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Abstract. Pricing and shelf space allocation are two main operational decisions in the
retailing industry. This study simultaneously optimizes these two decisions in a supply
chain with two manufacturers and one retailer under uncertainty of demand and price
sensitivity parameters. Two manufacturers have di�erent conditions in terms of parameters
a�ecting demand and production. A robust optimization model and an exact solution
approach are developed to �nd the optimal solution. The results show that price sensitivity,
market potential, and production costs can have a synergistic e�ect on optimal values.
Moreover, the market potential can rely on managerial decisions as it has a signi�cantly
positive impact on pro�tability. This parameter is found to be the most important tool for
securing the pro�tability of supply chain members.

© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

In retailing industry, shelves are considered as valuable
assets where products compete on �nite display space.
Shelf Space Allocation (SSA) has a long history in
literature and can be classi�ed as illustrated in Table 1.
As shown in Table 1, researches in literature may
belong to more than one category. Although this
study mainly concentrates on SSA and pricing scope,
we briey introduce some of the mentioned studies in
Table 1.

In the mathematical category, Corstjens and
Doyle �rst involved the space and cross-space elasticity
into a model and solved it using geometrical program-
ming [2].

In the stochastic optimization category, Schaal
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and H�ubner by conducting numerical studies and
applying a stochastic shelf-space optimization model
showed that the impact of cross-space elasticities on
shelf-space decisions and retail pro�t is very limited
[29]. Fatemi Ghomi and Khalesi developed a math-
ematical model for shelf space optimization problems
under stochastic demand [12]. D�usterh�oft et al. deter-
mined optimal shelf quantities, an item optimal shelf
segment, as well as optimal replenishment frequencies.
They considered di�erent shelf segments in di�erent
positions [13].

In the dynamic optimization category, Gilland
and Heese studied a SSA model with two products
under dynamic circumstances. A heuristic algorithm
is used in which customers serve themselves from the
store shelves [15].

In the simultaneous optimization category, Urban
considered two di�erent streams of research, i.e., SSA
and inventory management. The model optimizes three
decision variables: reorder point, order quantity, and
display quantity on the shelf [19].

In SSA and shelf space design category, Ghazavi
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Table 1. Shelf space allocation literature classi�cation.

Mathematical optimization

�Deterministic models: Anderson and
Amato [1], Corstjens and Dolye [2,3], Bultez
and Naert [4], Yang [5], Hwang et al. [6],
Hansen et al. [7], Castelli and Vanneschi [8], and
Zhou and Piramuthu [9].
�Stochastic models: Amit et al. [10],
H�ubner and Schaal [11], Fatemi Ghomi
and Khalesi [12], and D�usterh�oft et al. [13].
�Dynamic models: Corstjens and Doyle
[3], Gajjar and Adil [14], and Gilland and Heese [15].
�SSA in supply chains chain: Martin-Herran
and Taboubi [16], and Hariga and Al-Ahmari [17].

Simultaneous optimization

�SSA and pricing
�SSA and trade promotion:
Tsao et al. [18].
�SSA and inventory control: Urban [19],
Maiti and Maiti [20], Hariga et al. [21],
Ramaseshan et al. [22], Bai and
Kendall [23], Gao and Yu [24], and
Baron et al. [25].
�SSA and shelf space design: Hwang
et al. [26], Ghazavi and Lot� [27], and Flamand [28].

and Lot� presented a replacement function that inte-
grates demand. This function simulates methods to
anticipate customers movements within the store. The
shelf level, the shelf space, and substantial-and-random
utilities of stores zones are also taken into account,
simultaneously [27]. Flamand et al. also developed a
model that jointly examines assortment planning and
store-wide SSA decisions [28].

1.1. SSA and pricing
Pricing optimization is an inseparable part of any sys-
tem (for instance Sha�ee-Gol et al. [30] and Sadjadi et
al. [31]). On the other hand, SSA is a main operational
issue that can a�ect retailer pro�t. The interactions
of pricing and SSA in the retailing industry have
then motivated a considerable number of researches.
Although several models and approaches have been
developed to deal with SSA and pricing problems, most
of them focus on deterministic models. However, in
real circumstances, the products demand uncertainty
complicates these decisions. As mentioned before, in
this study we focus on the literature that incorporates
pricing decisions into SSA.

Reyes and Frazier developed an SSA model that

takes two conicting objectives into consideration, i.e.,
customer service factors and pro�tability [32]. Murray
et al. then developed a model that simultaneously
optimizes the preferences of the product display, the
location of the shelves, and the price of products placed
in a category, while considering the height and width
of each shelf [33]. Tan and Wang investigated sharing
revenue between contracts and its e�ect on pricing
as well as shelf space decisions. They showed that
a well-designed revenue-sharing contract will increase
manufacturing pro�ts [34].

Kurtulus and Toktay investigated a competitive
model in which the two manufacturers o�er di�erent
products to one retailer. The retailer determines the
shelf space allocated to the retail category. They
assumed symmetric demand potential, cost, and cross-
price sensitivities for two manufacturers. Based on the
�nal results, two products obtain the same shelf space,
and their wholesale and retail prices are similar [35].
Leng et al. investigated space-exchange in retail prob-
lems. To access more customers, two retailers can
exchange shelf space. They concluded that a game
strategy can be implemented for both retailers, if and
only if their stores are large enough to serve more than
one-half of their customers [36].

Li et al. used game theory where demand is
a�ected by competition among supply chain members.
They used a demand function that involves product
pricing as well as SSA [37]. Eisend studied several new
empirical generalizations about shelf space elasticity.
He found that the application of shelf space variation
is a useful tool for managers and decision-makers in
marketing [38].

Wang et al. proposed a pricing and SSA model
derived from Kurtulus and Toktay model. In the
developed model, the production cost and cross-price
sensitivity of the two products are not the same. The
non-symmetric market potential is assumed for both
products [39]. H�ubner and Schaal considered a model
to maximize retailer pro�t by choosing the number of
facings and their shelf position under the assumption
of limited space when demand is stochastic. They
assumed that the number and position of the product is
a�ected by demand and solved the model with heuristic
methods [40].

Schaal and H�ubner optimized the assortment
and allocated quantities for each product in a retail
shelf. The model accounts for stochastic demand,
substitution, and space-elasticity e�ects [29]. Moon
et al. took into account joint product line decisions.
They assumed dynamic substitutions are derived by
the valuations that customers place on the products
and the availability of each product type. In order
to maximize retailer pro�t, an integer programming
approach is developed [41]. Table 2 shows a summary
of the relevant modeling and solution approaches for
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SSA. As shown in Table 2, there are few studies that
look at how to decide on SSA and pricing policy
simultaneously when there is uncertainty. However, in
reality, critical parameters such as customer demand
as well as price sensitivity could not be deterministic.
Since pricing and shelf space decisions that are taken
under uncertainty can a�ect all supply chain members,
the robustness of these decisions is crucial.

This study employs a robust approach to consider
uncertainties and maximize retailer pro�t. Using
robust optimization to maximize retailer pro�ts in a
similar supply chain with a similar hypothesis has not
been studied before. There is no prior study that
uses robust optimization to maximize a retailer pro�t
in a supply chain with two manufacturers and one
retailer. The purpose of this research is to simultane-
ously optimize pricing and shelf space decisions under
demand uncertainty. The simplicity of implementing
the model allows the decision-makers to manage pricing
and allocation decisions to achieve maximum pro�t.

The rest of the paper is structured as follows:
In Section 2, the background of robust optimization
formulation is presented. Section 3 presents the prob-
lem de�nition and formulation. Numerical analysis
is presented in Section 4. Finally, conclusions are
presented in Section 5.

2. Robust optimization

The robust optimization realizes uncertain parameters
by de�ning di�erent scenarios. The purpose of this
method is to seek out a robust solution, that assures
all speci�ed scenarios are \close" to the optimum with
regards to altering input data [43]. To cope with
real-world problems containing noisy, erroneous data,
methods such as robust optimization were developed
in some cases. Mulvey et al. introduced the concept of
stochastic robust optimization to control the trade-o�
between cost and its variability in stochastic program-
ming [44].

In the following, the framework of robust opti-
mization is briey represented [45]. Firstly, let x 2 Rn1

be a vector of the design variables and y 2 Rn2 be a
vector of control variables. Then the form of the robust
optimization model is as follows:

min cTx+ dT y; (1)

s.t.:

Ax = b; (2)

Bx+ Cy = e; (3)

x; y � 0; (4)

where B, C, and e represent the random techno-
logical constant matrix and right-hand side vector,

respectively. Suppose a limited set of scenarios

 = f1; 2; :::; �g to consider uncertain parameters.
With each scenario � 2 
 we associate the subset
fd�; B�; C�; e�g and the probability of the scenario
p�(
P
�p� = 1).
Leung et al. introduced a solution for the proposed

model that is feasible as well as optimal for all de�ned
scenarios where � 2 
. The robust optimization model
is formulated as follows [46]:

min�(x; y1; y2; :::; y�) + !(�1; �2; :::; ��); (5)

s.t.:

Ax = b; (6)

B�x+ C�y + �� = e�; 8� 2 
; (7)

x � 0; y� � 0; �� � 0; 8� 2 
: (8)

Due to parameter uncertainty, the model could also be
infeasible for some scenarios. Therefore, �� presents
the infeasibility of the model under scenario �. If the
model is feasible, �� will be equal to 0. Otherwise, ��
will be assigned a positive value. In Eq. (5), the �rst
term represents solution robustness, which takes into
account the �rm desire for low costs and the degree
of its risk aversion, while the second term represents
model robustness, which penalizes solutions that fail
to meet demand in a scenario or violate other physical
restrictions [43]. Mulvey et al. used the following
relation [44]:

�(o) =
X
�2


p� � + �
X
�2


p�( � �X
�02


p�0 �0)2: (9)

It present solution robustness, where  � = f(x; y�) is
a cost or bene�t function for scenario �. Parameter
� denotes the weight placed on solution variance in
which the solution is less sensitive to variations in the
data under all scenarios as � increases. Hwang et
al. indicated that to minimize Objective (9), the robust
optimization model needs a great deal of computation.
They proposed the following equation [26]:

�(o) =
X
�2


p� � + �
X
�2


p�

������ � �X�02


p�0 �0

������: (10)

Although Objective (10) is a non-linear function, by
converting the problem into a linear programming
model with a linear objective function and linear
constraints, Wagner claimed that it can be optimized
by de�ning two non-negative deviational variables [47].
Instead of minimizing the sum of absolute deviations in
Eq. (10), two deviational variables are minimized under
original constraints and additional soft constraints that
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provide positive values of the di�erence inside the
absolute functions, as supported by Leung et al. [46].
Yu and Li introduced an e�cient method by developing
Li study [48,42]. Yu and Li model framework is
designed to minimize the objective function.

min Z =
X
�2


p� �

+ �
X
�2


p�

240@ � �X
�02


p�0 �0

1A+ 2��

35;
(11)

s.t.:

 � �X
�2


p� � + �� � 0; 8� 2 
; (12)

�� � 0; 8� 2 
: (13)

It can be veri�ed that if  � � P
�2


p� � � 0 , then

�� = 0: On the other hand, if  � � P
�2


p� � � 0 ,

then �� =
P
�2


p� � �  �. To penalize violations of

the control constraints under a number of scenarios,
the following model is used. Using the weight !; the
trade-o� between solution robustness measured from
the primary term �(o) and model robustness measured
from the penalty term �(o) can be modeled under the
Multiple-Criteria Decision-Making (MCDM) process.

minZ =
X
�2


p� � + �
X
�2


p�

240@ � �X
�02


p�0 �0

1A+ 2��

35+ !
X
�2


p���:
(14)

3. Problem de�nition

A supply chain with two manufacturers and one retailer
is considered. Manufacturers A and B produce and
sell products A and B to a retailer at wholesale prices
wA and wB , respectively. The retailer then puts the
products in shelf space S and sells them at retail prices
pA and pB . Since products A and B belong to the same
category (for example, breakfast cereals, soft drinks,
and detergents), they can be replaced or substituted
for one another. However, they have di�erent market
potentials and price sensitivity parameters. According
to Shubik and Levitan [49], the demand function used
is:

qA = a� pA + �A(pB � pA); (15)

qB = b� pB + �B(pA � pB); (16)

where, qA and qB are the demand of products A and B,
respectively. Moreover, a and b represent the market
potentials (the amount of demand regardless of its
price). Parameters �A and �B are price sensitivity
parameters, �A; �B 2 [0; 1]:

In the real-world, price sensitivity parameter can
be under uncertainty due to technological, political,
economic, and social factors. Obsolete technologies,
for example, are not acceptable, even if they are
inexpensive. In contrast, there are users willing to pay
high value to possess products of the latest technology.
Political factors like war and sanctions can also a�ect
the price sensitivity of products.

In this study, we take into account the pricing and
allocation decisions of shelf space where parameters �A
and �B are uncertain under various scenarios. A set
of scenarios 
 = f1; 2; :::; �g are then de�ned with the
probability of �� for scenario � 2 
 (

P
�2


�� = 1):

The structure of the supply chain is shown in
Figure 1. The retailer �rst outlines the available shelf
space for two products and informs the manufacturers.
Manufacturers then adjust their best wholesale prices
in a competitive condition. Finally, the retailer deter-
mines retail prices according to wholesale prices.

In the next section, the problem is solved and
optimal wholesale and retail prices, as well as the
amount of allocated space, are obtained, using the
backward induction method.

3.1. Notation
In this paper, the following parameters and decision
variables are used:

Parameters
a Market potentials for product A
b Market potentials for product B
�A� Cross-price sensitivity parameters for

product A under scenario �
�B� Cross-price sensitivity parameters for

product B under scenario �

Figure 1. Considered supply chain in the study.
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cA Unit production costs of product A
cB Unit production costs of product B
k Shelf space opportunity cost
�� Occurrence probability of scenario �

Decision variables
pA Retail price for product A
pB Retail price for product B
wA Wholesale price for product A
wB Wholesale price for product B
S Shelf space, i.e., the number of units of

the product that can be stored on the
shelf

qA Demand for product A
qB Demand for product B
Z� Retailer pro�t under scenario

xi (1; 2; :::; �)

3.2. Model development
In this section, a robust model is developed to solve the
pricing and shelf space problem for a non-symmetric
supply chain.

3.2.1. Retail price decisions
Assuming that the shelf space S and wholesale prices
wA and wB are known, the retailer decides about retail
prices pA and pB to maximize his pro�t. The problem
model at this stage is as follows:

max
Y
n

= (pA � wA)qA + (pB � wB)qB ; (17)

s.t.:

qA + qB � S: (18)

By respectively substituting Eqs. (15) and (16) into
Eqs. (17) and (18), the robust optimization model is
presented as follows:

max
Y
n

=
X
�2


p�Z� � �X
�2


p�
��
 �

�X
�02


p�0 �0
�

+ 2u�
�
�  X

�2


p�"�; (19)

s.t.:

Z� = apA � p2
A + pA�A�pB � p2

A�A�

�wA(a� pA + �A�pB � �A�pA)

+bpB � p2
B + pB�B�pA � p2

B�B�

�wB(b� pB + �B�pA � �B�pB); 8 � 2 
;
(20)

a� pA + �A�pB � �A�pA + b� pB + �B�pA

��B�pB + "� � S; 8 � 2 
; (21)

Z� �X
�02


(p�0 �0) + u� � 0; 8 � 2 
; (22)

pA; pB � 0; u�; "� � 0; 8 � 2 
: (23)

The �rst and second terms in Eq. (19) are the mean
value and variance of the objective function, respec-
tively. The last term in Eq. (19) measures the model
robustness with reference to infeasibility associated
with Constraints (21) under scenario �. Moreover,
Eq. (20) are de�ned just for formulation convenience.
Constraints (21) are used to control the shelf space
limitation. Eq. (22) are the auxiliary constraints for
linearization de�ned in Eq. (14). Constraints (23)
specify non-negative variables.

The above robust model is complicated when
incorporating the e�ects of non-symmetric market
potentials, production costs, and cross-price sensitivity
parameters. For this reason, the optimal results are
�tted by considering the e�ect of various parameters
on the solution. To ensure that optimized solutions
are global, the proof of objective function concavity is
presented in Appendix A. The proposed model is solved
by GAMS software for di�erent values of parameters.

The optimistic, pessimistic, and normal scenarios
are considered with di�erent price sensitivity param-
eters. In an optimistic scenario, the price sensitivity
of both products is low, ranging from 0 to 0.2. In the
pessimistic scenario, where customers are very sensitive
to price, the parameter is considered between 0.8 to 1.
The price sensitivity parameter for the normal scenario
is 0.2 to 0.8.

Then, all possible combinations related to the
probability of occurrence of scenarios are taken into
account. Considering all possible combinations, opti-
mal solutions are obtained for 1240 runs. We then �t
optimal retail prices using SPSS software through a
wide range of optimal solutions for three scenarios. R-
squared as the coe�cient of determination is 0.98 and
0.898 for pA and pB , respectively. We can conclude
that the di�erences between the observed values and
the model predicted values are small since the higher
the R-squared, the better the model �ts our data.
We obtained optimal retail prices for special scenarios
including random data based on SPSS results.

Given S, wA, and wB , the optimal retail prices
p�A and p�B are then obtained as follows:

p�A = 1:139a+ 0:919b+ 0:081wA

�0:077wB � 0:448S � 0:101
X
�

���A�; (24)
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p�B =1:028b+ 0:681a� 0:059wA

+ 0:057wB � 0:395S � 0:04
X
�

���A�

� 0:095
X
�

���B�: (25)

3.2.2. Wholesale price decisions
At this stage, each manufacturer decides on the whole-
sale price to maximize his pro�t assuming that the
amount of shelf space S is available. Pro�t functions
for manufactures are as follows:Y

A

= (wA � cA)qA; (26)

Y
B

= (wB � cB)qB : (27)

By substituting Eqs. (24) and (25) into Eqs. (15)
and (16), respectively, decision variable q�A and q�B
are obtained. Then, by substituting q�A and q�B into
Eqs. (26) and (27), and considering @

Q
A=@wA = 0

and @
Q
B=@wB = 0, the optimal wholesale price for

each manufacturer are calculated.
Given S, optimal wholesale price w�A and w�B can

be determined as follows:

w�A =
cAE1 + cBE2 + E3 + aE4 + bE5 + SE6

E9E8

+
E10

E9
; (28)

w�B =
cAF2 + cBF3 + F4 + aF5 + bF6 + SF7

F1
: (29)

Expressions E1 to E10 and F1 to F7 can be found in
Appendix B.

3.3. Retail shelf space size decision
The retailer decides on the amount of shelf space

available to supply di�erent products. Taking into
account the opportunity cost of shelf space the pro�t
function for the retailer is as follows:Y

r

=
Y
n

� kS2; (30)

where k is a positive constant indicating the shelf
space opportunity cost parameter. To calculate the
optimal shelf space, we substitute Eqs. (25) and (26)
into Eq. (30), and by taking the partial derivative of
the equation with respect to S, the optimal space for
the shelf is calculated as follows:

S� =
0:5 [cAG1 + cBG2 + aG3 + bG4 +G5]

kG6 +G7
: (31)

Expressions G1 to G7 can be found in Appendix B.

4. Numerical analysis

In this section, to show the e�ect of various parameters
on the optimal result, three scenarios are considered.
In numerical analysis, we surveyed real data used in
similar studies (e.g., [39,46]) and generated our random
numbers in the range of real data used in the literature.

We �rst discuss the e�ect of market potential on
optimal solutions. Tables 3{5 provide an insight into
the output data characteristics by setting � = 0:01 and
model robustness  = 2000.

Assuming k = 0:5; b = 10; cA = cB = 1;
P
�2


��

�A� =
P
�2


���B� = 1, Table 2 shows that as the market

potential of product A increases, the wholesale and
retail prices increase, while the demand is upward.
Competitor demand despite price reduction has de-
clined.

The price sensitivity parameter in comparison
with the market potential has little e�ect on decision
variables. According to Table 3, it can be assumed

Table 3. E�ect of market potential on decision variables.

Retailer Manufacturer A Manufacturer B
a=b S� p�A p�B

Q
r w�A q�A

Q
A w�B q�B

Q
B

0.2 6.31 3.49 5.51 5.11 2.32 0.09 0.12 3.69 2.17 5.83
0.4 8.06 4.23 5.71 8.68 2.46 1.31 1.91 3.41 2.11 5.09
0.6 9.80 4.99 5.95 13.00 2.64 1.62 2.67 3.24 2.07 4.64
0.8 11.55 5.72 6.22 18.37 2.78 1.84 3.28 3.11 2.01 4.24
1.0 13.29 6.49 6.49 24.71 2.97 1.97 3.89 2.97 1.97 3.89
1.2 15.04 7.21 6.72 32.61 3.08 2.12 4.41 2.78 1.93 3.44
1.4 16.77 7.93 6.96 41.70 3.19 2.23 4.88 2.59 1.88 2.99
1.6 18.52 8.63 7.20 52.20 3.26 2.34 5.29 2.40 1.82 2.65
1.8 20.26 9.35 7.46 63.46 3.37 2.48 5.88 2.26 1.77 2.23
2.0 22.01 10.06 7.73 76.10 3.45 2.61 6.39 2.12 1.73 1.94
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Table 4. E�ect of production cost on decision variables.

Retailer Manufacturer A Manufacturer B
CA=CB S� p�A p�B

Q
r w�A q�A

Q
A w�B q�B

Q
B

0.2 8.85 3.87 4.03 2.25 2.74 0.54 1.37 3.05 0.13 0.27
0.4 8.87 3.93 4.04 2.09 2.86 0.50 1.23 3.07 0.18 0.37
0.6 8.89 3.99 4.05 1.95 2.97 0.45 1.07 3.09 0.22 0.46
0.8 8.91 4.03 4.06 1.84 3.06 0.39 0.88 3.11 0.28 0.59
1.0 8.93 4.07 4.07 1.75 3.13 0.32 0.68 3.13 0.32 0.68
1.2 8.95 4.10 4.08 1.68 3.19 0.26 0.64 3.15 0.44 0.95
1.4 8.97 4.13 4.09 1.60 3.25 0.21 0.39 3.17 0.53 1.15
1.6 8.99 4.17 4.10 1.51 3.34 0.13 0.23 3.19 0.62 1.36
1.8 9.01 4.21 4.11 1.44 3.42 0.11 0.11 3.21 0.74 1.64
2.0 9.03 4.26 4.11 1.37 3.51 0.03 0.03 3.22 0.86 1.91

Table 5. E�ect of price sensitivity on decision variables.

Retailer Manufacturer A Manufacturer BP
�2
 ���A�P
�2
 ���B�

S� p�A p�B
Q
r w�A q�A

Q
A w�B q�B

Q
B

0.2 9.01 3.94 3.90 2.33 2.81 0.56 1.01 2.87 0.96 1.80
0.4 9.03 3.90 3.88 2.44 2.77 0.61 1.08 2.81 0.91 1.64
0.6 9.05 3.88 3.86 2.57 2.71 0.68 1.16 2.76 0.87 1.53
0.8 9.08 3.85 3.84 2.67 2.68 0.74 1.24 2.70 0.83 1.41
1.0 9.10 3.82 3.82 2.81 2.63 0.79 1.29 2.63 0.79 1.29
1.2 9.15 3.77 3.80 2.97 2.59 0.85 1.35 2.54 0.72 1.11
1.4 9.18 3.75 3.77 3.09 2.54 0.91 1.40 2.49 0.64 0.95
1.6 9.21 3.70 3.74 3.27 2.48 0.97 1.44 2.41 0.61 0.86
1.8 9.26 3.68 3.72 3.40 2.43 1.03 1.48 2.35 0.57 0.77
2.0 9.29 3.66 3.68 3.58 2.36 1.09 1.48 2.29 0.51 0.66

Figure 2. E�ect of market potential ratio on demand.

that product A is a luxury, in which the retailer
pro�t and demand, despite price increment have been
intensi�ed.

As shown in Figure 2, despite the reduction in
product B demand, total demand increases and the
retailer needs to increase the shelf space. It can be

concluded that the market potential has a signi�cant
e�ect on demand and retailer and manufacturers prof-
itability. Assuming:

k=0:5; b=5; cB=1;
X
�2


���A�=
X
�2


���B�=1;

Table 4 shows that wholesale and retail prices of both
products increase by increasing the amount of produc-
tion costs of product A. It can be seen that the growth
trend of demand is related to the growth of retail prices.
It can be concluded that the price sensitivity parameter
is directly related to the production cost parameter.
According to the values in Table 4, products A and B
are not in the luxury or gi�en product group.

Despite a drop in demand for product A, the total
demand for products is increasing. However, due to the
increase in shelf space and related costs, the retailers
pro�t margin drops. Manufacturers will produce a
product at a lower wholesale price by reducing the
amount of production costs through redesigning pro-
duction processes and using new technologies. More
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Figure 3. E�ect of market potential, production cost,
and price sensitivity on retailer pro�t.

interaction between manufacturers and retailers will
provide more pro�t for all members of the supply chain.

Assuming k = 0:5, a = b = 5, cA = cB = 1,P
�2


���B� = 0:5, Table 5 shows that by increasing the

average value of the price sensitivity parameter of prod-
uct A, manufacturers and retailers reduce wholesale
and retail prices. In this situation, a price-sensitive
customer prefers the cheaper of the two products A and
B and there is greater demand for a cheaper product.
Indeed, in a situation where the price elasticity of
demand is high, the amount of pro�ts earned by
the manufacturer and the retailer is associated with
lower prices and cost savings. If the average price
sensitivity parameter changes for di�erent scenarios,
the decision-making for supply chain members will be
more conservative.

By increasing the average value of the sensitivity
parameter, the certainty of the data is increased and
the retailer places more shelf space on the product and
earns more pro�t. The retailer with less shelf space
and lower costs is struggling to make more pro�t, and
manufacturers are trying to maintain their margins at
higher prices.

Figure 3 shows that the retailer pro�t based
on the ratio of the change in the parameters of the
problem. Market potential has a signi�cant positive
e�ect on the pro�t margin earned by the retailer, and
price sensitivity parameter and production cost have
a negative impact on retailer pro�t. Manufacturers
can increase the market potential of their products
by o�ering new and unique products and increasing
customer satisfaction.

5. Conclusion

This paper jointly optimizes pricing and shelf space

allocation under uncertainty in a supply chain with
two manufacturers and one retailer. Manufacturers
have di�erent conditions in terms of market potential,
sensitivity parameters, and production cost. A robust
optimization approach is used to model demand un-
certainty and price sensitivity parameters. The most
important results can be summarized as follows:

� By increasing the price sensitivity parameter, man-
ufacturers and retailers reduce wholesale and retail
prices. In this situation, there is greater demand for
a cheaper product, compared to less sensitive cases;

� In uncertain circumstances, the decisions of the
supply chain members will be more conservative.
The retailer, with less shelf space and lower costs, is
struggling to make more pro�t, and manufacturers
are trying to maintain their margins at higher prices;

� Price sensitivity, market potential, and production
costs can have a synergistic e�ect on optimal val-
ues. However, the intensity of the reciprocity of
market potential optimal values is more than the
other parameters. Therefore, this parameter is the
most important tool for securing the pro�tability of
supply chain members;

� When di�erent scenarios have the same occurrence
probability, the uncertainty of the data increases. In
this situation, making decisions about pricing and
shelf space allocation becomes more complicated for
shelf space allocation becomes more complicated for
supply chain members. Due to the fact that demand
is not certain, the retailer makes a conservative
decision in shelf space and considers similar pricing
policies for both products. To minimize the losses,
each manufacturer will try to make decisions that
are similar to those of his competitors.

Further studies in this area can include the un-
certainty surrounding other parameters of the problem
such as market potential, production costs, and shelf
space opportunity cost. Other approaches for consider-
ing uncertainty such as fuzzy logic can also be applied.
Moreover, optimizing an extended multi-manufacturer
multi-retailer supply chain can make future researches
more attractive.
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Appendix A

The retailer robust objective function is as follows:Y
n

=(1� �)
X
�2


��Z� + �

0@X
�2


X
�02


����0Z�0

1A� 2�
X
�2


��u�

�  X
�2


��"�: (A.1)

To determine whether a function f(x1; x2; :::; xn)
of n variable is convex or concave on a set of S �
Rn, we assume that f(x1; x2; :::; xn) has continuous
second-order partial derivatives. The Hessian of
f(x1; x2; :::; xn) is a n � n matrix that its ijth entry
is @2f

@xi@xj
�.

An ith principal minor of a n � n matrix is the
determinant of any i � i matrix obtained by deleting
n� i rows and the corresponding n� i columns of the
matrix. The kth leading principal minor of a n � n
matrix is the determinant of the k�k matrix obtained
by deleting the last n � k rows and columns of the
matrix. The function f(x1; x2; :::; xn) is concave on S
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if and only if for each x 2 S and k = 1; 2; : : : ; n; all
nonzero principal minors have the same sign as (�1)k.
To obtain Gradient vector, we have:

A =
@
Q
n

@pA
= (1� �)

X
�2


��
�
a� 2pA + �A�pB � 2pA�A� + wA + wA�A�

+pB�B� � wB�B�
�

+ �
�X
�2


X
�02


����0
�
a� 2pA

+�A�0pB � 2pA�A�0 + wA + wA�A�0

+pB�B�0 � wB�B�0
��
; (A.2)

B =
@
Q
n

@pB
= (1� �)

X
�2


��

�
pA�A� � wA�A� + b� 2pB + �B�pA � 2pB�B�

+wB+wB�B�
�

+�

 X
�2


X
�02


����0
�
pA�A�0�wA�A�0

+b�2pB+�B�0pA�2pB�B�0+wB+wB�B�0
�!
;
(A.3)

@
Q
n

@u�
= �2�

X
�2


��; (A.4)

@
Q
n

@"�
= �HX

�2


��: (A.5)

The Gradient vector is as follows:

rY
n

=

26666666666666666666666664

A
B

�2��1�2��2�2��3
:
:

�2��t
H�1
H�2
H�3
:
:
:

H��

37777777777777777777777775

: (A.6)

To obtain the Hessian matrix, we have:

C =
@2Q

n
@p2

A
= (1� �)

X
�2


�� [�2� 2�A�]

+�

0@X
�2


X
�02


����0 [�2� 2�A�0 ]

1A ; (A.7)

D =
@2Q

n
@pApB

= (1� �)
X
�2


�� [�A� + �B�]

+�

0@X
�2


X
�02


����0 [�A�0 + �B�0 ]

1A ; (A.8)

@2Q
n

@pAu�
= 0; (A.9)

@2Q
n

@pB��
= 0; (A.10)

@2Q
n

@u2
�

= 0; (A.11)

@2Q
n

@"2
�

= 0; (A.12)

@2Q
n

@u�pA
= 0; (A.13)

@2Q
n

@u�pB
= 0; (A.14)

@2Q
n

@��pA
= 0; (A.15)

@2Q
n

@��pB
= 0: (A.16)

The Hessian matrix is as follows:

Hessian matrix =26666664
C D ::: 0 0
F E 0 0

0 0
. . . 0 0

...
...

...
...

0 0 � � � 0 0

37777775
(2�+2)�(2�+2)

(A.17)

If C < 0 and
���� C D
F E

���� > 0, it can be concluded that

the objective function is concave and has a globally
optimized solution.

The proof of objective function concavity can be
presented using the following steps:
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1. We show the �rst principal minors (C) is nonposi-
tive, i.e., (�C > 0) or (C < 0):

�C =(1� �)
X
�2


�� [2 + 2�A�]

+ �

0@X
�2


X
�02


����0 [2 + 2�A�0 ]

1A > 0:
(A.18)

We know that:X
�2


�� = 1;
X
�2


���A� � 1;
X
�02


��0�A�0 � 1:

Thus:

�C=2 =(1� �)
X
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For the maximum value, we have �(1 + 1 + 1 + 1) <
1 + 2 ! � < 1

2 : We then �nd that �C > 0 or
C < 0 holds if 0 < � < 1

2�

2. We show that the second principal minor is positive:�� �C �D
�F �E

��
> 0 ! CE �DF > 0:

(A.21)

3. We know that:X
�2


�� = 1;
X
�2


���A� � 1;
X
�02


��0�A�0 � 1;

X
�2


���B� � 1;
X
�02


��0�B�0 � 1:

Thus, for the maximum value we will have:

�A� = 1; �B� = 1; �� = 1:

Therefore:

A = �4(1� �)� 4� = �4; (A.22)

B = D = 2(1� �) + 2� = 2; (A.23)

C = �4(1� �)� 4� = �4: (A.24)

Then:

CE �DF = 12 > 0: (A.25)

For minimum value we will have �A� = 0, �B� = 0,
�� = 1: Thus:

A = �2(1� �)� 2� = �2; (A.26)

B = D = 0; (A.27)

C = �2(1� �)� 2� = �2: (A.28)

Then:

CE �DF = 4 > 0: (A.29)

Therefore, CE�DF will be positive under all scenarios
and for all values between maximum and minimum.
Based on (i), (ii), and as jHj = 0 , we can �nally
conclude that the objective function is concave and the
software optimized solution is global.

Appendix B

The auxiliary expressions used in Eq. (28) are as
follows:

E1 = �8260
X
�2


���A� � 11340
X
�2


���B�

�19600
X
�2


���A��B� � 4779; (B.1)
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E2 = 7296
X
�2


���A� + 21708
X
�2


���B�

+17152
X
�2


���A��B� + 9234; (B.2)

E3 = 15390
X
�2


���2
B� � 1980

X
�2


���A��B�

+25460
X
�2


���A��2
B� � 7808

X
�2


���B��2
A�

�4277
X
�2


���A��B� + 15390
X
�2


���B�

�5959
X
�2


���A�; (B.3)

E4 = 54376
X
�2


���B� � (1:14)5
X
�2


���A�

�5496
X
�2


���A��B� � (1:18)5; (B.4)

E5 = (1:11)5
X
�2


���B� + 10015
X
�2


���A�

+29212
X
�2


���A��B� � 49685; (B.5)

E6 = 71306
X
�2


���B� + 53687
X
�2


���A�

+14204
X
�2


���A��B� + 90422; (B.6)

E7 = 0:077� 0:02
X
�2


���A�; (B.7)

E8 = 0:162� 0:128
X
�2


���A�; (B.8)

E9 = 37104
X
�2


���A��B� + 15772
X
�2


���A�

+32636
X
�2


���B� + 13925; (B.9)

E10 = �a
0@0:139 + 0:458

X
�2


���A�

1A
�b
0@0:919� 0:109

X
�2


���A�

1A
+S

0@0:448� 0:053
X
�2


���A�

1A
�cA

0@0:081 + 0:14
X
�2


���A�

1A
�0:101

X
�2


���A� + 0:095
X
�2


���A��B�:
(B.10)

The auxiliary expressions used in Eq. (29) are as
follows:

F1 = 157772
X
�2


���A� � 32636
X
�2


���B�

�337104
X
�2


���A��B�; (B.11)

F2 = �11340
X
�2


���B� � 8260
X
�2


���A�

�19600
X
�2


���A��B� � 4779; (B.12)

F3 = 21708
X
�2


���B� + 7296
X
�2


���A�

�17152
X
�2


���A��B� + 9234; (B.13)

F4 = �15390
X
�2


���B� � 5959
X
�2


���A�

�6277
X
�2


���A��B� + 15390
X
�2


���2
B�

+25460
X
�2


���2
B��A� � 7808

X
�2


���2
A��B�;

(B.14)

F5 = 54736
X
�2


���B� � (1:14)5
X
�2


���A�

�5496
X
�2


���A��B� � (1:18)5; (B.15)
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F6 = � (1:15)5
X
�2


���B� + 10015
X
�2


���A�

+29212
X
�2


���A��B� � 49685

F7 = 71306
X
�2


���B� + 53687
X
�2


���A�

+14204
X
�2


���A��B� + 90422; (B.17)

The auxiliary expressions used in Eq. (31) are as
follows:

G1 = (1:16)14
X
�2


���3
A� + (2:05)14

X
�2


���3
B�

+(2:1)14
X
�2


���2
A� + (5:55)14

X
�2


���2
B�

+(2:16)14
X
�2


���A� + (3:18)14
X
�2


���B�

+(7:7)13 � (5:21)12
X
�2


���3
A��

2
B�

+(3:37)13
X
�2


���2
A��

3
B�+(2:7)14

X
�2


���3
A��B�

+(3:05)14
X
�2


���2
A��

2
B�+(3:75)14

X
�2


���A��3
B�

+(6:2)14
X
�2


���2
A��B� + (1:13)15

X
�2


���A��2
B�

+(9:25)14
X
�2


���A��B�; (B.18)

G2 = (6:76)12
X
�2


���3
A� � (4:23)11

X
�2


���3
B�

�(1:39)14
X
�2


���2
A� � (3:4)14

X
�2


���2
B�

�(1:75)14
X
�2


���A� � (3:4)14
X
�2


���B�

�(8:33)13 � (7:73)13
X
�2


���3
A��

2
B�

+(1:1)14
X
�2


���2
A��

3
B��(4:86)14

X
�2


���2
A��B�

�(3:52)14
X
�2


���A��2
B��(6)14

X
�2


���A��B�;
(B.19)

G3 = (6:7)14
X
�2


���3
A� � (8:2)14

X
�2


���3
B�

+(3:97)15
X
�2


���2
A� + (1:12)15

X
�2


���2
B�

+(5:4)15
X
�2


���A� + (5:37)15
X
�2


���B�

+(2:35)15 + (3:1)14
X
�2


���3
A��

2
B�

�(5:64)13
X
�2


���2
A��

3
B�+(1:99)15

X
�2


���3
A��B�

+(2:25)15
X
�2


���2
A��

2
B�+(1:45)14

X
�2


���A��3
B�

+(8:04)15
X
�2


���2
A��B�+(4:56)15

X
�2


���A��2
B�

+(1:86)16
X
�2


���A��B�; (B.20)

G4 =
X
�2


���3
A� + (2:85)15

X
�2


���3
B�

+(9:2)14
X
�2


���2
A� + (1:14)16

X
�2


���2
B�

+(2:47)15
X
�2


���A�+(9:42)15
X
�2


���B�

�(1:1)14
X
�2


���3
A��

2
B�+(1:02)14

X
�2


���2
A��

3
B�

�(1:75)15
X
�2


���3
A��B�+(7:49)14

X
�2


���2
A��

2
B�

+(7:45)14
X
�2


���A��3
B�+(2:41)15

X
�2


���2
A��B�

+(8:35)15
X
�2


���A��2
B�; (B.21)
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G5 = �(9:4)13
X
�2


���3
A� � (9:7)14

X
�2


���3
B�

�(2:5)14
X
�2


���2
A� � (9:53)14

X
�2


���2
B�

�(9:32)15
X
�2


���A� � (2:7)14
X
�2


���B�

�(1:28)13
X
�2


���3
A��

2
B��(4:07)14

X
�2


���3
A��

2
B�

�(3:09)14
X
�2


���2
A��

3
B� � (4:08)14

X
�2


���3
A��B�

�(7:47)14
X
�2


���2
A��

2
B��(4:7)14

X
�2


���A��3
B�

�(6:5)14
X
�2


���A��3
B� � (1:01)15

X
�2


���2
A��B�

+(8:9)14
X
�2


���2
A��B� � (7:7)14

X
�2


���A��2
B�

�(2:91)14
X
�2


���A��2
B� � (1:22)12

X
�2


���A��B�

�(1:11)14
X
�2


���2
A��

2
B� + (2:85)14

X
�2


���2
A��

3
B�

�(7:5)13
X
�2


���4
A��

2
B� + (1:18)14

X
�2


���3
A��

3
B�

�(2:28)13
X
�2


���2
A��

4
B��(4:63)13

X
�2


���3
A��

3
B�

+(3:52)13
X
�2


���4
A��

2
B� � (2:23)13

X
�2


���4
A�

�(2:9)14
X
�2


���4
B� � (1:67)13

X
�2


���2
A��

4
B�

�(8:44)13
X
�2


���4
A��B�+(7:24)12

X
�2


���4
A��B�

+(6:98)13
X
�2


���3
A��B� � (2:56)14

X
�2


���A��4
B�

�(2:41)14
X
�2


���A��4
B��(5:24)14

X
�2


���A��B�;
(B.22)

G6 = (2:48)14
X
�2


���2
A� + (1:06)15

X
�2


���4
B�

+(4:39)14
X
�2


���A� + (9:09)14
X
�2


���B�

+(1:37)15
X
�2


���2
A��

2
B�+(1:17)15

X
�2


���2
A��B�

+(2:42)15
X
�2


���A��2
B�+(2:06)15

X
�2


���A��B�

+(1:93)14; (B.23)

G7 = (7:87)13
X
�2


���3
A� + (5:33)14

X
�2


���3
B�

+(1:02)15
X
�2


���2
A� + (3:21)15

X
�2


���2
B�

+(1:77)15
X
�2


���A� + (3:63)15
X
�2


���B�

+(1:07)15 + (6:05)13
X
�2


���3
A��

2
B�

�(5:85)13
X
�2


���2
A��

3
B�+(2:66)14

X
�2


���3
A��B�

+(6:54)14
X
�2


���2
A��

2
B��(1:8)12

X
�2


���A��3
B�

+(2:22)15
X
�2


���2
A��B�+(2:48)15

X
�2


���A��2
B�

+(4:79)15
X
�2


���A��B�: (B.24)
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