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Abstract. Economic Load Dispatch (ELD) is an important part of cost minimization
procedure in power system operation. Di�erent derivative and probabilistic methods are
used to solve ELD problems. This paper proposes a powerful Salp Swarm Algorithm (SSA)
to explain the ELD issue including equality and inequality restrictions. The main objective
of ELD is to satisfy the entire electric load at a minimum cost. The SSA is a population-
based probabilistic method that guides its search agents that are randomly placed in the
search space to �nd an optimal point using their �tness function and also, keeps track of
the best solution achieved by each search agent. SSA is used to solve the ELD problem
with their high exploration and local optima escaping technique. This algorithm con�rms
that the promising areas of the search space are exploited to have a smooth transition from
exploration to exploitation using the movement of salps in the sea. Simulation results prove
that the proposed algorithm surpasses other existing optimization techniques in terms of
solution quality obtained and computational e�ciency. The �nal results also prove that
SSA is more robust than other techniques.
© 2022 Sharif University of Technology. All rights reserved.

1. Introduction

Economic Load Dispatch (ELD) is considered one of
the valued optimization problems in the �eld of power
system operations. The ELD satis�es the total load
demand by economically allocating the load demand
to each and every generator while satisfying their
operation and physical constraints. The ELD helps
satisfy the total load demand in the most economical
way. The main objective of the ELD is to make the
entire system reliable and minimize the total generation
cost of the thermal power plant. However, the ELD
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satis�es all the constraints of each and every generator
that is considered for the ELD problem.

There are many classic optimization methods
including gradient method [1], Quadratic Programming
(QP) [2], Lagrangian relaxation [3], Hop�eld modeling
framework [4], Linear Programming (LP) [5], and
Dynamic Programming (DP) [6] that assume a linear
increasing cost function and they have been successfully
applied to solve the ELD problem. However, the
main problem with the classical approach is that it
tends to converge at a local optimum and then, begins
to diverge from the global optimal solution. The
problem with dynamic programming approach is that it
requires very large dimensions and consequently, much
programming e�ort. These classical methods are not
able to locate the global optimum solution because of
the presence of many non-linear equations like the non-
smooth cost function, ramp rate limit, and discontinu-
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ous prohibited operating zones. Moreover, due to the
non-linear characteristic of the ELD problem, many
of the classic optimization method techniques cannot
reach the global optimal solution and tend to diverge
in a local optimum solution. Therefore, it becomes
imperative to develop an optimization technique that
can overcome these drawbacks of the classical based
methods and give the global optimum solution in the
least computation time. Many arti�cial intelligence
algorithms like the Hop�eld Neural Network (HNN)
[7] have been employed to solve the ELD problem.
The problem with arti�cial intelligence algorithms is
that they take a large number of iterations to reach
the global optimum solution, because the algorithms
must converge to the global optimum value and the rate
of convergence of these algorithms varies. Due to the
di�erence in the rate of convergence, the time duration
taken by di�erent algorithms is di�erent. Hence, a
longer time is required to reach the global solution.
The computer technology has developed many new
population-based heuristic optimization techniques like
Di�erential Evolution (DE) [8], Evolutionary Program-
ming (EP) [9], Hybrid Evolutionary Programming
(HEP) [10], Particle Swarm Optimization (PSO) [11],
Civilized Swarm Optimization (CSO) [12], Craziness-
based PSO (CRPSO) [13], Hybrid PSO (HPSO) [14],
Modi�ed PSO (MPSO) [15], Genetic Algorithm (GA)
[16], Hybrid GA (HGA) [17], Adaptive Real Coded
GA (ARCGA) [18], Bacteria Foraging Optimization
(BFO) [19], Modi�ed BFO (MBFO) [20], modi�ed
Arti�cial Bee Colony (ABC) [21], Seeker Optimiza-
tion Algorithm (SOA) [22], Ant Colony Optimiza-
tion (ACO) [23], Tabu Search (TS) [24], Biogeog-
raphy Based Optimization (BBO) [25], and Quasi-
Oppositional BBO (QOBBO) [26], Oppositional BBO
(OBBO) [27], and Harmony Search Algorithm (HSA)
[28] for solving ELD problems. Other optimization
algorithms, including the Opposition-based Harmony
Search Algorithm (OHSA) introduced by Chatterjee
et al., have been proposed to solve the ELD problem
[29]. Krill Herd Algorithm (KHA) [30] was successfully
applied to solve the ELD problems. The problem of
short-term hydrothermal scheduling was solved using
the SCA technique in [31]. An enhanced version of
Particle Swarm Optimization was proposed in [32] to
solve the problem of ELD. A new technique maximum
likelihood optima technique was also used to solve the
ELD problem in [33]. Group Leader Optimization [34]
was proposed because of its special ability to solve the
non-linear and non-quadratic equations with greater
ease. Even Teaching Learning Based Optimization
(TLBO) technique was used in [35] to solve the ELD
problem. Some of the above-mentioned algorithms
run into di�culty �nding a local optimum solution,
while others have di�culty �nding the global optimum
solution. Therefore, to overcome this kind of problem,

a new and powerful optimization technique is needed.
Even the Simulated Annealing Algorithm (SAA) was
employed to solve the economic emission dispatch
problem in [36]. Moreover, the enhanced vibrating
particles system algorithm was employed to identify
the damage to the truss structure in [37]. A new
algorithm called ameliorated grey wolf optimization
[38] has been recently introduced that could solve the
ELD problem. The hybrid arti�cial algae algorithm
was used in [39] to solve the ELD problem. In [40]
and [41], the arti�cial cooperative search algorithm and
phasor particle swarm optimization were respectively
introduced to solve the ELD problem. Bhattacharjee et
al. [42] used the opposition-based krill herd algorithm,
while others [43] utilized the adaptive di�erential evo-
lutionary algorithm to �nd a solution to the ELD
problem.

Recently, a new algorithm called Salp Swarm
Algorithm (SSA) [44] has been proposed based on the
movement of salps in the sea. The search agent having
the maximum �tness is made to move towards the
global optima. The SSA is considered superior due
to its exploration and exploitation properties and it is
utilized to reach the global optimal value within the
least computation time. Due to its exploration and
exploitation properties, SSA avoids local optimum and
tends to move directly towards the global optimum
value. Lately, some e�cient modi�ed and hybrid
optimization techniques [45{50] have also been used
to solve ELD problems more e�ciently. With a new
concept, there are some recent techniques [51{61] that
are actively able to solve the ELD problem with much
more complex constraints.

Section 2 of the paper states the problem formu-
lation of various ELD problems with di�erent feasible
constraints. The conception of the SSA is described in
Section 3. The performance of the SSA under various
test systems and the simulation studies are discussed
in Section 4. Lastly, conclusion is drawn in Section 5.

2. Problem formulation

The problems of ELD are expressed as convex or
non-convex problems with some linear and nonlinear
constraints for di�erent applications.

The objective function of ELD with quadratic cost
function based on Eq. (1) is given below [44]:

FCost = min
NX
a=1

�
�a + �aPa + 
aP 2

a
�
: (1)

For realistic and practical application of ELD problem,
the smooth quadratic cost function has been modi�ed
by adding sinusoidal terms of ripple input-output curve
with valve point e�ects. The valve point e�ect-based
cost function of ELD is given below [44]:
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FCost = min
NX
a=1

 
�a + �aPa + 
aP 2

a

+
�����a � sin

�
"a(Pmin

a � Pa)
	 ����!; (2)

where �a, �a, 
a, �a, and "a are the constant values of
fuel cost function. N is the total number of thermal
generators. Power generation of each generator is
Pa. Lower and higher limits of power generation are
characterized by Pmin

a and Pmax
a , respectively. Power

generation of each unit follows the generating capacity
constraint:
Pmin
a � Pa � Pmax

a : (3)

This is the inequality constraint of ELD problems. The
equality constraints or real power balance constraint of
ELD is based on Eq. (4):

NX
a=1

Pa � PD � PLoss = 0; (4)

where PD is the total system active power demand;
total transmission loss PLoss is calculated by using the
B-matrix loss coe�cients as expressed below [59]:

PLoss =
NX
a=1

NX
b=1

PaBabPb +
NX
a=1

B0aPa +B00: (5)

Ramp rate limit is another constraint that has been
considered in solving ELD problems to increase the
lifespan of generators as given below:

Pa � Pa0 � URa (as generation rises); (6)

Pa0 � Pa � DRa (as generation declines); (7)

max (Pmin
a ; Pa0 �DRa) � min (Pmax

a ; Pa0 + URa);
(8)

where Pa0 is the power generation of the ath previous
interval; URa and DRa are the up-ramp and down-
ramp limits, respectively.

Di�erent faults in the machines, boilers, feed
pumps, steam valve operation, and vibration in the
bearing, etc. and also such constraints as Prohibited
Operating Zone (POZ) have been considered in dealing
with ELD problems. Mathematically, POZ can be
expressed as follows:

Pmin
a � Pa � P la;1;
Pua;j�1 � Pa � P la;j ;
Pua;n � Pa � Pmax

a ;

j = 1 to n; (9)

where Pua;j and P la;j represent the upper and lower

limits of the jth prohibited operating zone of the ath
unit. Total number of prohibited operating zones of
the ath unit is n.

For a system with n generators and having nF
fuel options for each unit, the entire cost function is
expressed as follows:

Fip(Pi) =aip + bipPi + cipPi2

+
��eip � sinffip � (pmin

ip � Pi)g�� ; (10)

where p = 1; 2; � � � ; nF . Calculation of slack generator
is one of the important parts in ELD problem formu-
lations. If N is the total number of generators, then
the (N � 1) number of power generations is initially
calculated randomly based on Inequalities (3), (6), (7),
(8), and (9). The remaining generator (let Nth) called
slack generator must be evaluated using Eq. (4). The
value of slack generator is given below:

Without transmission losses:

PN = PD �
N�1X
a=1

Pa: (11)

With transmission losses:

PN = PD + PLoss �
N�1X
a=1

Pa: (12)

Transmission loss (PLoss) is also related to power
generations based on Eq. (5); therefore, Eq. (11) is
further modi�ed and is given below:

BNNP 2
N + PN

 
2
N�1X
a=1

BNaPa +
N�1X
a==1

B0N � 1

!
+

 
PD +

N�1X
a=1

N�1X
b=1

PaBabPb +
N�1X
a=1

B0aPa

�
N�1X
a=1

Pa +B00

!
= 0: (13)

In this study, the authors are considering static ELD
problem formulation. Rather than the static ELD
problem, the dynamical ELD one with a spinning
reserve can be considered as a complex constraint.
Similarly, for some durations like any day, i.e., 24
hours, di�erent constraints like start-up cost and must-
run cost can be considered as constraints in the unit
commitment problem formulation. Whenever this
type of complex constraint is included, the overall
problem formulation will be more complex and the SSA
algorithm can, therefore, be applied to this type of
complex formulation, as well. Due to lack of space,
these are not considered in the study.
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3. Salp swarm algorithm

The SSA [44] is a population-based optimization tech-
nique. It is inspired by the movement of the salps in
the ocean. They move in a swarm of population. The
entire population is divided into two groups: leader
and followers. The leader is the salp and is in front of
the chain, while the rest of the salps are considered the
followers. The leader slap guides the entire swarm of
salps towards the destination. The position of salps is
de�ned in an n-dimensional search space where n is the
number of variables of a given problem. Thus, the posi-
tions of all salps are stored in a two-dimensional matrix
called x. It is also assumed that there is a food source
called F in the search space as the swarm's target.

To update the position of the leader, the following
equation is proposed:

x1
j =

(
Fj + c1((ubj � lbj)c2 + lbj)
Fj � c1((ubj � lbj)c2 + lbj)

(14)

where x1
j denotes the position of the �rst salp (leader)

in the jth dimension, Fj the position of the food source
in the jth dimension, ubj the upper bound of the
jth dimension, and lbj the lower bound of the jth
dimension.

This equation proves that the leader updates its
position with respect to the food source. The coe�cient
c1 is the most important parameter in SSA because
it balances exploration and exploitation de�ned as
follows:

c1 = 2� e�4l
L
; (15)

where l is the current iteration and L is the maximum
number of iterations. The parameters c2 and c3 are
random numbers uniformly generated at the interval of
[0,1] and [-1,1], respectively. In fact, they dictate if the
next position in the jth dimension should be towards
positive in�nity or negative in�nity as well as the step
size. More details of these parameters can be found
in [44]. To update the position of the followers, the
following equations are utilized:

xij =
1
2

(xij + xi�1
j ); (16)

where i > 2 and xij shows the position of the ith
follower salp in the jth dimension.

Sequential steps for SSA
i. The lower and upper bounds for all the search

agents are initialized. The initialization process
for di�erent search agents is assigned randomly
at the initial stage within their lower and upper
bounds. Moreover, the total number of iterations
is decided and then, the number of search agents
to be used in the algorithm is decided;

ii. At this stage, the objection function of the system
is calculated. This function depends on the
independent variables given by the user;

iii. If the �tness function value obtained in the present
iteration is lower than the previous iteration value,
then it can be assigned as the local best. Then, the
salp swarm function starts its processing. Initially,
the parameters of SSA are assigned a �xed value
and as the iterations increase, the value of these
parameters keeps on changing. By using SSA
algorithm, the changed value of search agents
must check their di�erent constraints. If there is
any violation, then their values are �xed in their
boundary conditions;

iv. As the iteration changes, the values of these three
parameters also change and the search agents
collectively move towards the global optimum
value (Eq. (14)). Following every iteration, the
�tness value of the search agents also changes.
The search agent that is nearest to the global
optimum value has the highest �tness. In this
way, the search agents will move in the search
space and will explore the entire search space for
the optimized value. Once the location of the
optimized value is known to the search agent,
then the phase of exploitation will begin. Now,
instead of moving in the entire search space, the
search agents will exploit the regions in which
the results are promising. In this way, they tend
to move towards the global optimum value (Eq.
(15)). Once the iteration count is reached or the
value of the cost function is obtained within the
tolerance limit, the iteration is terminated. The
result obtained at that time is considered to be
the sub-global value (Eq. (16));

v. Once the �nal iteration count is reached, the
algorithm is terminated and the search agents
having the highest �tness are considered to be
nearest to the global optimum value.

The 
owchart of the SSA algorithm is shown in Fig-
ure 1.

In this subsection, the steps to solve the ELD
problem through the SSA implementation are ex-
plained. The detailed sequential steps for solving the
ELD problem are explained below:

i. Initialization of various parameters takes place in
the �rst step. Various variables like the lower
bound, upper bound, total power demand PD, etc.
are initialized. The total number of generators is
denoted by m and total number of search agents
is denoted by Popsize.

The search agent matrix is represented as
follows:
X = Xi = [X1; X2; X3; � � � ; XPopsize];



680 K. Bhattacharjee and N. Patel/Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 676{692

Figure 1. Flowchart of salp swarm algorithm.

where i = 1; 2; 3; � � � , Popsize. For ELD problem,
the search agent matrix is assigned as active power
generation and represented as follows:

[Xij ] = [Xi1; Xi2; Xi3; � � � ; Xim]

= [Pi1; Pi2; Pi3; � � � ; Pim] = [Pij ];

where m is the number of generators.
ii. Each of the elements of the search agent should

follow Eqs. (3), (6), (7), (8), and (9). If various
e�ects like the ramp rate limit and the prohibited
operating zone are considered, then the equation
should be satis�ed based on Inequalities (6){(9).

iii. For the ELD problem, the objective function is
considered the fuel cost of power generation and
it can be using Eq. (1) when quadratic fuel

cost function is used and Eq. (2) when valve
point loading e�ect is considered. This objective
function serves as the base of the algorithm. The
function needs to be minimized to reduce the
cost of the power generation in the system. The
objective function of fuel cost is calculated based
on the power generation (Pij) through step (i).

iv. The main working mechanisms of the algorithm
begin from Eq. (14). The values for the four main
parameters of the algorithm are assigned to the
concerned variables, i.e., c1 to c3. These values
facilitate the movement of the search agent (Xij)
(i.e., power generation (Pij)) in the search space.
By using Eqs. (13){(15), the movement of search
agents takes place in the search space.

v. Now, the new values of the power generations
are obtained. These new values are checked for
the constraints given in Inequalities (3), (6), (7),
(8), and (9). If various e�ects like the ramp
rate limit and the prohibited operating zone are
considered, then the equation should be satis�ed
based on Inequalities (6){(9). If any value violates
any of these constraints, then its upper or lower
value is considered. Moreover, the slack value of
power generation can be calculated based on Eqs.
(11) and (12). If there are any violations of any
Inequality Constraints (3), (6), (7), (8), and (9)
which are valid for the slack generator, then repeat
step (ii). This process continues until the ultimate
set of the power generation matrix is formed.

vi. The new objective function of fuel cost can be
calculated based on the newly generated power
generation matrix.

vii. Now, the current objective values are compared
with those obtained through the previous itera-
tions. If the present objective value is less than the
previous value, then the present value is treated
as the best local optimized value; however, if
the current value is not lower than the previous
one, then the previous value remains in the same
position of the newly generated value of the power
generation matrix. Now, the objective function
value obtained at the present iteration is compared
to all other values obtained at di�erent iterations
and �nally, the minimum value is made the global
optimum value. This global optimum value is
stored in a di�erent memory location.

viii. Go to step (ii) for the next iteration. Terminate
the process after reaching a predetermined value
of the iteration count.

4. Simulations and results

To prove the e�ectiveness of the SSA, six sets of
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experiments were conducted and the �nal results were
compared to various existing methods in a tabular
manner as well as graphically.

The SSA algorithm was applied to four di�erent
test systems with varying degrees of complexity for
verifying its e�ectiveness and feasibility. The program
was written in MATLAB-2017B language and executed
on a 1.7 GHz Intel Core i3 personal computer with 4-
GB RAM. All the systems were re-simulated with the
same con�guration.

Test Case 1: Six generator units have been consid-
ered in Test Case 1, where the transmission losses have
been taken into account. The total power demand is
1263 MW. Here, we have not considered valve point
loading e�ect, ram-rate limit, or prohibited operating
zone. The input data were taken from [45] and the
system runs for 400 iterations. The number of search
agents used is 50 in this case. In Test Case 1, the
results of the SSA algorithm are compared with those
of TLBO [45], CTLBO [45] and AIS [45] optimization
techniques. According to the graph and the table, the
minimum cost is �rst reached using the SSA algorithm
and the rest of the optimization techniques take a
minimum time compared to others. Table 1 shows
that the minimum fuel cost for 6 generator units is
15377.8907 $/hr obtained by the proposed algorithm,
which is better than TLBO [45], CTLBO [45], and

AIS [45]. The minimum, maximum, and average fuel
costs obtained after 50 trials are presented in Table 2.
The convergence characteristics of SSA are shown in
Figure 2. The net power delivered to the system is
calculated as 1274.0128 MW. Hence, the accuracy of
the result is 99.99% based on Eq. (4).

Test Case 2: Ten generator units have been con-
sidered in Test Case 2, where the transmission losses
have been neglected. This test case incorporates multi
fuel costs and valve point loading e�ect. Here, we
have not assumed the ram-rate limit or the prohibited
operating zone. The total power demand is 2700 MW.

Figure 2. Convergence characteristic of SSA for 6
generator units.

Table 1. Optimum power output and fuel cost for SSA and other techniques comparison for the 6-unit test system.

Power Output (MW)
Unit SSA TLBO [45] CTLBO [45] AIS [45] QGSA[60] IPSO-TVSC [61]
P1 442.9518 446.7270 449.4980 458.2904 263.9079 447.5840
P2 172.7533 173.4890 173.4810 168.0518 173.2418 173.2010
P3 257.3543 173.4890 264.9700 262.5175 263.9079 263.3310
P4 136.1425 138.8320 127.4610 139.0604 139.0529 138.8520
P5 162.5341 165.6500 173.8420 178.3936 165.6013 165.3280
P6 102.0713 86.9460 86.2390 69.3416 86.5357 87.1500

Transmission loss (MW) 11.0128 12.4180 12.4900 13.1997 12.4163 12.4460
Power generated (MW) 1274.0128 1275.4180 1275.4900 1275.6550 1275.4163 1275.4460

Fuel cost ($/hr) 15424.0734 15,442.5200 15,441.6970 15,448.0000 15,442.6608 15443.0630

Table 2. Minimum maximum and average cost obtained by SSA and various optimization techniques for 6 generator units
(50 trials).

Methods Generation cost ($/hr)
No. of hits to

minimum
solution

Standard
deviation

Maximum Minimum Average
SSA 15427.0734 15424.0734 15424.2534 47 0.06

TLBO [45] 15450.3685 15442.5200 15445.8163 29 0.42
CTLBO [45] 15449.0236 15441.6970 15445.9464 21 0.58

AIS [45] NA� 623.9588 NA NA NA
QGSA [60] 15,442.6630 15,442.6608 15,442.6614 NA NA

IPSO-TVSC [61] 155445.1140 15443.0630 15443.5820 NA NA
�NA: Not Available.
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Table 3. Optimum power output and fuel cost for SSA, and other techniques comparison for the 10-unit test system.

Power Output (MW)

Unit Fuel
type

SSA
Fuel
type

PSO-LRS
[47]

Fuel
type

APSO
[47]

Fuel
type

CBPSO-RVM
[47]

Fuel
type

OKHA
[47]

P1 2 217.0407 2 219.0155 2 223.3377 2 219.2073 2 214.4684
P2 1 211.8944 1 213.8901 1 212.1547 1 210.2203 1 208.9873
P3 1 281.6792 1 283.7616 1 276.2203 1 278.5456 1 332.0575
P4 3 238.2056 3 237.2687 3 239.4176 3 239.3704 3 238.1622
P5 1 279.8321 1 286.0163 1 274.6411 1 276.412 1 269.2157
P6 3 239.2547 3 239.3987 3 239.7953 3 240.5797 3 238.5653
P7 1 290.2798 1 291.1767 1 285.5406 1 292.3267 1 280.6120
P8 3 240.2228 3 241.4398 3 240.6270 3 237.7557 3 237.6241
P9 3 425.5958 3 416.9721 3 429.3104 3 429.4008 3 413.8705
P10 1 275.9942 1 271.0623 1 278.9553 1 276.1815 1 266.4366

Fuel cost
($/hr)

623.9170 624.2297 624.0145 623.9588 605.6449*

�The precise fuel generation cost in [47] is 628.8264 $/hr which is much higher than that reported in [47].

Table 4. Minimum, maximum, and average costs obtained by SSA, and various optimization techniques for 10 generator
units (50 trials).

Generation cost ($/hr)
No. of hits to

minimum
solution

Standard
deviation

Methods Maximum Minimum Average
SSA 623.9170 623.9170 623.9170 50 0

PSO-LRS [47] 626.7210 624.2297 625.3756 27 0.46
APSO [47] 628.3947 624.0145 626.5550 21 0.58

CBPSO-RVM [47] NA� 623.9588 NA NA NA
�NA: Not Available.

The input data were taken from [46]. The number of
search agents used is 50 in this case. In this test case,
the results obtained from SSA algorithm are compared
with those of PSO-LRS [47], APSO [47], CBPSO-RVM
[47], and OKHA [47] optimization techniques to prove
the e�ectiveness of SSA algorithm. In Table 3, the
minimum fuel cost for 10 generator units is 623.9170
$/hr obtained by the proposed algorithm, which out-
performs PSO-LRS [47], APSO [47], CBPSO-RVM
[47], and OKHA [47]. The minimum, maximum, and
average fuel costs obtained after 50 trials are presented
in Table 4. According to Table 4, the minimum cost is
�rst reached by using the SSA algorithm and the rest
of the optimization techniques take a minimum time
compared to others. The convergence characteristic of
SSA is shown in Figure 3. The net power delivered
to the system is calculated as 2699.9999 MW. Hence,
the accuracy of the result is 99.9999% based on Eq. (4)
with transmission losses, which have been neglected.
The fuel cost mentioned for OKHA [47] is 605.6449
$/hr; however, based on the mentioned output power
generation for each unit with consideration of the input
data from [46], the actual fuel cost is calculated as
628.8264 $/hr, which is much higher than that obtained
by SSA.

Figure 3. Convergence characteristic of SSA for 10
generator units.

Test Case 3: Thirteen generator units have been
considered in Test Case 3, where the transmission losses
have been considered. The total power demand is 2520
MW. The input data were taken from [48] and the
system runs for 400 iterations. Here, we considered
valve point loading and neglected ram-rate limit and
prohibited operating zone. The number of search
agents used is 50 in this case. In this test case, the
results of the SSA algorithm are compared with those
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obtained by ORCCRO [49], SDE [50], and BSA [57]
optimization techniques, as shown in Table 5. The fuel
cost obtained using SSA is calculated to be 24512.6085
$/hr. Based on Table 6, the minimum cost is �rst
reached by using the SSA algorithm and the rest of the
optimization techniques take minimum time compared
to others. The results obtained by the proposed
algorithm are better than those of SDE [50], ORCCRO
[49], and BSA [57]. The minimum, maximum, and
average fuel costs obtained after 50 trials are presented
in Table 6. The convergence characteristic of SSA is
shown in Figure 4. The net power delivered to the
system should be 2520 MW. Hence, the accuracy of
the result is 100.00% based on Eq. (4).

Test Case 4: In this test case, 40 generator units
with valve point loading have been considered. The
test case has been split into two parts: In Test Case
(a), transmission loss has been neglected, while in
Test Case (b) it has been considered. For both cases,

Figure 4. Convergence characteristic of SSA for 13
generator units.

prohibited operating zone and ram-rate limit have been
neglected. The details of these two case studies have
been given below. Here, this system can be of two
types: that without transmission losses and the one
with transmission losses considered.

Table 5. Optimum power output and fuel cost for SSA, and other techniques comparison for the 13-unit test system.

Power output (MW)
Unit SSA SDE [41] ORCCRO [40] BSA [48]
P1 628.3179 628.32 628.32 628.3158
P2 299.1992 299.20 299.20 299.1947
P3 297.4468 299.20 299.20 297.4764
P4 159.7327 159.73 159.73 159.7322
P5 159.7327 159.73 159.73 159.7330
P6 159.7328 159.73 159.73 159.7328
P7 159.7331 159.73 159.73 159.7318
P8 159.7325 159.73 159.73 159.7329
P9 159.7328 159.73 159.73 159.7286
P10 77.3995 77.40 77.40 77.3945
P11 114.7993 113.12 112.14 114.7992
P12 92.3997 92.40 92.40 92.3962
P13 92.4000 92.40 92.40 92.3919

Power generation (MW) 2559.8000 2560.4300 2559.43 2560.3641
Transmission loss (MW) 39.8000 40.43 39.43 39.8006

Fuel cost ($/hr) 24512.6085 24514.88 24513.91 24512.6654

Table 6. Minimum, maximum, and average costs obtained by SSA and various optimization techniques for 13 generator
units (50 trials).

Generation cost ($/hr)
No. of hits to

minimum
solution

Standard
deviation

Methods Maximum Minimum Average
SSA 24512.61 24512.61 24512.61 50 0

ORCCRO [49] 24518.56 24513.91 24515.72 27 0.46
SDE [50] 24519.74 24514.88 24516.23 21 0.58
BBO [49] NA� 24519.69 NA NA NA

DE/BBO [49] 24522.45 NA 24519.58 NA NA
�NA: Not Available.
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Table 7. Optimum power output and fuel cost for SSA and other techniques comparison for the 40-unit test system.

Power output (MW)
Unit SSA EMA [51] QPSO [51]
P1 110.7998 110.7998 111.2000
P2 110.7998 110.7998 111.7000
P3 97.3999 97.3999 97.4000
P4 179.7331 179.7331 179.7300
P5 87.7998 87.7999 90.1400
P6 139.9999 140.0000 140.0000
P7 259.5996 259.5996 259.6000
P8 284.5996 284.5996 284.8000
P9 284.5996 284.5996 284.8400
P10 130.0000 130.0000 130.0000
P11 94.0000 94.0000 168.8000
P12 94.0000 94.0000 168.8000
P13 214.7597 214.7598 214.7600
P14 394.2793 394.2793 304.5300
P15 394.2793 394.2793 394.2800
P16 394.2793 394.2793 394.2800
P17 489.2793 489.2793 489.2800
P18 489.2793 489.2793 489.2800
P19 511.2793 511.2793 511.2800
P20 511.2794 511.2793 511.2800
P21 523.2793 523.2793 523.2800
P22 523.2793 523.2793 523.2800
P23 523.2793 523.2793 523.2900
P24 523.2793 523.2793 523.2800
P25 523.2793 523.2793 523.2900
P26 523.2793 523.2793 523.2800
P27 10.0000 10.0000 10.0100
P28 10.0000 10.0000 10.0100
P29 10.0000 10.0000 10.0000
P30 87.7999 87.7999 88.4700
P31 189.9999 190.0000 190.0000
P32 189.9999 190.0000 190.0000
P33 190.0000 190.0000 190.0000
P34 164.7998 164.7998 164.9100
P35 199.9999 200.000 165.3600
P36 194.3976 194.3977 167.1900
P37 109.9999 110.0000 110.0000
P38 109.9999 110.0000 107.0100
P39 109.9999 110.0000 110.0000
P40 511.2794 511.2793 511.3600

Fuel cost ($/hr.) 121412.5347 121412.5355 121448.2100

Test Case 4(a): In this case, 40 generator units
with valve point are considered. Transmission losses
are neglected. The input data were taken from [51].
The total load demand is 10500 MW. In Test Case
4(a), the results of the SSA algorithm are compared
with those of EMA [51] and QPSO [51] optimization
techniques. According to Table 7, the minimum cost

is �rst reached by using the SSA algorithm and the
rest of the optimization techniques take a longer time
to complete. As shown in Table 7, the minimum fuel
cost for 40 generator units is 121412.5347 $/hr obtained
by the proposed algorithm, which outperforms EMA
[51] and QPSO [51]. The minimum, maximum, and
average fuel costs obtained after 50 trials are presented
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Table 8. Minimum, maximum, and average cost obtained by SSA and various optimization techniques for 40 generator
units (50 trials).

Methods Generation cost ($/hr)
No. of hits to

minimum
solution

Standard
deviation

Maximum Minimum Average

SSA 121415.2584 121412.5347 121413.0794 40 0.20

EMA [51] 121416.2031 121412.5355 121414.6617 21 0.58

QPSO [51] 121455.9510 121448.2100 121453.6287 15 0.70

Figure 5. Convergence characteristic of SSA for 40
generator units.

in Table 8. The convergence characteristic of SSA is
displayed in Figure 5. The net power delivered to
the system is calculated as 10500 MW. Hence, the
accuracy of the result is 100.00% based on Eq. (4) with
transmission losses neglected.

Test Case 4(b): In this case, 40 generator units have
been considered and their transmission losses have been
taken into consideration. The total power demand
is 10500 MW. The input data was taken from [52]
and the system runs for 400 iterations. Fifty search
agents are used in this case. Only valve-point loading
e�ect is considered as a constraint for this test case.
The comparison of the optimum fuel cost obtained by
di�erent optimization techniques is given in Table 9.
Table 10 shows the minimum, maximum, and average
fuel costs obtained by various optimization techniques
after 50 trials. The convergence characteristic is shown
in Figure 6. The minimum fuel cost obtained using
SSA is calculated as 136653.0219 $/hr. Based on the
tabular data, it is clear that the minimum fuel cost
is obtained by SSA which performs better than other
techniques like GAAPI [49], DE/BBO [49], SDE [50],
and BBO [49]. The net power delivered to the system
is calculated as 10500 MW. Hence, the accuracy of the
result is 100.00% based on Eq. (4).

Test Case 5: To investigate the e�ciency of SSA in
a large power system, experiments are conducted on

Figure 6. Convergence characteristic of SSA for 40
generating units.

the Korean power system. The input data were taken
from [58]. This test system is a fossil fuel-based power
system, composed of forty thermal generating units,
�fty-one gas units, twenty nuclear units, and twenty-
nine oil units. Out of 140 units, 6 thermal units, 4
gas units, and 2 oil units have non-convex fuel cost
function addressing valve loading e�ects. The total
load demand is 49342 MW. A large and complicated
test system of 140 generating units has been considered
here with valve point loading e�ects, ramp rate limits,
and prohibited operating zones. The system is made to
run for 1000 iterations. Fifty search agents are used in
this case. Since the cost function of each generating
unit is considered as the second-order polynomial,
the global optimum solution can be obtained using
the mathematical programming techniques. Table 11
shows the power generation of each of the 140 gener-
ators using the SSA. The total fuel cost obtained by
SSA is calculated as 1658384.8872 $/hr. Table 12 com-
pares the minimum, maximum, and average fuel costs
obtained using various optimization techniques after 50
trials. Figure 7 shows the convergence characteristic of
SSA. The results in Table 11 prove that the minimum
fuel cost is obtained using SSA which is much better
than other algorithms. The net power delivered to the
system is calculated as 49342 MW. Hence, the accuracy
of the result is 100.00% based on Eq. (4).
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Table 9. Optimum power output and fuel cost for SSA and other techniques comparison for the 40-unit test system.

Unit
Power output (MW)

SSA GAAPI [49] DE/BBO [49] SDE [50] BBO [49]

P1 113.8585 114.0000 111.0400 110.0600 112.5400
P2 114.0000 114.0000 113.7100 112.4100 113.2200
P3 119.3004 120.0000 118.6400 120.0000 119.5100
P4 183.3369 190.0000 189.4900 188.7200 188.3700
P5 91.7652 97.0000 86.3200 85.9100 90.4100
P6 139.9816 140.0000 139.8800 140.0000 139.0500
P7 299.5148 300.0000 299.8600 250.1900 294.9700
P8 299.1356 300.0000 285.4200 290.6800 299.1800
P9 297.6808 300.0000 296.2900 300.0000 296.4600
P10 279.1599 205.2500 285.0700 282.0100 279.8900
P11 171.4666 226.300 164.6900 180.8200 160.1500
P12 94.4916 204.7200 94.0000 168.7400 96.7400
P13 485.0345 346.4800 486.3000 469.9600 484.0400
P14 482.8777 434.3200 480.7000 484.1700 483.3200
P15 484.0869 431.3400 480.6600 487.7300 483.7700
P16 484.9795 440.2200 485.0500 482.3000 483.3000
P17 489.6806 500.0000 487.9400 499.6400 490.8300
P18 488.7718 500.0000 491.0900 411.3200 492.1900
P19 515.9524 550.0000 511.7900 510.4700 511.2800
P20 511.6585 550.0000 544.8900 542.0400 521.5500
P21 532.3453 550.0000 528.9200 544.8100 526.4200
P22 549.9726 550.0000 540.5800 550.0000 538.3000
P23 523.9532 550.0000 524.9800 550.0000 534.7400
P24 527.3965 550.0000 524.1200 528.1600 521.2000
P25 523.3733 550.0000 534.4900 524.1600 526.1400
P26 527.6279 550.0000 529.1500 539.1000 544.4300
P27 10.0009 11.4400 10.5100 10.0000 11.5100
P28 11.1190 11.5600 10.0000 10.3700 10.2100
P29 10.1184 11.4200 10.0000 10.0000 10.7100
P30 86.9830 97.0000 90.0600 96.1000 88.2800
P31 189.9885 190.0000 189.8200 185.3300 189.8400
P32 189.9150 190.0000 187.6900 189.5400 189.9400
P33 189.9535 190.0000 189.9700 189.9600 189.1300
P34 199.9110 200.0000 199.8300 199.9000 198.0700
P35 197.9306 200.0000 199.9300 196.2500 199.9200
P36 165.3294 200.0000 163.0300 185.8500 194.3500
P37 109.4111 110.0000 109.8500 109.7200 109.4300
P38 109.9582 110.0000 109.2600 110.0000 109.5600
P39 109.9271 110.0000 109.6000 95.7100 109.6200
P40 547.6016 550.0000 543.2300 532.4700 527.8200

Fuel cost ($/hr) 136653.0219 139864.96 136950.77 138157.46 137026.82
Power generation (MW) 11459.5499 11545.0600 11457.8300 11474.4300 11470.0000
Transmission loss (MW) 959.5500 1045.0600 957.8300 974.4300 970.3700
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Table 10. Minimum, maximum, and average fuel costs obtained by SSA and various optimization techniques for 40
generator units (50 trials).

Generation cost ($/hr)
No. of hits to

minimum
solution

Standard
deviation

Methods Maximum Minimum Average

SSA 136653.10 136653.02 136653.02 48 0.04

BBO [49] 137587.82 137026.82 137116.58 41 0.18

DE/BBO [49] 137150.77 136950.77 136966.77 45 0.10

ORCCRO [49] 136855.19 136845.35 136848.16 43 0.14

Table 11. Optimum power output and fuel cost for SSA for the 140-unit test system.

Unit Power
output (MW)

Unit Power
output (MW)

Unit Power
output (MW)

Unit Power
output (MW)

P1 110.8395 P36 499.9997 P71 140.7389 P106 880.9000
P2 163.9999 P37 240.9999 P72 388.4824 P107 873.6998
P3 189.9518 P38 240.9424 P73 230.9036 P108 877.4000
P4 189.9612 P39 773.9925 P74 271.6243 P109 871.6999
P5 168.3794 P40 768.9999 P75 175.9105 P110 864.7967
P6 186.3858 P41 3.161799 P76 293.5256 P111 881.9998
P7 489.9999 P42 3.072809 P77 306.7155 P112 94.20313
P8 489.9997 P43 239.2171 P78 385.5398 P113 95.06407
P9 496.0000 P44 249.8248 P79 530.9998 P114 94.32693
P10 496.0000 P45 247.436 P80 530.9998 P115 244.0719
P11 495.9984 P46 249.2271 P81 542.0000 P116 245.6768
P12 495.9999 P47 246.1245 P82 56.66217 P117 245.6193
P13 505.9871 P48 247.8030 P83 115.1015 P118 96.84149
P14 508.9965 P49 246.1036 P84 115.0754 P119 95.7353
P15 505.9998 P50 246.5329 P85 115.9195 P120 116.5415
P16 504.9999 P51 165.1967 P86 207.117 P121 175.1441
P17 505.9566 P52 165.8992 P87 207.2333 P122 3.6211
P18 505.9948 P53 185.7631 P88 176.4165 P123 4.0487
P19 505.0000 P54 165.0393 P89 175.7241 P124 15.4299
P20 504.9951 P55 180.1148 P90 177.7537 P125 9.6570
P21 504.9971 P56 180.9737 P91 180.4744 P126 13.0826
P22 504.9874 P57 112.9304 P92 575.3998 P127 10.0005
P23 504.9936 P58 199.5520 P93 547.4997 P128 112.0987
P24 504.9997 P59 311.9997 P94 836.7998 P129 4.7148
P25 537.0000 P60 299.2522 P95 837.4999 P130 5.0210
P26 536.9998 P61 163.5181 P96 681.9973 P131 5.0062
P27 548.9997 P62 99.08827 P97 719.9999 P132 50.1757
P28 548.9996 P63 468.563 P98 717.9918 P133 5.0813
P29 500.9999 P64 510.7641 P99 719.9925 P134 42.0132
P30 498.9999 P65 489.9999 P100 963.9999 P135 42.0579
P31 505.9997 P66 201.0382 P101 957.9999 P136 41.1626
P32 505.9910 P67 488.1348 P102 947.8997 P137 17.0139
P33 505.7959 P68 485.3448 P103 933.9998 P138 7.0044
P34 505.9998 P69 132.4697 P104 934.9996 P139 7.0202
P35 500.0000 P70 338.9781 P105 876.4997 P140 31.3066

Total fuel cost = 1658384.8872 $/hr
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Table 12. Minimum, maximum, and average fuel cost obtained by SSA and various optimization techniques for 140
generator units (50 trials).

Methods Generation cost ($/hr)
No. of hits to

minimum
solution

Standard
deviation

Maximum Minimum Average

SSA 1658386.57 1658384.88 1658384.25 45 0.10

BBO [49] 1669536.35 1665478.25 1667548.32 NA NA

DE/BBO [49] 1662349.58 1660215.65 1661257.35 NA NA

ORCCRO [49] 1659823.97 1659654.83 1659725.96 42 0.16

Table 13. E�ect of various parameters on the performance of SSA.

c1 c2 c3 Fuel cost ($/hr)

0.16 0.41 0.14 1658479.1876

0.68 0.65 0.15 1658455.6489

0.47 0.87 0.62 1658438.3245

0.57 0.54 0.25 1658420.9452

0.55 0.65 0.34 1658397.3249

0.7886 0.4082 0.3452 1658384.8872

0.42 0.26 0.95 1658399.5475

0.94 0.32 0.84 1658456.3225

0.21 0.41 0.25 1658472.2587

0.78 0.52 0.41 1658501.3654

Figure 7. Decreasing cost for 140 generator units using
SSA.

4.1. Tuning of parameters for the SSA
To obtain the optimized solution with the use ofSSA,
it is imperative to obtain the proper values for
parameters c1, c2, and c3. Tuning of these parameters
is essential to obtaining an optimized solution.
Di�erent values of these parameters give di�erent
fuel costs. For one single value of one parameter,
other parameters should be changed for all possible
combinations. For the single value of c1, di�erent
combinations of c2 and c3 have been made to obtain the

minimum fuel cost. The optimum fuel cost obtained
for the 140-unit test system with all parameters
including c1 = 0:7886, c2 = 0:4082, and c3 = 0:3452
is 1658384.8872 $/hr, as shown in Table 13. However,
the optimum value of fuel cost obtained for other test
systems is also consistent with the same values of all
the parameters. Presenting all these results for all test
systems in a table takes much space which has made
us overlook the details of the tuning procedure. A
brief result of the most complex 140-unit generator
system out of �ve test systems is shown in Table 13.

Also, using a large number of search agents or few
search agents for screening the search space does not
ensure achieving the optimized solution. Therefore, a
speci�c number of search agents only help obtain the
optimized solution. For each search agent, trials have
been run. The output obtained after using various
search agents is shown in Table 14. Out of these trials,
50 search agents achieved the optimized fuel cost. For
other search agents, no signi�cant improvement in the
fuel cost was observed. Moreover, the simulation time
duration is de�nitely prolonged in the case of more than
50 search agents.

The optimum values of the tuned parameters are
Psize = 50, c1 = 0:7886, c2 = 0:4082, and c3 = 0:3452.



K. Bhattacharjee and N. Patel/Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 676{692 689

Table 14. E�ect of the number of search agents on the 140-unit generator system.

Number of
search agents

No. of hits
to best solution

Simulation
time (s)

Max. cost
($/hr)

Min. cost
($/hr)

Average cost
($/hr)

20 33 48.213 1658406.547 1658399.254 1658401.879

50 45 50.42 1658386.570 1658384.880 1658384.250

100 28 54.25 1658416.235 1658406.325 1658410.884

150 18 57.247 1658428.625 1658412.658 1658422.558

200 12 62.46 1658468.235 1658435.328 1658460.995

4.2. Simulation Time Comparison
In this section, authors have created a table to compare
the simulation time durations of the SSA algorithm
with those of all the other algorithms for all the
�ve di�erent test cases. The authors understand
that it is not possible to compare the simulation
times as di�erent authors have used di�erent computer
con�gurations. However, this table only gives an
indication of the superiority of SSA with the same
computer con�gurations. The programs have been
written in MATLAB-2017B language and executed
using a personal computer featuring 1.7 GHz Intel core
i3 and 4 GB RAM. All the systems are re-simulated
with the same con�guration.

4.3. Comparative study
Quality of Solution. Tables 1, 3, 5, 7, 9, and
11 show that the fuel cost obtained by the SSA is
the least among other optimization techniques. The
cost obtained by SSA is quite a�ordable compared
to the costs obtained by many previously developed
algorithms. For example, in Test Case 1, the minimum
fuel cost of the SSA is 24512.6085 $/hr which is less
than the minimum fuel cost obtained by SDE and
ORCCRO. The comparison was made by neglecting the
transmission losses as well as taking the transmission
losses into account. Thus, it is clear that the quality of
the solution is the best when SSA is applied.

Robustness. The robustness of any optimization
algorithm cannot be judged by only running the al-
gorithm for a single time. A number of trials should be
conducted to prove the robustness of any optimisation
technique. According to Tables 4 and 6, SSA achieves
the optimal solution for all the 50 trials in various
test cases. According to Tables 2, 8, 10, and 12, it
can be said that SSA gives the minimum fuel cost
for the maximum number of trials as compared to
other optimization techniques. This proves that the
e�ciency of the SSA is very high and SSA is superior to
other optimization techniques in terms of performance.

This proves that the algorithm performs consistently
well when it is compared to other algorithms.

Computational e�ciency. The e�ciency of any
optimization technique is determined by the time the
technique takes to reach the global optimal solution.
According to Table 15, the computational time taken
for one single iteration is the least for the SSA among
other previously developed optimization techniques.
Thus, the SSA achieves global optimal results in the
least computational time.

5. Conclusion

A new algorithm called Salp Swarm Algorithm was
proposed to solve ELD problem. To prove the e�ciency
of the SSA, �ve test systems of di�erent kinds of
thermal power plants were considered in which the
main objective was the net fuel cost reduction. This
objective was obtained by SSA, as shown in Tables 1, 3,
5, 7, 9, and 11. The comparison between the proposed
technique and other techniques is also shown in these
tables. The average, minimum, and maximum values
obtained for di�erent optimization techniques in vari-
ous test systems within a particular number of trials
were also considered important and minimized for any
optimization technique. The authors managed to prove
the e�ectiveness of SSA compared to other algorithm
with consideration of the aforementioned components
in Tables 2, 4, 6, 8, 10, and 12. Given that simulation
time was also an important object in soft computing
techniques, this study considered it for the same test
system with the other e�cient optimization techniques.
The authors considered the simulation time for the
above-discussed test systems and successfully proved
that SSA took the minimum computational time.
This was shown, as given in Table 15. The results
proved that SSA was consistent, feasible, and more
e�ective than other algorithms in terms of e�ciency
and computational time. The numerical results proved
that the SSA prevented premature convergence and



690 K. Bhattacharjee and N. Patel/Scientia Iranica, Transactions D: Computer Science & ... 29 (2022) 676{692

Table 15. Simulation time comparison.

Algorithm Time/iteration (s) Test case

SSA 0.046

Test Case 1TLBO [45] 0.85
CTLBO [45] NA�

AIS [45] NA�

SSA 0.051

Test Case 2PSO-LRS [47] 0.85
APSO [47] NA�

CBPSO-RVM [47] NA�

SSA 0.041

Test Case 3ORCCRO [49] 0.087
SDE [50] NA�

BBO [49] NA�

DE/BBO [49] 0.90

SSA 0.15
Test Case 4(a)EMA [51] 0.23

QPSO [51] 0.54

SSA 0.07

Test Case 4(b)BBO [49] 0.14
DE/BBO [49] 0.11
ORCCRO [49] 0.08

SSA 50.42

Test Case 5BBO [49] 126.69
DE/BBO [49] 83.79
ORCCRO [49] 71.27

had a stable convergence characteristic. Hence, by
using the exploration and exploitation properties of
SSA, the problem of ELD was successfully solved.
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