasma arc
cutting of Monel 400 superalloy, with MRR, kerf taper
at top/bottom surface and heat affected zone as the
multi-performance measures. Sidhu and Yazdani [25]
compared the relative performance of desirability func-
tion and lexicographic goal programming approaches
to attaining the optimal parametric combination of an
EDM process while machining particulate-reinforced
metal matrix composite materials. Chakraborty et al.
[26] developed Design of Experiments (DoE)-TOPSIS
method-based meta-models for identification of the
optimal parametric combinations for EDM and Wire
Electrical Discharge Machining (WEDM) processes.
Ishfaq et al. [27] investigated the influences of some
unusual parameters namely thickness of a specific
layer, workpiece orientation, pressure ratio, and wire
diameter on the performance of WEDM operation on
stainless steel material. Application of GRA technique
was observed to not only reduce the SR values on both
the layers of work material, but also minimize their
difference. Baghel et al. [28] studied the characteristics
of a hybrid diamond grinding-assisted EDM process
and endeavored to maximize MRR based on RSM
technique. Chakraborty and Das [29] presented a
multivariate quality loss function approach for simul-
taneous optimization of multiple responses of Electro-

Chemical Machining (ECM), EDM, and micro-WEDM
processes.

Applications of hybrid MCDM techniques com-
bining two or more individual methods have also gained
popularity in solving various decision-making problems
including selection of the optimal parametric mixes
for NTM processes. Rao and Yadava [30] considered
oxygen pressure, pulse width, pulse frequency, and
cutting speed as the controllable parameters in a
Nd:YAG laser cutting process, and later applied a hy-
brid Taguchi-GRA approach to determine their optimal
values for minimization of kerf width, kerf taper, and
kerf deviation. Tang and Du [31] combined GRA and
Taguchi methods to solve a parametric optimization
problem for an EDM process. It was concluded that
the proposed method could efficiently identify the
optimal parametric setting while machining of Ti-6Al-
4V alloy material. Jagadish and Ray [32] combined
GRA technique with Principal Component Analysis
(PCA) for obtaining the optimal parametric setting
of a green EDM process. The corresponding weights
of different responses were estimated based on PCA,
while GRA approach would assist in identification of
the best parametric mix for the said process. Nadda
et al. [33] experimentally investigated the influences
of different EDM process parameters such as pulse-
on time, pulse-off time, pulse current, and voltage on
three responses including MRR, tool wear rate, and
SR while machining cobalt-bonded tungsten carbide
material.  Analytic hierarchy process and TOPSIS
methods were integrated to derive the optimal settings
of the process parameters, resulting in enhanced ma-
chining performance. Considering servo voltage, wire
tension, pulse-on time, and pulse-off time as the input
parameters of a WEDM process, Das et al. [34] applied
a hybrid grey-fuzzy approach to optimize MRR and
SR values of the said process. Chakraborty et al. [35]
combined GRA technique with fuzzy logic to achieve
the best parametric mixes for AWJM, ECM, and USM
processes.

From the review of the above-cited literature,
it can be revealed that the past researchers already
made efforts in obtaining optimal parametric combina-
tions for different NTM processes using various multi-
objective optimization techniques. Based on these
previous research works, the following research gaps
are identified:

(a) Efficiency of any machining process is usually
affected by poor machining environment, result-
ing in worse response values. Hence, there is a
need for a robust mathematical approach that
can take into account the uncertainty among
data sequences while providing more accurate
solutions;

(b) The EDAS has several weaknesses; it evaluates
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the alternatives depending on the distance re-
lationships among data sequences, only takes
into account the location links, and makes it
unsuitable to deal with complex decision-making
problems.

This paper thus attempts to bridge the above-identified
research gaps as follows:

(a) Owing to the drawbacks of EDAS method, a
hybrid grey correlation-based EDAS method is
proposed to avoid/reduce subjectivity and irra-
tionality in the decision-making problems;

(b) It is efficient enough in identifying the optimal
parametric mixes of different NTM processes
while providing better response values than other
optimization techniques.

Applications of grey correlation-based MCDM tech-
niques have already been proven quite effective in
solving diverse MCDM problems [36-39]. Thus, in
this paper, a new hybrid approach combining grey
correlation method with EDAS technique is presented
to obtain the optimal parametric combinations of three
NTM processes, i.e., PCM, LA-JECM, and AWJD
processes.

3. GC-EDAS approach

3.1. Original EDAS approach

In this section, the original EDAS approach is pre-
sented for solving decision-making-based optimization
problems in real-time machining environment. Its
application consists of the following procedural steps:

Step 1: Initiation of the decision matrix (X):

11 Z12 ... Tin
To1 T22 Ton

X = [l'ij]an = »
Iml Tm2 - Tmn

where 2;; is the performance measure of the ith alter-
native against the jth criterion, m is the number of al-
ternatives, and n is the number of criteria/attributes.

Step 2: Determination of the average solution with
respect to all the criteria:

X =[X)],., (G =1,2..n), (1)
where,
X, = M(j —1,2,..,n).
m

Step 3: Calculation of the Positive Distance from
the Average (PDA) and Negative Distance from
the Average (NDA) based on the type of quality
characteristic (beneficial/non-beneficial) considered:

PDA =[PDAj], . ..., (2)

NDA=[NDAy),, .. (3)

If the jth response is of larger-the-better type (bene-
ficial), then we have:

max(O, (Qiij — yj))

PDA; = = , (4)
J X]
NDA,, = max(0, (%(j — ) (5)

J

If the jth response is of smaller-the-better type (non-
beneficial), then we have:
max(O, (Y] — ZE”))

PDA;; = = : (6)
J

NDA,, = max(0, (v, = X)) M)
X.

J

Step 4: Calculation of the weighted sum of PDA and
NDA.

1 n
SP, = — ; iiy
- g w;PDA;; (8)
Jj=1
SN, =L § w; NDA;; 9)
T m j=1 ’ v

Step 5: Normalization values for SP and SN:

SP;
NSp = —221 10
maxi(SPi) ( )
SN;
NSN;=1— ————. 11
5 ¢ maxl(SNl) ( )

Step 6: Calculation of the Appraisal Scores (AS) for
all the alternatives:

AS; = %(Nspi + NSN,), (12)

where 0 < AS; < 1. A higher value of AS for a
particular alternative indicates its preference over the
other alternatives.

3.2. Proposed GC-EDAS approach

This is quite similar to the original EDAS method.
Both start with the measurement of the positive dis-
tance and negative distance from the average. Their
difference lies in the integration of grey correlation
method to calculate Grey Correlation Coefficients
(GCC) for the positive distance from the average and
negative distance from the average. The steps for this
approach after estimation of PDA and NDA values are
explained below:
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Step 1: Computation of GCC values for the PDA
(GP) and NDA (GN):

PDAmin + g-PDAmax
PDA .« — PDA;;| +€PDA,...
J

GP,; = (13)

NDAmin + £ N-DAmax
INDAmax — NDAj| + & NDApay

GN;; = (14)
where ¢ is the distinguishing or identification coeffi-
cient (usually £ = 0.5).

Step 2: The average weighted GCC values for the
positive and negative distances can now be calculated
as follows:

1 n
GCP, = — GP;;
P = Zw]GPU, (15)
j=1
1 n
GCN; = — ‘GN;;, 16
m ;w] J (16)

where w; is the weight (relative importance) of the
jth response.

Step 3: Normalization of the average weighted GCC
values:
GCP;

NGCOP = ——————
Ge ¢ maxi(GCPi)’

(17)

GCN;

NGCN;=1— —————.
max;(GCN;)

(18)
Step 4: Calculation of the Grey Appraisal Scores
(GAP) for all the candidate alternatives:

1
GAP, = (NGCP; + NGON), (19)

where 0 < GAP; < 1. A higher value of GAP for
a particular alternative indicates its preference over
the others for the aforementioned application.

The proposed GC-EDAS method has several advan-
tages as follows:

(a) Its application requires less information to ana-
lyze the behavior of an unknown system and is
capable of obtaining an unbiased and consistent
point estimator;

(b) Tts takes into consideration both distance relation-
ships and similarity correlation index among data
sequences, thereby resulting in more accurate
solutions.

The step-by-step application procedure of GC-EDAS
approach is pictorially presented in a flowchart, as
shown in Figure 1.

Selection of process parameters and responses
Identify the critical process parameters
Select the performance measures (responses)

Design of experiments
Select proper experimental design plan

Data collection
Perform experimental trial runs based on the design plan
Record response values

GC-EDAS approach
Generation of decision matrix

Determination of average solution for each criterion

Calculation of positive and negative distances from the average
Computation of grey correlation coefficient for positive and negative distances

Estimation of average grey correlation coefficients

Normalization of average weighted grey correlation coeflicients
Calculation of grey appraisal score

Result and analysis
Obtain the optimal combination of process parameters
Identify the most influencing process paramete

Figure 1. Flowchart of the GC-EDAS approach to parametric optimization of Non-Traditional Machining (NTM)

processes.
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4., Parametric optimization of NTM processes
using GC-EDAS approach

4.1. PCM process

Agrawal and Kamble [24] applied weighted GRA
technique as a multi-objective optimization tool in
a PCM operation on stainless steel (SS304) material
considering ferric chloride as the etchant to attain
accurate dimensions of the workpiece with better shape
features. Employing Taguchi’s Ls7 orthogonal array,
27 experiments were performed, taking concentration
of the etchant, time of etching, and temperature of
the etchant as the input parameters. A three-level
variation for each of those parameters was considered
based on the available settings of the PCM setup. The
considered process parameters along with their levels

are provided in Table 1. On the other hand, SR (in
pm), Uc (in mm), MRR (in mm?/min), and EF were
the responses. The SR values were measured using
Mitutoyo SR tester, and Uc was estimated as the differ-
ence between the outer and inner radii of the machined
hole. The MRR was obtained as the volume (depth of
cut x area under etching) of material removed with re-
spect to the considered machining time (in min), while
EF was estimated taking the ratio of depth of cut to
Uc. The detailed experimental design plan along with
the measured responses is given in Table 2. Among the
four responses, MRR is the only larger-the-better type
of quality characteristic, while the remaining three are
smaller-the-better types of characteristics.

Based on the type of the response and employing
Eqs. (1)—(7), the PDA and NDA are now calculated,

Table 1. Process parameters with levels for the Photo-Chemical Machining (PCM) process [24].

Process parameter Unit Level 1 Level 2 Level 3
Concentration of the etchant (A) g/l 650 750 850
Time of etching (B) min 30 40 50
Temperature of the etchant (C) °C 50 60 70

Table 2. Experimental details for Photo-Chemical Machining (PCM) the process [24].

Run A B C SR Uc MRR EF
1 650 30 50 1.683 0.0270 3.140 1.48
2 650 30 60 0.741 0.0473 6.044 1.62
3 650 30 70 0.707 0.0623 6.280 1.52
4 650 40 50 1.066 0.0304 3.297 1.41
5 650 40 60 2.287 0.0413 4.553 1.40
6 650 40 70 0.573 0.0523 7.928 1.93
7 650 50 50 0.747 0.0930 7.614 1.03
8 650 50 60 0.980 0.0944 7.771 1.04
9 650 50 70 1.402 0.0573 7.928 1.76
10 750 30 50 0.877 0.0677 5.338 1.00
11 750 30 60 1.354 0.0736 7.693 1.33
12 750 30 70 0.970 0.0964 8.870 1.17
13 750 40 50 1.155 0.0772 6.410 1.04
14 750 40 60 0.984 0.0821 7.879 1.14
15 750 40 70 0.202 0.0710 8.910 1.71
16 750 50 50 0.968 0.0770 6.672 1.10
17 750 50 60 1.082 0.0725 7.457 1.31
18 750 50 70 2.258 0.0850 7.693 1.15
19 850 30 50 0.864 0.0811 7.771 1.22
20 850 30 60 1.006 0.0670 5.479 1.47
21 850 30 70 0.884 0.0827 8.478 1.30
22 850 40 50 0.859 0.0661 5.700 1.10
23 850 40 60 1.042 0.0460 6.280 1.73
24 850 40 70 1.615 0.0462 6.829 1.89
25 850 50 50 0.098 0.0691 7.693 1.41
26 850 50 60 0.117 0.0810 9.184 1.44
27 850 50 70 0.218 0.0940 9.263 1.40
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Table 3. Positive and negative distances from the average for the Photo-Chemical Machining (PCM) process.

PDA NDA
Run SR Uc MRR EF SR Uc MRR EF
1 0 0.6040 0 0.0771 0.6994 0 0.5494 0
2 0.2518 0.3063 0 0.1790 0 0 0.1327 0
3 0.2861 0.0863 0 0.1062 0 0 0.0988 0
4 0 0.5542 0 0.0261 0.0764 0 0.5269 0
5 0 0.3943 0 0.0189 1.3093 0 0.3466 0
6 0.4214 0.2330 0.1377  0.4046 0 0 0 0
7 0.2457 0 0.0926 0 0 0.3639 0 0.2504
8 0.0104 0 0.1151 0 0 0.3845 0 0.2431
9 0 0.1596  0.1377  0.2809 0.4157 0 0 0
10 0.1144 0.0071 0 0 0 0 0.2340 0.2722
11 0 0 0.1039 0 0.3672  0.0794 0 0.0321
12 0.0205 0 0.2728 0 0 0.4138 0 0.1485
13 0 0 0 0 0.1663 0.1322 0.0802 0.2431
14 0.0064 0 0.1306 0 0 0.2041 0 0.1704
15 0.7960 0 0.2786  0.2445 0 0.0413 0 0
16 0.0226 0 0 0 0 0.1293 0.0426 0.1995
17 0 0 0.0701 0 0.0926  0.0633 0 0.0466
18 0 0 0.1039 0 1.28 0.2466 0 0.1631
19 0.1276 0 0.1151 0 0 0.1894 0 0.1121
20 0 0.0174 0 0.0698 0.0158 0 0.2138 0
21 0.1074 0 0.2166 0 0 0.2129 0 0.0539
22 0.1326  0.0306 0 0 0 0 0.1821  0.1995
23 0 0.3254 0 0.2590 0.0522 0 0.0988 0
24 0 0.3224 0 0.3755 0.6308 0 0.0200 0
25 0.9010 0 0.1039  0.0261 0 0.0134 0 0
26 0.8819 0 0.3179  0.0480 0 0.1879 0 0
27 0.7799 0 0.3292  0.0189 0 0.3786 0 0

as shown in Table 3. The corresponding GCC val-
ues for the positive and negative distances from the
average are then estimated using Eqgs. (13) and (14),
as presented in Table 4. The weights for all the four
responses are considered to be the same as it is assumed
that they are equally important from the real-time
machining point of view. Utilizing Egs. (15) and (16),
the average weighted GCC values are computed, and
they are further normalized within a range of 0 to
1 using Eqgs. (17) and (18). The average weighted
GRC and their normalized values are also presented in
Table 4. Finally, the GAP for each experimental run
(alternative) is calculated based on Eq. (19), as given
in Table 4. From this table, it can be clearly noticed
that the experimental trial number 15 has the highest
GAP score of 0.6934 and the corresponding parametric
combination of A;BsCs3 is identified to be the best
among all the 27 trials, followed by the experiment

o 0.60

i 0.55

T 0507

25 o N

2 Time of etching

> 0.40 I Concentration of etchant Temperature of etchant
1

U 0.35

Bl1 B2 B3 -~ Cl C2 C3
Input process parameters

Al A2 A3

Figure 2. Response graph for Grey Appraisal Score
(GAP) for the Photo-Chemical Machining (PCM) process.

runs 26 and 6 with GAP scores of 0.6919 and 0.6844,
respectively.

The response table and the corresponding re-
sponse plot are provided in Table 5 and Figure 2,
respectively. They are obtained while calculating the
average GAP scores at the corresponding operating
levels of the considered PCM process. Based on
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Table 4. Grey Correlation Coefficient (GCC) values for positive and negative distances, average weighted and normalized

GCC values, and GAP scores for the Photo-Chemical Machining (PCM) process.

GP GN GCP GCN NGCP NGCN GAP

Run SR Uc MRR EF SR Uc MRR EF score
1 0.3333 1 0.3333 0.3818  0.5177 0.3333 03333 0.5121 0.5461 0.7909  0.0893  0.4401
2 0.4006 0.5036 0.3333 0.4728  0.3333 0.3333 0.3973 0.3333  0.4208 0.3493 0.6638  0.4174  0.5406
3 0.4228 0.3684 0.3333 0.4040  0.3333 0.3333 0.3788 0.3333  0.3822 0.3447 0.5002  0.4252  0.5077
4 0.3333 0.8583 0.3333 0.3483  0.3468 0.3333 0.9242 0.3333  0.4683 0.4844 0.7233 01921  0.4577
5 0.3333 0.5002 0.3333 0.3440 1 0.3333 05753 0.3333  0.4002 0.5605 0.6181  0.0653 0.3417
6 0.4843 0.4487 0.4622 1 0.3333 0.3333 0.3333 0.3333  0.5088 0.3333 0.0248  0.4441  0.6844
7 0.4074 0.3333 0.4103 0.3333  0.3333 0.8058 0.3333 0.8618  0.3711 0.5836 0.5731  0.0268  0.3000
8  0.3350 0.3333 0.4347 0.3333  0.3333 0.8758 0.3333 0.8238  0.3593 0.5016 0.5540  0.0134  0.2842
9 0.3333 0.4046 0.4622 0.6205  0.4228 0.3333 0.3333 0.3333  0.4552 0.3557 0.7020  0.4068  0.5549
10 0.3642 0.3360 0.3333 0.3333  0.3333 0.3333 0.4655 1 0.3417 0.5330 0.5277 0.1 111 0.3194
11 0.3333 0.3333 0.4222 0.3333  0.4100 0.3822 0.3333 0.3617  0.3555 0.3718 0.5401  0.3799  0.4645
12 0.3385 0.3333 0.7448 0.3333  0.3333 1 0.3333 0.5239  0.4375 0.5476 0.6757  0.0867 0.3812
13 0.3333 0.3333 0.3333 0.3333  0.3642 0.4236 0.3693 0.8238  0.3333 0.4952 0.5148  0.1742  0.3445
14 0.3340 0.3333 0.4532 0.3333  0.3333 0.4966 0.3333 0.5710  0.3637 0.4338 0.5617  0.2766  0.4191
15 0.8110 0.3333 0.7647 0.5582  0.3333 0.3571 0.3333 0.3333  0.6168 0.3393 0.9526  0.4342  0.6934
16 0.3390 0.3333 0.3333 0.3333  0.3333 04210 0.3515 0.6516  0.3347 0.4394 0.5170  0.2673  0.3921
17 0.3333 0.3333 0.3885 0.3333  0.3408 0.3712 0.3333 0.3763  0.3471 0.3577 0.5361  0.4035  0.4608
18 0.3333 0.3333 0.4222 0.3333  0.9572 0.5531 0.3333 0.5549  0.3555 0.5996  0.5491 0 0.2746
19 0.3681 0.3333 0.4347 0.3333  0.3333 0.4797 0.3333 0.4595  0.3674 0.4015 0.5673  0.3305  0.4489
20 0.3333 0.3309 0.3333 0.3767  0.3360 0.3333 0.4501 0.3333  0.3458 0.3632 0.5340  0.3943  0.4642
21 0.3621 0.3333 0.5937 0.3333  0.3333 0.5073 0.3333 0.3840  0.4056 0.3895 0.6264  0.3504  0.4884
22 0.3696 0.3450 0.3333 0.3333  0.3333 0.3333 0.4278 0.6516  0.3453 0.4365 0.5333  0.2720  0.4026
23 0.3333 0.5201 0.3333 0.5816  0.3424 0.3333 0.3788 0.3333  0.4421 0.3470 0.6828  0.4214  0.5521
24 0.3333 0.5175 0.3333 0.8742  0.4910 0.3333 0.3416 0.3333  0.5146 0.3748 0.7947  0.3749  0.5848
25 1 0.3333 0.4222 0.3483  0.3333  0.3407 0.3333 0.3333  0.5260 0.3352 0.8123  0.4410  0.6267
26 0.9592 0.3333 0.9356 0.3619  0.3333 0.4781 0.3333 0.3333  0.6475 0.3695 1 0.3837  0.6919
97 0.7880 0.3333 1 0.3440  0.3333 0.8546 0.3333 0.3333  0.6164 0.4637 0.9519  0.2268  0.5893

Table 5. Response table for GAP scores for the Photo-Chemical Machining (PCM) process.

Process parameter Level Max-min Rank
Level 1 Level 2 Level 3

Concentration of the etchant 0.4568 0.4176 0.5388 0.1212 1

Time of etching 0.4506 0.4978 0.4648 0.0472 3

Temperature of the etchant 0.4147 0.4698 0.5287 0.1140 2

Table 6. ANOVA results of the Photo-Chemical Machining (PCM) process.

Source DoF AdjSS AdjMS F value Contribution (%)
Concentration of the etchant 2 0.05904  0.029520 14.52 41.11
Time of etching 2 0.01319  0.006594 3.24 9.18
Temperature of the etchant 2 0.03073  0.015366 7.56 21.40
Error 20 0.04066  0.002033 - 28.31
Total 26 0.14362 - - -

the average values of GAP score, the best operating
levels of the PCM process are identified in Table 5,
as indicated in bold face. Thus, in order to explore
the fullest machining potential of the PCM process,
the optimal parametric combination needs to be set as
concentration of the etchant = 850 g/1, time of etching
= 40 min, and temperature of the etchant = 70°C,
which can also be represented as A3BsC3. The max-
min column in Table 5 identifies concentration of the

etchant as the most influencing PCM process parame-
ter, followed by temperature of the etchant, which can
be validated based on their steep slopes in Figure 2.
Moreover, the analysis of variance (ANOVA) results,
as provided in Table 6, also confirm concentration
of the etchant as the most influencing PCM process
parameter with a contribution of 41.11% in attaining
the GAP scores, followed by temperature of the etchant
(21.40%).
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Table 7. Predicted response values for the Photo-Chemical Machining (PCM) process.

Optimization approach SR Uc MRR EF
GC-EDAS approach (A3 B3Cs) 0.187 0.0615 12.931 1.6525
Weighted GRA technique (A;B>Cj3) [24] 0.202 0.0710 8.91 1.7
Improvement (%) 32.13 68.31 27.82 14.65

Thus, from the above analysis, it can be revealed
that the experiment number 15 (A2 B2C3) is the best
combination of process parameters, while A3BsC3 is
observed to be the most favorable parametric mix for
the considered PCM process based on the response
graph. The parametric combination derived from the
response graph differs from that of the experiment
trial 15 only with respect to concentration of the
etchant. It is due to the reason that the average
value of GAP score for experiments with level 3 is
more than that of experiments with level 2. Thus,
there is a greater chance of achieving higher GAP
score at level 3 than that at level 2. Hence, it is
always recommended to apply the said PCM process
in an optimal parametric setting of A3BsC3 instead of
Ay ByC3 to ensure enhanced machining performance.
Agrawal and Kamble [24] observed that with increment
in concentration of the etchant, both MRR and SR (the
most important responses from the practical machining
point of view) would tend to increase. The MRR
value increased from 3.8465 mm? /min to 8.71mm?/min
and SR increased from 3.184 pum to 5.847 pm up
to an etchant concentration of 650 g/l. However, a
further increase in etchant concentration would cause
a decrease in SR up to 1.2 pm at 850 g/l. Higher
concentration of etchant would be responsible for the
availability of a larger number of ferric ions, causing an
increase in reaction rate. The etchant would become
more viscous at a higher concentration affecting both
MRR and SR values. On the other hand, applying
weighted GRA technique, Agrawal and Kamble [24]
obtained the optimal parametric mix as A, BoC3. Now,
in order to validate the superiority of the new paramet-
ric combination (A3BsC3) over A BaCs3, the following
regression equations are established considering the
main and interactive effects of various PCM process
parameters:

SR =—59+40.0207 x A +0.108 x B — 0.066 C
—0.000016 x A% —0.00145 x B*> —0.00113
x C? —0.000208 x A x B 4 0.000142
X Ax C+0.00244 x B x C, (20)
Uc=—0.975 + 0.002682 x A —0.00347 x B

+0.00184 x C' — 0.000001 x A% + 0.000168

x B? 4 0.000014 x C* — 0.000008 x A
x B—0.000007 x A x C' —0.000057 x Bx C, (21)
MRR = —66.2+0.1467 x A — 0.151 x B + 0.469
x C —0.000070 x A +0.00822 x B?
+0.00063 x C?—0.000286 x A x B—0.0003
x AxC —0.00373 x B x C, (22)
EF =12.48 — 0.0369 x A 4+ 0.0389 x B + 0.050
x C +0.000024 x A% —0.001639 x B?
—0.000189 x C* 4+ 0.000088 x A x B

—0.000036 x A x C'40.0003 x B x C. (23)

Based on these regression equations, a comparison
between the predicted response values derived in the
obtained optimal parametric combination and that of
Agrawal and Kamble [24] is presented in Table 7. As
demonstrated in this table, the optimal parametric mix
obtained using the proposed GC-EDAS approach is
superior to that of Agrawal and Kamble [24], resulting
in improvements of 32.13%, 68.31%, 27.82%, and
14.65% in the values of SR, Uc, MRR, and EF, re-
spectively. A particular parametric optimization prob-
lem can be solved using different approaches having
varying mathematical complexities. The treatments of
those approaches are also vulnerable to the problem
characteristics. Hence, it is always recommended that
the achievable response values in different parametric
settings for the considered PCM process are compared
and the method that provides the best mix is identified.

Another regression model relating the input PCM
process parameters to GAP score is developed and
based on this model, the corresponding surface plots
are generated in Figure 3. These plots would assist
the process engineer in determining the corresponding
GAP score for any combination of PCM process pa-
rameters.

GAP score =10.28 — 0.0206 x A — 0.166 x B
—0.071 x C +0.000008 x A2 —0.000401

x B%40.000019 x C?+0.000269 x A
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Figure 3. Surface plots showing the effects of different Photo-Chemical Machining (PCM) process parameters on GAP

score.

Table 8. Process parameters with their levels for the Laser-Assisted Jet Electro-Chemical Machining (LA-JECM) process

[40].
Process parameter Unit Levell Level2 Level3 Level 4
Supply voltage (A) A% 80 120 160 200
Electrolyte concentration (B) g/l 20 40 60 80
Inter-electrode gap (C) Mm 2 3 4 5
Duty cycle (D) % 60 70 80 90
x B+0.000102x A x C'+0.00242 x B better quality characteristic, and TAP and SR are the
smaller-the-better quality characteristics. Based on
x C'—0.000003x A x B x C. (24) Taguchi’s Ly orthogonal array design plan, Malik and

4.2. LA-JECM process

Malik and Manna [40] developed a hybrid LA-JECM
process for micro-drilling operation on Inconel 718 work
material. Supply voltage, electrolyte concentration,
inter-electrode gap, and duty cycle were considered
as the four input parameters along with four level
variations in each, as shown in Table 8. To obtain the
optimal parametric combination for the said LA-JECM
process, Malik and Manna [40] applied GRA technique
to simultaneous optimization of MRR (in mg/min),
TAP (in degree), and SR (in pm) as the responses.
Among those responses, MRR is the only larger-the-

Manna [40] conducted 16 experiments and measured
the corresponding response values, as provided in Table
9. Like the previous example, for the LA-JECM pro-
cess, the PDA, NDA | and the corresponding GCC val-
ues are also computed in Table 10. Table 11 shows the
average weighted and normalized GCC values as well
as the related GAP scores for the considered LA-JECM
process. With the highest GAP score of 0.7935, the ex-
perimental run number 14 (A4B>C3D;) is established
as the best trial among the 16 conducted experiments.

Table 12 and Figure 4 present the corresponding
response table and response graph, respectively, based
on the estimated GAP scores. Thus, to operate the LA-
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Table 9. Experimental details of the Laser-Assisted Jet Electro-Chemical Machining (LA-JECM) process [40].

Run A B C D MRR TAP SR
1 80 20 2 60 1.42 3.83 7.14
2 80 40 3 70 141 5.52 5.52
3 80 60 4 80 1.71 5.56 8.58
4 80 80 5 90 1.82 12.47 11.67
5 120 20 3 80 2.52 6.69 8.82
6 120 40 2 90 4.85 7.90 10.21
7 120 60 5 60 0.96 7.26 8.27
8 120 80 4 70 2.51 6.24 7.20
9 160 20 4 90 3.09 7.11 9.91
10 160 40 5 80 1.90 8.66 9.62
11 160 60 2 70 4.93 6.87 9.02
12 160 80 3 60 3.81 5.46 8.67
13 200 20 5 70 1.47 7.30 6.22
14 200 40 4 60 2.67 5.57 5.01
15 200 60 3 90 6.10 7.85 11.71
16 200 80 2 80 6.59 10.66 11.05

Table 10. Positive and negative distances from the average along with their Grey Correlation Coefficient (GCC) values
for the Laser-Assisted Jet Electro-Chemical Machining (LA-JECM) process.

Run PDA NDA GP GN
MRR TAP SR MRR TAP SR MRR TAP SR MRR TAP SR
1 0 0.4669 0.1759 0.5243 0 0 0.3333 1 0.4617 0.6876 0.3333 0.3333
2 0 0.2317 0.3629 0.5276 0 0 0.3333 0.4981 0.7818 0.6923 0.3333 0.3333
3 0 0.2261 0.0097 0.4271 0 0 0.3333 0.4922 0.3385 0.5745 0.3333 0.3333
4 0 0 0 0.3903 0.7357 0.3470 0.3333 0.3333 0.3333 0.5407 1 0.9744
5 0 0.0688 0 0.1558 0 0.0180 0.3333 0.3697 0.3333 0.3936 0.3333 0.3451
6 0.6248 0 0 0 0.0996 0.1785 0.5088 0.3333 0.3333 0.3333 0.3664 0.5038
7 0 0 0.0454 0.6784 0.0105 0 0.3333 0.3333 0.3591 1 0.3365 0.3333
8 0 0.1314 0.1690 0.1591 0 0 0.3333 0.4104 0.4548 0.3951 0.3333 0.3333
9 0.0352 0.0104 O 0 0 0.1438 0.3399 0.3383 0.3333 0.3333 0.3333 0.4583
10 0 0 0 0.3635 0.2054 0.1104 0.3333 0.3333 0.3333 0.5186 0.4096 0.4216
11 0.6516 0.0438 O 0 0 0.0411 0.5206 0.3555 0.3333 0.3333 0.3333 0.3615
12 0.2764 0.2400 O 0 0 0.0007 0.3933 0.5071 0.3333 0.3333 0.3333 0.3338
13 0 0 0.2821 0.5075 0.0161 O 0.3333 0.3333 0.6016 0.6650 0.3383 0.3333
14 0 0.2247 0.4217 0.1055 O 0 0.3333 0.4908 1 0.3719 0.3333 0.3333
15 1.0436 O 0 0 0.0926 0.3516 0.7863 0.3333 0.3333 0.3333 0.3639 1
16 1.2077 O 0 0 0.4838 0.2754 1 0.3333 0.3333 0.3333 0.5935 0.6977
0.70
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Figure 4. Response graph for GAP score for the Laser-Assisted Jet Electro-Chemical Machining (LA-JECM) process.
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Table 11. Average weighted and normalized Grey Correlation Coefficient (GCC) values as well as the GAP score for the
Laser-Assisted Jet Electro-Chemical Machining (LA-JECM) process.

Run GCP GCN NGCP NGCN GAP
score

1 0.5983 0.4514 0.9840 0.4615 0.7228
2 0.5377 0.4530 0.8844 0.4597 0.6720
3 0.3880 0.4137 0.6382 0.5065 0.5723
4 0.3333 0.8384 0.5482 0 0.2741
5 0.3454 0.3574 0.5681 0.5738 0.5709
6 0.3918 0.4012 0.6444 0.5215 0.5829
7 0.3419 0.5566 0.5623 0.3361 0.4492
8 0.3995 0.3539 0.6570 0.5778 0.6174
9 0.3372 0.3750 0.5546 0.5527 0.5536
10 0.3333 0.4499 0.5482 0.4634 0.5058
11 0.4032 0.3427 0.6630 0.5912 0.6271
12 0.4113 0.3335 0.6764 0.6022 0.6393
13 0.4227 0.4455 0.6952 0.4686 0.5819
14 0.6080 0.3462 1 0.5871 0.7935
15 0.4843 0.5657 0.7965 0.3252 0.5608
16 0.5556 0.5415 0.9137 0.3541 0.6339

Table 12. Response table for GAP scores for the Laser-Assisted Jet Electro-Chemical Machining (LA-JECM) process.

Process parameter Level 1 Level 2 Level 3 Level4 Max-min Rank
Supply voltage 0.5603 0.5551 0.5815 0.6425 0.0874 4
Electrolyte concentration 0.6073 0.6386 0.5524 0.5412 0.0974 3
Inter-electrode gap 0.6417 0.6108 0.6342 0.4528 0.1889 1
Duty cycle 0.6512 0.6246 0.5707 0.4929 0.1583 2

Table 13. ANOVA results for the Laser-Assisted Jet Electro-Chemical Machining (LA-JECM) process.

Source DoF AdjSS AdjMS F-value contribution (%)
Supply voltage 3 0.0193 0.0064 6.28 9.58
Electrolyte concentration 3 0.0254 0.0084 8.26 12.61
Inter-electrode gap 3 0.0951 0.0317 30.94 47.22
Duty cycle 3 0.0585 0.0195 19.05 29.07
Error 3 0.0030 0.0010 - 1.52
Total 15 0.2015 - - -

JECM process at its fullest potential, the parametric
combination should be maintained as supply voltage
= 200 V, electrolyte concentration = 40 g/l, inter-
electrode gap = 2 mm, and duty cycle = 60%, which
can be represented as Ay4B;CiDy. It only differs
from the previously obtained parametric setting of
A4B>C3 D1 with respect to inter-electrode gap. In the
GC-EDAS method-based combination, the lower value
of inter-electrode gap (2 mm) is recommended. Malik
and Manna [40] studied the effects of inter-electrode
gap on the responses of the considered LA-JECM
process and observed that the maximum value of MRR
could be achieved at a lower inter-electrode gap. Hole
taper would exhibit a decreasing trend pattern up to
3 mm inter-electrode gap and, then, start increasing.

On the other hand, SR value would be low at the
lower inter-electrode gap and begin increasing upon
an increase in the inter-electrode gap. The max-min
column of Table 12 recognizes the inter-electrode gap as
the most dominant process parameter in determination
of GAP score. It is also supported by the ANOVA
results, as shown in Table 13, which depicts that
the inter-electrode gap has the highest contribution
of 47.2% to estimating GAP scores. However, in
the same process, applying GRA technique, Malik
and Manna [40] obtained the optimal parametric mix
as A1B2C2D4, which differed from the GC-EDAS
method-based parametric combination with respect to
supply voltage and inter-electrode gap.

Now, the corresponding regression models high-
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Table 14. Predicted responses for the Laser-Assisted Jet Electro-Chemical Machining (LA-JECM) process.

Optimization approach MRR TAP SR

GC-EDAS approach (A4BsCy D) 5.8952 4.2504 5.544
GRA technique (A1 B2C>D1) [40] 5.4938 5.342 8.5952
Improvement (%) 7.30 20.43 35.49

lighting the relationships between the LA-JECM
process parameters and responses are developed in
Eqs. (25)—(27). Based on these equations, values of
the three responses are computed at the obtained
parametric combination and are compared with those
of Malik and Manna [40] in Table 14. Improvements
of 7.30%, 20.43%, and 35.49% in MRR, TAP, and SR
are respectively observed at the optimal parametric
mix of A4ByC1D; against those as determined in
the parametric combination of A;B>CyD;. Lastly,
a regression model relating the LA-JECM process
parameters to GAP score is also developed. The
corresponding surface plots, as portrayed in Figure 5,
present the variations in GAP scores with respect to
the considered LA-JECM process parameters.

MRR = —7.94—0.0343 x A +0.1467 x B — 3.47x
C +0.329 x D + 0.000230 x A? —0.000203
x B? 4+0.235 x C* — 0.00121 x D?
—0.000081 x A x B —0.00221 x A
x C 4 0.000145 x A x D + 0.0226
x B x C —0.00227 x B x D, (25)
TAP =—22.7-0.027 x A—0.051 x B —82
x C +1.01 x D +0.00050 x A% 4+ 0.000714
x B? +1.25 x C? — 0.0041 x D?
+0.0000610 x A x B —0.0138 x A
x C' —0.00098 x A x D +0.041 x B

x C'—0.0032 x B x D, (26)

SR =71.5+0.396 x A —0.586 x B+ 11.0

x C'—2.58 x D —0.00157 x A + 0.000228

x B? —0.62 x C? +0.0140 x D? + 0.000560

x A x B —0.0107 x A x C 4 0.000303

X Ax D —0.099 x BxC+0.0110

x Bx D, (27)

GAP score =18.73 + 0.06466 x A — 0.3085 x B

+3.777 x C — 0.6433 x D — 0.000550 x A*

—0.000369 x B* —0.5763 x C* + 0.002653

x D? +0.000800 x A x B+0.01339 x A

x C'+0.000440 x A x D — 0.01037 x B

x C'+0.004703 x B x D +0.000124 x B

x C'x D —0.000003x Ax BxCxD. (28
4.3. AWJID process
Taking water jet pressure, the stand-off distance,
and abrasive mass flow rate as the input process
parameters, Nair and Kumanan [41] performed AWJD
operation on Inconel 617 superalloy material. Three
level variations were considered for each of the AWJD
process parameters, as shown in Table 15. Implement-
ing Taguchi’s Lg orthogonal array as the experimental
design plan, Nair and Kumanan [41] performed nine ex-
periments considering multiple responses namely Drill
Rate (DR) (in mm/sec), Depth Averaged Radial Over-

cut (DARO), Top Overcut (TOC) (in mm), Bottom
Overcut (BOC) (in mm), Top Circularity (TC) (in

Table 15. Process parameters with levels for the Abrasive Water Jet Drilling (AWJD) process [41].

Process parameter Unit Level 1 Level 2 Level 3
Water jet pressure (A) MPa 250 300 350
Standoff distance (B) Mm 1.5 3.0 4.5
Abrasive mass flow rate (C) kg/min 0.24 0.34 0.44
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Figure 5. Surface plots showing the effects of Laser-Assisted Jet Electro-Chemical Machining (LA-JECM) process

parameters on GAP score.

mm), Bottom Circularity (BC) (in mm), TAP (in de-
gree), and SR (in pm). Amongst those eight responses,
DR is the sole larger-the-better characteristic, while the
remaining seven are smaller-the-better characteristics.
The experimental design plan along with the responses
for all the nine experiments is provided in Table 16.
Employing multi-objective GRA technique, Nair and
Kumanan [41] derived the most preferred parametric
combination of the AWJID process as A3B,Cy (water

jet pressure = 350 MPa, stand-off distance = 3 mm,
and abrasive mass flow rate = 0.24 kg/min). This
parametric optimization problem is now solved using
the proposed GC-EDAS approach.

Now, following the same procedural steps of the
previous two examples, the corresponding values of
PDA and NDA are calculated in Table 17. The
GCC values for the positive and negative distances
are then estimated in Table 18. Based on these
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Table 16. Experimental details of the Abrasive Water Jet Drilling (AW JD) process [41].
Run A B C DR DARO TOC BOC TC BC TAP SR

1 250 1.5 0.24 0.317 0.376 0.385 0.234 0.0416 0.0249 0.868 2.256

2 250 3.0 0.34 0.377 0.397 0.429 0.225 0.0324 0.0288 1.172 2.904

3 250 4.5 0.44 0.400 0.390 0.434 0.304 0.0376 0.0235 0.748 2.150

4 300 1.5 0.34 0.426 0.409 0.394 0.278 0.0294 0.0301 0.665 2.460

5 300 3.0 0.44 0.513 0.424 0.425 0.326 0.0324 0.0215 0.567 1.950

6 300 4.5 0.24 0.408 0.394 0.401 0.254 0.0381 0.0282 0.842 2.611

7 350 1.5 0.44 0.541 0.444 0.400 0.332 0.0189 0.0202 0.390 2.085

8 350 3.0 0.24 0.444 0.408 0.383 0.227 0.0421 0.0253  0.897  2.009

9 350 4.5 0.34 0.606 0.406 0.409 0.293 0.0624 0.0224 0.667 2.119

Table 17. Positive and negative distances from the average for the Abrasive Water Jet Drilling (AWJD) process.
PDA NDA

Run DR DARO TOC BOC TC BC TAP SR DR DARO TOC BOC TC BC TAP SR
1 0 0.0724 0.0533 0.1484 0 0.0036 0 0.0117 0.2924 0 0 0 0.1179 0 0.1461 0
2 0 0.0206 O 0.1812 0.1293 0 0 0 0.1585 0 0.0549 0 0 0.1525 0.5475 0.2722
3 0 0.0378 0 0 0 0.0596 0.0123 0.0581 0.1071 0 0.0672 0.1063 0.0105 0 0 0
4 0 0 0.0311 0 0.2099 0 0.1219 0 0.0491 0.0090 O 0.0117 0 0.2045 0 0.0777
5 0.1451 0 0 0 0.1293 0.1396 0.2513 0.1457 0 0.0461 0.0451 0.1864 0 0 0 0
6 0 0.028 0.0139 0.0756 0 0 0 0 0.0893 0 0 0 0.0239 0.1285 0.1118 0.1438
7 0.2076 0 0.0164 0 0.4921 0.1916 0.485 0.0866 0 0.0954 0 0.2082 0 0 0 0
8 0 0 0.0582 0.1739 0 0 0 0.1199 0.0089 0.0066 0 0 0.1314 0.0124 0.1844 0
9 0.3527 0 0 0 0 0.1036 0.1193 0.0717 0 0.0016 0.0057 0.0663 0.6769 0 0 0

Table 18. Grey Correlation

Drilling (AWJD) process.

Coefficient (GCC) values for positive and negative distances for the Abrasive Water Jet

GP GN
Run DR DARO TOC BOC TC BC TAP SR DR DARO TOC BOC TC BC TAP SR

1 0.3333 1 0.8554 0.7344 0.3333 0.3375 0.3333 0.3522 1 0.3333 0.3333 0.3333 0.3771 0.3333 0.4055 0.3333
2 0.3333 0.4112 0.3333 0.4041 0.3333 0.3333 0.3333 0.5219 0.3333 0.7321 0.3333 0.3333 0.6628 1 1

3 0.3333 0.5116 0.3333 0.3333 0.3333 0.4205 0.3391 0.4540 0.4411 0.3333 1 0.5054 0.3368 0.3333 0.3333 0.3333
4 0.3333 0.3333 0.5182 0.3333 0.4658 0.3333 0.4004 0.3333 0.3754 0.3558 0.3333 0.3463 0.3333 1 0.3333 0.4117
5 0.4593 0.3333 0.3333 0.3333 0.4041 0.6481 0.5092 1 0.3333 0.4915 0.6029 0.8266 0.3333 0.3333 0.3333 0.3333
6 0.3333 0.4490 0.3966 0.4619 0.3333 0.3333 0.3333 0.3333 0.4185 0.3333 0.3333 0.3333 0.3414 0.5736 0.3859 0.5146
7 0.5486 0.3333 0.4104 0.3333 1 1 1 0.5520 0.3333 1 0.3333 1 0.3333 0.3333 0.3333 0.3333
8 0.3333 0.3333 1 0.9256 0.3333 0.3333 0.3333 0.7382 0.3403 0.3494 0.3333 0.3333 0.3829 0.3474 0.4299 0.3333
9 1 0.3333 0.3333 0.3333 0.3333 0.5212 0.3987 0.496 0.3333 0.3372 0.3534 0.4232 1 0.3333 0.3333 0.3333

data, the average weighted GCC values, normalized
weighted GCC values, and GAP scores are determined,
as provided in Table 19. From this table, it can be
clearly noticed that the experiment number 8 with the
maximum GAP score of 0.6284 and parametric setting
of A3Bs(C is identified as the optimal parametric mix
for the considered AWJD process.

The calculated GAP scores are now adopted for
developing the related response table and response
graph, as depicted in Table 20 and Figure 6 respec-
tively. From Table 20, it can be noticed that the
optimal parametric mix for the considered AWJD
process should be A3B,C1, i.e., water jet pressure =
350 MPa, stand-off distance = 1.5 mm, and abrasive

mass flow rate = 0.24 kg/min. This optimal parametric
combination derived using the GC-EDAS approach is
exactly the same as that of Nair and Kumanan [41].
Thus, for the said AWJD operation, both the op-
timization approaches result in the same parametric
mix, leading to the enhancement of the machining
performance. The max-min values in Table 20 and
the slopes for different AWJD process parameters in
Figure 6 recognize water jet pressure as the most
influential process parameter in computation of GAP
scores. It can also be verified based on the ANOVA
results of Table 21. The corresponding regression
model relating AWJD process parameters to GAP score
is also established, which finally helps in developing the
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Table 19. Computation of GAP scores for the Abrasive Water Jet Drilling (AWJD) process.

Run GCP GCN NGCP NGCN GAP
score

1 0.5349 0.4312 0.8265 0.2985 0.5625
2 0.4353 0.6146 0.6725 0 0.3363
3 0.3823 0.4521 0.5907 0.2645 0.4276
4 0.3814 0.4361 0.5893 0.2904 0.4398
5 0.5026 0.4485 0.7766 0.2703 0.5234
6 0.3718 0.4042 0.5744 0.3423 0.4583
7 0.6472 0.5 1 0.1865 0.5932
8 0.5413 0.3562 0.8364 0.4204 0.6284
9 0.4687 0.4309 0.7241 0.2989 0.5115

Table 20. Response table for GAP scores for the Abrasive Water Jet Drilling (AW JD) process.

Process parameter Level 1 Level 2 Level 3 Max-min Rank
Water jet pressure 0.4421 0.4739 0.5777 0.1356 1
Standoff distance 0.5319 0.496 0.4658 0.066 3
Abrasive mass flow rate  0.5497 0.4292 0.5148 0.1205 2

Table 21. ANOVA results of the Abrasive Water Jet Drilling (AWJD) process.

Source DoF AdjSS AdjMS F-value Contribution (%)
Water jet pressure 2 0.0302 0.0151 4.12 44.95
Standoff distance 2 0.0066 0.0033 0.90 9.77
Abrasive mass flow rate 2 0.0231 0.0115 3.15 34.37
Error 2 0.0073 0.0037 - 10.91
Total 8 0.0671 - - -
surface plots, as exhibited in Figure 7. 5. Conclusions
GAP score = 3.085 — 0.007651 x A — 0.3689
Selecting the optimal parametric combination for an
x B — 7.047 x C + 0.000014 Non-Traditional Machining (NTM) process is often
considered as a difficult task for the concerned process
% A2 4 0.009237 x B2 engineer in order to achieve the desired responses.
This paper proposes an integrated Grey Correlation-
optimal combinations of different input parameters for
< B — 0.007200 x A x C. (29) three NTM processes, ie., Photo-ChemicaPI Machini.ng
(PCM), Laser-Assisted Jet Electro-Chemical Machin-
) 0-60 ing (LA-JECM), and Abrasive Water Jet Drilling
v 0.55¢ (AWJID) processes. Based on the detailed analyses, it
S, 050 \ can be clearly concluded that this approach is capable
g S ousl ' of identifying better combinations of the input parame-
& Water jet pressure Standoff distance ters for almost all the considered NTM processes. The
0.40 Abrasive mass flow rate . .
& oa predicted response values estimated from the developed
U .

Al A2 A3 -

Input process parameters

Bl B2 B3

C1

C2 C3

Figure 6. Response graph for GAP score for the
Abrasive Water Jet Drilling (AWJD) process.

regression models confirm their superiority over the
other popular approaches, demonstrating their suc-
cessful applicability as a multi-objective optimization
tool. Thus, it can be concluded that the GC-EDAS
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Figure 7. Surface plots showing the influences of Abrasive Water Jet Drilling (AW JD) process parameters on GAP score.

approach, being simple, mathematically sound and
accurate, can be effectively employed for identification
of the optimal parametric combinations of different
NTM processes. It would help the concerned processes
engineers to identify the best mix for a specific NTM
process without relying on the operator’s experience
or manufacturer’s data handbooks. As the parametric
analyses are based on the data obtained from the past
researchers; hence, there is no scope in this paper to
conduct the necessary validation experiments. As the
future scope of this paper, grey correlation method can
also be integrated with other Multi-Criteria Decision
Making (MCDM) methods to explore their applicabil-
ity to parametric optimization of both conventional and
non-conventional machining processes. This method
can further be applied to other decision-making prob-
lems that deal with vulnerability and uncertainty in
data sequences, leading to more accurate and robust
results.
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