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Abstract. Linguistic Z-Numbers (LZNs), as a more rational extension of linguistic
description, consider the fuzzy restriction of assessment information and take the reliability
of the information into account. Maclaurin Symmetric Mean (MSM) operator has the
advantage which can take account of the interrelationship of di�erent attributes and there
are a lot of research results on it. However, it has not been used to handle Multi-Attribute
Decision-Making (MADM) problems expressed by LZNs. To summarize the advantages
of LZNs and MSM, in this article, we propose the Linguistic Z-number MSM (LZMSM)
and Linguistic Z-number Weight MSM (LZWMSM) operators respectively, and several
characters and special cases of them are discussed. In addition, we propose a method to
deal with some MADM problems using the LZWMSM operator. Finally, by comparing
it with several existing methods, an example is given to illustrate the e�ectiveness and
superiority of this newly proposed method.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Zadeh [1] proposed Fuzzy Sets (FSs), which laid the
foundation for fuzzy evaluation. However, the FSs
only contain the membership function which is a crisp
number in [0, 1]. So, when the fuzzy information
is complicated, it is di�cult to describe it by FSs.
Later, Atanassov [2] introduced the Intuitionistic FS
(IFS) which includes not only membership degree but
also non-membership degree to express more complex
fuzzy information. Descrijver and Kerre [3] further
explored and de�ned Intuitionistic Fuzzy Numbers
(IFNs). However, we found that these information
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expression methods do not consider the con�dence
degree of decision-making information. In fact since ev-
eryone is a bounded rational person, there are cultural
di�erences, which can produce signi�cant di�erences
when evaluating the same thing. To solve this problem,
Zadeh [4] �rst introduced the concept of Z-number. A
Z-number is an ordered pair of Fuzzy Numbers (FNs)
that are expressed as Z = (A;B) representing con-
straint A and B reliability. Since then, there are many
research fruits based on Z-numbers [5{9]. Aliev et
al. [10] investigated the operational rules of Z-numbers,
but the operations are also complicated. Further,
to avoid the complexity of calculating regarding Z-
numbers, Kang et al. [11] presented a method that
can transform the Z-numbers to traditional FNs. Sim-
ilarly, Yaakob and Gegov [6] converted the Z-numbers
to trapezoidal FNs and proposed the interactive Z-
TOPSIS method to solve Multi-Attribute Decision-
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Making (MADM) problems. Peng et al. [12] presented
the Asymmetric Normal Z-value (ANZ) and gave an
innovative multi-criteria game model. In addition,
Saravi et al. [13] proposed Z-numbers DEA for location
optimization of biomass plants based on agricultural
residues. However, in many cases, people are more
inclined to give linguistic evaluation information, so it
is also necessary to apply Z-numbers to a linguistic
evaluation environment.

In real life, there are great deals of qualitative
information for MADM problems, which are easily
expressed by Linguistic Terms (LTs). To facilitate the
processing of language information, Zadeh [14{16] �rst
introduced the de�nition of Language Variables (LVs).
However, the original LVs proposed by Zadeh [14] is
discrete and a lot of original information may be lost
in the calculation process. To overcome the drawback,
Xu [17] extended the discrete LTs set to a continuous
one. Accordingly, LVs were extended to a series of
types relating to fuzzy information, such as uncertain
LVs [18,19], hesitant fuzzy linguistic information [20]
and so on [21,22]. As an extension of quantitative
research [23,24], based on the LVs and FSs, Chen and
Liu [25] presented the Linguistic IFNs (LIFNs) that
can integrate the advantages of IFNs and LVs. Then,
there are many types of researches based on LIFNs,
such as the partitioned Heronian Means (HMs) for
LIFNs [26], preference relations for LIFNs [27]. In the
same way, for combining the advantages of Z-number
and LTs, Wang et al. [28] proposed the Linguistic Z-
Numbers (LZNs). At the same time, they used the
Language Scaling Function (LSF) to modify and de�ne
the rules of operation to overcome the limitation of
using traditional operations to lose original information
[6,11].

Moreover, compared with the traditional opera-
tions of Z-numbers in [4,29], the operations proposed
by Wang et al. [28] is simpler and more exible, because
di�erent LSFs can be selected according to di�erent
situations. Besides, Wang et al. [28] proposed the
extended TODIM method by using Choquet integral
with Z-numbers for Multi-Criteria Decision-Making
(MCDM) problems. However, we found that Wang
methods cannot handle the variable interrelationship
between di�erent attributes. In actual decision-
making, many attributes a�ect each other. Therefore,
we will consider the use of aggregation operators to
deal with such problems in this article.

Many traditional aggregation operators [30] just
can aggregate a crisp values set into one. Now, to
deal with some special functions, the researchers have
developed many extended aggregation operators. The
Bonferroni Mean (BM) operator [31] presented by Bon-
ferroni can capture the relationship between any pair
of di�erent attributes ci and cj (i 6= j; i; j = 1; 2; :::; n)
in the decision-making problems. However, it ignores

the correlation between ci and cj when i = j. Then,
the HM was proposed by Beliakov et al. [32], which can
overcome this drawback. Based on these two operators,
a lot of research has been done. For example, Liang et
al. [33] proposed BM operators for Pythagorean FNs
(PFNs), Yang and Pang [34] proposed the partitioned
BM operators for q-Rung Orthopair FNs (q-ROFNs)
and Wei et al. [35] introduced HM operators for picture
FNs and so on. However, both the HM operator and
the BM operator can only consider the relationship
between any two attributes at most. The Maclaurin
Symmetric Mean (MSM) operator was �rst presented
by Maclaurin [36], and developed by Detemple and
Robertson [37], which considered the interrelationship
between di�erent numbers of attributes by adjusting
the variable parameter. Further, there are many
achievements to solve MADM problems by using MSM
operator: Wei et al. [38] presented the MSM operators
for q-ROFNs; Yang and Pang [39] proposed MSM
operators for PFNs; Peng [40] presented the MSM
operators for single-valued neutrosophic numbers and
so on [41].

To summarize the advantages of LZNs and MSM,
we extended the MSM operator to LZNs, and devel-
oped the Linguistic Z-number MSM (LZMSM) op-
erator and Language Z-Weighted MSM (LZWMSM)
operator. The advantages of our presented operators
are that they can not only take account of the merits
of MSM by considering interrelationship among multi-
attributes by a variable parameter, but also consider
the reliability about the constraint A of Z-number in
qualitative environment. So, the aims of our paper
are given as follows: (1) investigate several new MSM
operators for LZNs based on LSFs; (2) discuss the de-
sired characters of the proposed operators and several
special cases; (3) use our proposed operator to handle
MADM problems under the circumstance of LZNs and
to propose a novel decision method which can take
interrelationship of multi-attributes into account; and
(4) demonstrate the merits of this new method by
comparing with several existing approaches.

The following sections are organized as follows.
In Section 2 we give an outline of several basic no-
tions of LSFs, MSM operator, LZNs and some new
operational rules. In Section 3 we introduce LZMSM
and LZWMSM operators and study some properties of
them. In Section 4 we present a MADM approach ac-
cording to our proposed LZWMSM operator; in Section
5 an example is presented to express the validity and su-
periority of our new method by comparing it with other
methods. In Section 6 the conclusions are presented.

2. Preliminaries

In this part, we review some basic concepts and basic
theories of Z-number, LZNS, LSF and MSM operators.
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Suppose S = (sgjg = 0; 1; : : : l) is a �nite and totally
ordered discrete LT Set (LTS), and sg denotes an LV;
l is even number. In practice, l can be set to 4,
6, 8, etc. For example, when l = 4, it could be
represented as: S = (s0; s1; s2; s3; s4) = (very low; low;
fair; high; veryhigh).

2.1. Language Scaling Functions (LSFs)
De�nition 1 [28,42]. If �g 2 [0; 1] is a number, then
the LSF F conducts the mapping from sg to �g (g =
0; 1; :::; l) which can be expressed as:

F : sg ! �g (g = 0; 1; : : : ; l) ; (1)

where 0 � �0 < �2 < : : : < �l.
Based on the function, the symbols �g can express

the LT sg 2 S which reects the assessment informa-
tion, and the semantics of the LTs are denoted by the
function or value. Next, we introduce four useful LSFs.

F1 (sg) = �g =
g
l

(g = 0; 1; 2; : : : ; l) ; (2)

F2 (sg) = �g =
�g
l

� l
2

(g = 0; 1; 2; : : : ; l) ; (3)

F3 (sg) = �g =
�g
l

� 2
l

(g = 0; 1; 2; : : : ; l) ; (4)

F4 (sg) = �g

=

8><>:
( l2 )a�( l2�g)a

2( l2 )a
�
g = 0; 1; 2; : : : ; l2

�
( l2 )b+(g� l

2 )b

2( l2 )b
�
g = l

2 + 1; l2 + 2; : : : ; l
� (5)

In Eq. (5), a; b 2 (0; 1], and if a = b = 1, then �g = g
l .

To simplify the calculation, let a = b = 0:5.

2.2. Linguistic Z-Numbers (LZNs)
De�nition 2 [4]. A Z-number is an ordered pair of
FNs (A;B) that is related to a real-valued uncertain
variable X, where, A is a fuzzy restriction on the values
that the variable X is allowed to take, and B is a
measure of the certainty of A. In general, A and B
are described in natural language.

To simplify the concept of Z-numbers, here is a
simple explanation. For instance, we can use the Z-
number to express \I am sure that it takes about 1
hour and 45 minutes to travel from Jinan to Beijing
by a high-speed train", where \travel from Jinan
to Beijing by high-speed train" is the uncertainty
variable in the Z-number. Zadeh [4] noted that the
underlying probability distribution in a Z-number is
unknowable, and the Z-number processing method he
gave is complicated. Based on the idea of Z-number,
Wang et al. [28] proposed a more understandable Z-
number subclass- LZNs.

De�nition 3 [28]. Suppose Y is a universe of dis-
course, S1 = (siji = 0; 1; : : : T ) and S2 = (sj jj =

0; 1; : : : ; L) are two LTSs, and T and L are two
even numbers. In practice, T and L can be set
to 4, 6, 8, etc. For instance, when T = 4, it
can be expressed by S = (s0; s1; s2; s3; s4) = (very
bad; bad; general; good; verygood). Further, let
A&(y) 2 S1 and B&(y) 2 S2, then, the set of LZNs Z
in Y is given by:

Z =
��
y;A&(y); B�(y)

� jy 2 Y 	 ; (6)

in which A&(y) is the fuzzy linguistic measure of y,
and B�(y) is the probability measure of A&(y) that can
measure the reliability. In general, the LTSs S1 and
S2 are di�erent. To the given element x, each pair
of
�
A&(x); B�(x)

�
in Z is referred to as a LZN. For

convenience zx =
�
A&(x); B�(x)

�
is used to describe a

LZN, which meets A&(x) 2 S1 and B�(x) 2 S2.

Example 1. Let Y = fy1; y2; y3g be the universe
of discourse, and LTSs: A = fA0; A1; : : : ; A6g =
fvery bad; bad; almost bad; general; almost good,
good; very goodg and B = fB0; B1; B2g = frarely;
occasionally; usuallyg. A LZN can be expressed as
z1 = (A3; B2), where A3 2 A is the evaluation
information relating to the discourse given by the
Decision Makers (DMs) and B2 2 B is used to express
the reliability measure of the LZN. Then, the LZN z1 =
(A3; B2) represents as (fair; usually). For reducing the
information distortion caused by information loss dur-
ing calculation process, it is very necessary to extend
the original discrete LTSs A and B to the continuous
LTSs �A = fAiji 2 [0; T ]g and �B = fBj j j 2 [0; L]g as
illustrated by Xu [17].

De�nition 4 [28]. Let z1 =
�
A&(1); B�(1)

�
be a LZN,

then the score function LS of z1 can be given as follows:

LS(z1) =  �
�
A&(1)

�� h� �B�(1)
�
; (7)

where  �
�
A&(1)

�
and h�

�
B�(1)

�
are any two LSFs in

De�nition 1.

De�nition 5 [28]. Suppose z1 =
�
A&(1); B�(1)

�
and

z2 =
�
A&(2); B�(2)

�
are any two LZNs, then according to

the score function, by comparing these LZNs we have:

1. If A&(1) > A&(2) and B�(1) > B�(2), then z1 is
strictly better than z2, i.e., z1 � z2;

2. If LS(z1) > LS(z2) or LS(z1) = LS(z2), then z1 �
z2 or z1 = z2;

3. If LS(z1) < LS(z2), then z1 � z2.

Example 2. Following Example 1, let z1 = (A2; B2)
and z2 = (A3; B2) be two LZNs, and suppose  � (sg) =
F4 (sg) and h� (sg) = F1 (sg), then we can get:
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LS1 =
30:5 � 10:5

2� 30:5 � 2
2

= 0:21;

LS2 =
30:5 � 00:5

2� 30:5 � 2
2

= 0:5:

So, LS1 < LS2, i.e., z1 � z2.

De�nition 6 [28]. Let z1 =
�
A&(i); B�(i)

�
and

z2 =
�
A&(j); B�(j)

�
be any two LZNs;  � and h� be

the possible functions of F1 (sg) ; F2 (sg) ; F3 (sg) and
F4 (sg), � � 0, and suppose that the operational rules
of LZNs are as follows:

neg (z1) =
�
 ��1 � � �A&(T )

��  � �A&(i)�� ;
h��1 �h� �B�(L)

�� h� �B�(i)���: (8)

Eq. (9) is shown in Box I.

�z1 =
�
 ��1 �� � �A&(i)�� ; B�(i)� (10)

z1 
 z2 =
�
 ��1 � � �A&(i)� � �A&(j)��� ;
h��1 �h� �B�(i)�h� �B�(j)��: (11)

z1
� =

�
 ��1

�
 �
�
A&(i)

��� ; h��1
�
h�
�
B�(i)

���� :
(12)

Theorem 1 [28]. Suppose z1 =
�
A&(i); B�(i)

�
and

z2 =
�
A&(j); B�(j)

�
are two LZNs, and �; �1; �2 > 0,

then:

z1 � z2 = z2 � z1; (13)

z1 
 z2 = z2 
 z1; (14)

�(z1 � z2) = �z1 � �z2; (15)

(�1 + �2)z1 = �1z1 � �2z1; (16)

(z1 
 z2)� = z1
� 
 z2

�; (17)

z1
�1 
 z1

�2 = z1
(�1+�2): (18)

Example 3. Following Example 2, we can get:

z1 � z2 =
�
 ��1 (0:21 + 0:5) ;

h��1
�

0:21� 1 + 0:5� 1
0:21 + 0:5

��
=
�
A(0:71�2�30:5�30:5)2+3; B1�2

�
= (A3:5; B2) ;

z1 
 z2 =
�
 ��1 (0:21� 0:5) ; h��1 (1� 1)

�
=
�
A3�(30:5�(0:105�2�30:5))2 ; B1�2

�
= (A1:13; B2) :

2.3. The MSM operator
MSM operator is a helpful technique proposed by
Maclaurin [36], which can take the interrelationship of
di�erent numbers of attributes into account.

De�nition 7 [36]. Let qi (i = 1; 2; � � � ; n) be a set of
nonnegative real numbers, and @ = 1; 2; � � � ; n, then
MSM can be de�ned as:

MSM (@) (q1; q2; � � � ; qn) =0BBB@
P

1�i1<���<i@�n
@Q
j=1

qij

C@n

1CCCA
1/@

; (19)

where C@n is the binomial coe�cient and (i1; i2; :::; i@)
traverses all the @ � tuple combinations of (1; 2; :::; n).

Apparently, MSM operator has several properties
as follows:

MSM (@) (0; 0; � � � ; 0) = 0;

MSM (@) (q; q; � � � ; q) = q;

MSM (@) (q1; q2; � � � ; qn) �MSM (@) (p1; p2; � � � ; pn) ;

if qi � pi for all i;

min
i
fqig �MSM (@) (q1; q2; � � � ; qn) � max

i
fqig :

z1 � z2 =
�
 ��1 � � �A&(i)�+  �

�
A&(j)

���
:

h��1

 
 �
�
A&(i)

�� h� �B�(i)�+  �
�
A&(j)

�� h� �B�(j)�
 �
�
A&(i)

�
+  �

�
A&(j)

� !
: (9)

Box I
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3. Some MSM operators for LZNs

In this part, according to the operational laws of LZNs
presented by Wang et al. [28], we propose the LZMSM
operator and LZWMSM operator, and then we will
investigate several characters and special cases.

3.1. LZMSM operator
De�nition 8. Let zi (i = 1; 2; � � � ; n) be a set of LZNs,
and @ = 1; :::; n, then LZMSM operator is a mapping
LZMSM : �n ! � which can be de�ned as:

LZMSM (@) (z1; z2; � � � ; zn)

=

0BB@ �
1�i1<���<i@�n

@

j=1

zij

C@n

1CCA
1/@

; (20)

where � is a collection of all LZNs, C@n is the binomial
coe�cient and (i1; i2; :::; i@) traverses all the @ � tuple
combinations of (1; 2; :::; n).

Based on operation rules of LZNs, we can deduce
the result presented in the Theorem 2.

Theorem 2. Suppose zi = (A&(i); B�(i)) (i = 1; 2;
� � � ; n) is a collection of LZNs and @ = 1; 2; :::; n, then
the result aggregated from Eq. (20) is also a LZN:

LZMSM (@) (z1; z2; � � � ; zn)

=

 
 ��1

 P
1�i1<���<i@�n

@Q
j=1

 �
�
A&(ij)

�
C@n

! 1
@

;

h��1

 P
1�i1<���<i@�n

@Q
j

�
 �
�
A&(ij)

��h� �B�(ij)��P
1�i1<���<i@�n

@Q
j=1

 �
�
A&(ij)

� !1
@
!
:
(21)

Proof. We �rst calculate
@

j=1

zij , and get:

@

j=1

zij =
�
 ��1

@Y
j=1

�
 �
�
A&(ij)

��
;

h��1
@Y
j=1

�
h�
�
B�(ij)

���
;

and:

�
1�i1<���<i@�n

�
@

j=1

zij

�
= 

 ��1

 X
1�i1<���<i@�n

@Y
j=1

 �
�
A&(ij)

�!
; h��1

 P
1�i1<���<i@�n

@Q
j=1

�
 �
�
A&(ij)

��h� �B�(ij)��P
1�i1<���<i@�n

@Q
j=1

 �
�
A&(ij)

� !!
;

then we get:
1
C@n

�
�

1�i1<���<i@�n

�
@

j=1

zij

��
=

 
 ��1

 P
1�i1<���<i@�n

@Q
j=1

 �
�
A&(ij)

�
C@n

!
; h��1

 P
1�i1<���<i@�n

@Q
j=1

�
 �
�
A&(ij)

��h� �B�(ij)��P
1�i1<���<i@�n

@Q
j=1

 �
�
A&(ij)

� !!
:

Therefore, we have:0BB@ �
1�i1<���<i@�n

@

j=1

zij

C@n

1CCA
1/@

=

 
 ��1

 P
1�i1<���<i@�n

@Q
j=1

 �
�
A&(ij)

�
C@n

!1/@

; h��1

 P
1�i1<���<i@�n

@Q
j=1

�
 �
�
A&(ij)

��h� �B�(ij)��P
1�i1<���<i@�n

@Q
j=1

 �
�
A&(ij)

� !1/@!
;

so, Theorem 2 is proved.
Next, several properties and special cases of the

LZMSM will be explored.

Theorem 3 (Idempotency). Suppose zi = (Ai; Bi)
(i = 1; 2; :::; n) is a collection of LZNs, if zi = z1 =�
A&(1); B�(1)

�
, i = 1; 2; � � � ; n, then:

LZMSM (@) (z1; z2; � � � zn)=z1 =
�
A&(1); B�(1)

�
: (22)

Proof. Since zi = z1=
�
A&(1); B�(1)

�
(i = 1; 2; � � � ; n),

we have:
@Y
j=1

 �
�
A&(ij)

�
=  �

�
A&(1)

�@ ;
@Y
j=1

�
 �
�
A&(ij)

��h� �B�(ij)��= �
�
A&(1)

�@h��B�(1)
�@ ;

X
1�i1<���<i@�n

@Y
j=1

 �
�
A&(ij)

�
= C@n 

��A&(1)
�@ :
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So, we can get:

LZMSM@)(z1; z2; : : : ; zn)=0BBBB@ ��1

0BBB@
P

1�i1<���<i@�n
@Q
j=1

 �
�
A&(ij)

�
C@n

1CCCA
1
@

;

h��1

0BBB@
P

1�i1<���<i@�n
@Q
j=1

�
 �
�
A&(ij)

��h� �B�(ij)��P
1�i1<���<i@�n

@Q
j=1

 �
�
A&(ij)

�
1CCCA

1
@
1CCCCA

=
�
A&(1); B�(1)

�
= z1:

Theorem 4 (Commutativity). Suppose zi = (A&(i);
B�(i)) (i = 1; 2; :::; n) is a set of LZNs, and z0i =�
A0&(i); B0�(i)

�
be any permutation of zi, then:

LZMSM (@) (z1; z2; � � � ; zn)

= LZMSM (@) (z01; z02; � � � ; z0n) : (23)

Proof. According to Eq. (20), we obtain:

LZMSM (@) (z1; z2; � � � ; zn)

=

0BBBBB@
�

1�i1<���<i@�n
@

j=1

zij

C@n

1CCCCCA
1/@

;

LZMSM (@) (z01; z02; � � � ; z0n) =0BB@ �
1�i1<���<i@�n

@

j=1

z0ij
C@n

1CCA
1
@

:

Since z0i =
�
A0&(i); B0�(i)

�
can be any permutation of

zi, then:0BB@ �
1�i1<���<i@�n

@

j=1

zij

C@n

1CCA
1/@

=

0BB@ �
1�i1<���<i@�n

@

j=1

z0ij
C@n

1CCA
1/@

:

Thus:

LZMSM (@) (z1; z2; � � � ; zn)

= LZMSM (@) (z01; z02; � � � ; z0n) :

Now, we will explore several special cases about
LZMSM by adjusting values of @.

1. When @ = 1, according to LZMSM operator from
Eq. (21), we have Eq. (24) shown in Box II;

2. When @ = 2, the LZMSM operator may be obtained
by Eq. (25) as shown in Box III;

3. When @ = n, on the basis of the Eq. (21), we can
obtain Eq. (26) as shown in Box IV.

3.2. LZWMSM operator
We realize that the LZMSM operator does not consider
the weights of very important attributes. In some
practical cases, particularly in MADM problems, the
weights have a signi�cant impact on decision-making
results. To overcome the limitations of the LZMSM
operator, we developed the LZWMSM operator below.

LZMSM (1) (z1; z2; � � � ; zn) =0BBBB@ ��1

0BBB@
P

1�i1�n
1Q
j=1

 �
�
A&(ij)

�
C1
n

1CCCA
1
1

; h��1

0BBB@
P

1�i1�n
1Q
j=1

�
 �
�
A&(ij)

� � h� �B�(ij)��P
1�i1�n

1Q
j=1

 �
�
A&(ij)

�
1CCCA

1
1
1CCCCA

=

0B@ ��1

0B@ P
1�i1�n

 �
�
A&(ij)

�
n

1CA ; h��1

0B@ P
1�i1�n

�
 �
�
A&(ij)

� � h� �B�(ij)��P
1�i1�n

 �
�
A&(ij)

� 1CA1CA (let i1 = j)

=

0B@ ��1

0B@ P
1�j�n

 �
�
A&(j)

�
n

1CA ; h��1

0B@ P
1�j�n

�
 �
�
A&(j)

� � h� �B�(j)��P
1�j�n

 �
�
A&(j)

� 1CA1CA : (24)

Box II
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LZMSM (2) (z1; z2; � � � ; zn) =0BBBB@ ��1

0BBB@
P

1�i1�i2�n
2Q
j=1

 �
�
A&(ij)

�
C2
n

1CCCA
1
2

; h��1

0BBB@
P

1�i1�i2�n
2Q
j=1

�
 �
�
A&(ij)

� � h� �B�(ij)��P
1�i1�i2�n

2Q
j=1

 �
�
A&(ij)

�
1CCCA

1
2
1CCCCA

=

0BBB@ ��1

0BB@ 2
n (n� 1)

� 1
2
�

nX
i1;i2=1
i1 6=i2

 �
�
A&(i1)

� �  � �A&(i2)
�1CCA

1
2

;

h��1

0BBBBBBBB@
1
2 �

0B@ nP
i1;i2=1
i1 6=i2

 �
�
A&(i1)

� � h� �B�(i1)
� �  � �A&(i2)

� � h� �B�(i2)
�1CA

1
2 �

nP
i1;i2=1
i1 6=i2

 �
�
A&(i1)

� �  � �A&(i2)
�

1CCCCCCCCA

1
2
1CCCCCCCCCA

=

0BBB@ ��1

0BB@ 1
n (n� 1)

�
nX

i1;i2=1
i1 6=i2

 �
�
A&(i1)

� �  � �A&(i2)
�1CCA

1
2

;

h��1

0BBBBBBBB@

0B@ nP
i1;i2=1
i1 6=i2

 �
�
A&(i1)

� � h� �B�(i1)
� �  � �A&(i2)

� � h� �B�(i2)
�1CA

nP
i1;i2=1
i1 6=i2

 �
�
A&(i1)

� �  � �A&(i2)
�

1CCCCCCCCA

1
2
1CCCCCCCCCA
: (25)

Box III

LZMSM (n) (z1; z2; � � � ; zn) =0BBBB@ ��1

0BB@
P

1�i1�����in�n
nQ
j=1

 �
�
A&(ij)

�
Cnn

1CCA
1
n

; h��1

0BB@
P

1�i1�����in�n
nQ
j=1

�
 �
�
A&(ij)

� � h� �B�(ij)��P
1�i1�����in�n

nQ
j=1

 �
�
A&(ij)

�
1CCA

1
n

1CCCCA
(let ij = j) =

0B@ ��1

0@ nY
j=1

 �
�
A&(j)

�1A 1
n

; h��1

0@ nY
j=1

h�
�
B�(j)

�1A 1
n
1CA : (26)

Box IV
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De�nition 9. Let @ = 1; 2; :::; n and zi(i = 1; 2; :::; n)
is a set of LZNs, and w = (w1; � � � ; wn)T is the weight
vector of zi. Then, LZWMSM operator is a mapping
LZWMSM : �n ! �, which could be expressed as
follows:

LZWMSM (@) (z1; z2; � � � ; zn) =0BBBB@
�

1�i1<���
<i@�n

@

j=1

�
wijzij

�
C@n

1CCCCA
1/@

; (27)

where � is the set of all LZNs, C@n is the binomial
coe�cient and (i1; i2; :::; i@) traverses all the @ � tuple
combination of (1; 2; :::; n).

According to the operation rules of the LZNs, the
aggregation result from Eq. (27) can be deduced as
follows.

Theorem 5. Let @ = 1; 2; :::; n, and zi =
�
A&(i); B�(i)

�
(i = 1; 2; :::; n) is a collection of LZNs, then the result
aggregated from Eq. (27) is also an LZN. Then Eq. (28)
shown in Box V.

Proof. We �rst calculate wijzij , and get:

wijzij =
�
 ��1 �wij � �A&(ij)�� ; B�(ij)� and

@

j=1

wijzij =0@ ��1
@Y
j=1

�
wij 

� �A&(ij)��; h��1
@Y
j=1

�
h�
�
A�(ij)

��1A:
Then, we get the equations shown in Box VI. Finally,
we obtain the equation shown in Box VII, which is
also an LZN. So, Theorem 5 is proved.

By taking di�erent values of parameter @, we can
explore several special cases of LZWMSM operator.

LZWMSM (@) (z1; z2; � � � ; zn) =0BBBB@ ��1

0BBB@
P

1�i1<���<i@�n
@Q
j=1

wij �
�
A&(ij)

�
C@n

1CCCA
1
@

; h��1

0BBB@
P

1�i1<���<i@�n
@Q
j=1

�
wij �

�
A&(ij)

� � h� �B�(ij)��P
1�i1<���<i@�n

@Q
j=1

wij �
�
A&(ij)

�
1CCCA

1
@
1CCCCA :

(28)

Box V

�
1�i1<���<i@�n

�
@

j=1

wijzij

�
=

0@ ��1

0@ X
1�i1<���<i@�n

@Y
j=1

�
wij 

� �A&(ij)��1A ;

h��1

0BBB@
P

1�i1<���<i@�n
@Q
j=1

�
wij �

�
A&(ij)

� � h� �B�(ij)��P
1�i1<���<i@�n

@Q
j=1

�
wij �

�
A&(ij)

��
1CCCA
1CCCA ;

1
C@n

�
�

1�i1<���<i@�n

�
@

j=1

wijzij

��
=

0BBB@ ��1

0BBB@
P

1�i1<���<i@�n
@Q
j=1

�
wij �

�
A&(ij)

��
C@n

1CCCA ;

h��1

0BBB@
P

1�i1<���<i@�n
@Q
j=1

�
wij �

�
A&(ij)

� � h� �B�(ij)��P
1�i1<���<i@�n

@Q
j=1

�
wij �

�
A&(ij)

��
1CCCA
1CCCA :

Box VI
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0BB@ �
1�i1<���<i@�n

@

j=1

wijzij

C@n

1CCA
1/@

=

0BBBB@ ��1

0BBB@
P

1�i1<���<i@�n
@Q
j=1

�
wij �

�
A&(ij)

��
C@n

1CCCA
1/@

;

h��1

0BBB@
P

1�i1<���<i@�n
@Q
j=1

�
wij �

�
A&(ij)

� � h� �B�(ij)��P
1�i1<���<i@�n

@Q
j=1

�
wij �

�
A&(ij)

��
1CCCA

1/@1CCCCA :

Box VII

LZWMSM (1) (z1; z2; � � � ; zn) =0BBBB@ ��1

0BBB@
P

1�i1�n
1Q
j=1

wij �
�
A&(ij)

�
C1
n

1CCCA
1
1

; h��1

0BBB@
P

1�i1�n
1Q
j=1

�
wij �

�
A&(ij)

� � h� �B�(ij)��P
1�i1�n

1Q
j=1

wij �
�
A&(ij)

�
1CCCA

1
1
1CCCCA

=

0B@ ��1

0B@ P
1�i1�n

wi1 �
�
A&(i1)

�
n

1CA ; h��1

0B@ P
1�i1�n

�
wi1 �

�
A&(i1)

� � h� �B�(i1)
��P

1�i1�n
wi1 �

�
A&(i1)

� 1CA1CA
(let`i1 = j) =

0B@ ��1

0B@ P
1�j�n

wj �
�
A&(j)

�
n

1CA ;

h��1

0B@ P
1�j�n

�
wj �

�
A&(j)

� � h� �B�(j)��P
1�j�n

wjh�
�
A&(j)

� 1CA1CA : (29)

Box VIII

1. When @ = 1, Eq. (28) will become Eq. (29) as
shown in Box VIII;

2. When @ = 2, Eq. (28) will become Eq. (30) as
shown in Box IX;

3. When @ = n, Eq. (28) will become Eq. (31) as
shown in Box X.

4. A MADE method on the basis of
LZWMSM operator

In this part, the LZWMSM operator is used to deal
with the MADM problems. Suppose that the set
of alternatives is f�1; �2; � � � ; �mg, and the set of

attributes is fc1; c2; � � � ; cng with the weight vector
w = (w1; � � � ; wn)T which satis�es wj � 0 and
nP
j=1

wj = 1 (j = 1; 2; � � � ; n). Suppose ~Z =
�
~zij
�
m�n is

the decision matrix of MADM problems, and:

~zij =
�
A&(ij); B�(ij)

�
(i = 1; 2; : : : ;m; j = 1; 2; : : : ; n) ;

is the assessment information given by the DM in
regard to alternative �i for attribute cj , and is ex-
pressed by LZNs, where A&(ij) 2 fAiji 2 [0; T ]g and
B�(ij) 2 fBj jj 2 [0; L]g. Then, our aim is to obtain the
ranking results and choose the best alternatives.
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LZWMSM (2) (z1; z2; � � � ; zn) =

0BBB@ ��1

0BB@ 2
n (n� 1)

� 1
2
�

nX
i1;i2=1
i1 6=i2

wi1 
� �A&(i1)

� � wi2 � �A&(i2)
�1CCA

1
2

;

h��1

0BBBBBBBB@
1
2 �

0B@ nP
i1;i2=1
i1 6=i2

wi1 �
�
A&(i1)

� � h� �B�(i1)
� � wi2 � �A&(i2)

� � h� �B�(i2)
�1CA

1
2 �

nP
i1;i2=1
i1 6=i2

wi1 �
�
A&(i1)

� � wi2 � �A&(i2)
�

1CCCCCCCCA

1
2
1CCCCCCCCCA

=

0BBB@ ��1

0BB@ 1
n (n� 1)

�
nX

i1;i2=1
i1 6=i2

wi1wi2 
� �A&(i1)

� �  � �A&(i2)
�1CCA

1
2

;

h��1

0BBBBBBBB@

0B@ nP
i1;i2=1
i1 6=i2

wi1wi2 �
�
A&(i1)

� � h� �B�(i1)
� �  � �A&(i2)

� � h� �B�(i2)
�1CA

nP
i1;i2=1
i1 6=i2

wi1wi2 �
�
A&(i1)

� �  � �A&(i2)
�

1CCCCCCCCA

1
2
1CCCCCCCCCA
: (30)

Box IX

LZWMSM (n) (z1; z2; � � � ; zn) =

0BBBB@ ��1

0BB@
P

1�i1�����in�n
nQ
j=1

wij �
�
A&(ij)

�
Cnn

1CCA
1
n

;

h��1

0BB@
P

1�i1�����in�n
nQ
j=1

�
wij �

�
A&(ij)

� � h� �B�(ij)��P
1�i1�����in�n

nQ
j=1

wij �
�
A&(ij)

�
1CCA

1
n

1CCCCA (let ij = j)

=

0BBBB@ ��1

0@ nY
j=1

wj �
�
A&(j)

�1A 1
n

; h��1

0BB@
nQ
j=1

�
wj �

�
A&(j)

� � h� �B�(j)��
nQ
j=1

wj �
�
A&(j)

�
1CCA

1
n

1CCCCA
=

0B@ ��1

0@ nY
j=1

wj �
�
A&(j)

�1A 1
n

; h��1

0@ nY
j=1

h�
�
B�(j)

�1A 1
n
1CA : (31)

Box X
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Next, we will propose a MADM method based
on LZWMSM operator and give its rational decision-
making process:

Step 1. Standardize the evaluation information
of attributes. In general, the attributes can be
divided into two types, i.e., cost attributes and bene�t
attributes. In order to eliminate the impact of
di�erent types of attribute evaluation information on
decision-making results, they need to be transformed
into the same type. Usually, we are accustomed to
converting the cost type to the bene�t type. Suppose
~zij =

�
A&(ij); B�(ij)

�
is cost type of evaluation

information, and we can standardize it to bene�t type
as (the standardized evaluation information is also
represented by ~zij):

~zij =
�
AT�&(ij); B�(ij)

�
: (32)

Step 2. Utilize the LZWMSM operator to aggregate
the decision-making information of all attributes to a
comprehensive evaluation value of each alternative.

ri = LZWMSM (@)(Zi1; Zi2; � � � ; Zin): (33)

Step 3. Compute the score function LS(ri) of the
comprehensive values ri, and then rank all alterna-
tives f�1; �2; � � � ; �mg.
Step 4. Rank all the alternatives and choose the
most suitable one(s). Rank all the alternatives
f�1; �2; � � � ; �mg and choose the most suitable one(s)
by calculating the score function LS(ri).
Step 5. End.

5. An illustrative example

For the sake of showing the utilization of the approach
proposed in Section 4, we will give an example
(adapted from [28]) related to the apps evaluation
for �ve medical inquiry apps f�1; �2; �3; �4; �5g. The
DM evaluates all the alternatives based on the
following four attributes: application platform (c1),
user experience (c2), visual foreground (c3) and
network background (c4). The DM uses the two
LTSs A = fA0; A1; A2; A3;A4; A5; A6g= fvery poor;
poor; slightly poor; fair; slightly good; good; very goodg
and B = fB0; B1 ; B2; B3; B4g = funcertain; slightly
uncertain;medium; slightlysure; sureg to give the
evaluation value zij =

�
A&(ij); B�(ij)

�
(i = 1; 2; 3; 4; 5;

j = 1; 2; 3; 4). The decision-making information
given by the DM about alternatives with respect to
attribute can be obtained from the LT in and the
reliability about the decision-making information can
be obtained from LTs in B. Then all of the evaluation
results constitute a decision matrix R =

�
rij
�
5�4

listed in Table 1, where rij is represented by LZN

Table 1. Linguistic Z-numbers decision matrix R given
by D.

c1 c2 c3 c4

�1 (A4; B4) (A5; B2) (A5; B4) (A5; B3)
�2 (A3; B3) (A6; B3) (A4; B2) (A4; B3)
�3 (A4; B2) (A3; B4) (A5; B3) (A5; B2)
�4 (A5; B3) (A4; B4) (A4; B2) (A3; B4)
�5 (A5; B3) (A3; B3) (A3; B4) (A4; B3)�

A&(ij); B�(ij)
�
. w = (0:2; 0:25; 0:25; 0:3)T is the weight

vector of cj . Our aim is to choose the best app for our
daily life.

5.1. Decision-making steps
Next, the process of obtaining the best alternatives is
given:

Step 1. Standardize the evaluation information of
attributes. All of the attributes are bene�t type, so
we can omit the normalization.
Step 2. Utilize the LZWMSM operator to aggregate
the decision-making information of all attributes to a
comprehensive evaluation value of each alternative.
(suppose @ = 2,  � (sg) = F4 (sg) and h� (sg) =
F1 (sg)), and get:

r1 = (2:058; 3:164) ; r2 = (1:869; 2:729) ;

r3 = (1:867; 2:619) ; r4 = (1:780; 3:181) ;

r5 = (1:653; 3:201) :

Step 3. Compute LS(ri) of the comprehensive
values ri, and obtain:

LS(r1) = 0:1739; LS(r2) = 0:1317;

LS(r3) = 0:1262; LS(r4) = 0:1441;

LS(r5) = 0:1320:

Step 4. Rank all the alternatives and choose the
most suitable one.

On the basis of the score functions LS(ri), we
can rank the alternatives f�1; �2; �3; �4; �5g shown as
follows:

�1 � �4 � �5 � �2 � �3:
So, alternative �1 will be chosen.

5.2. The analysis of the e�ect of the values of
the parameter @ on �nal ranking results
of the example

To discuss the e�ect of parameter @ on the evaluation
results, we will change di�erent values of parameter @
during the calculation process. The ranking results are
given in Table 2.
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Table 2. Ranking results by using di�erent parameter values.

@ Score function LS(~zg) Ranking

@ = 1
LS(r1) = 0:1757; LS(r2) = 0:1346;
LS(r3) = 0:1276; LS(r4) = 0:1455;
LS(r5) = 0:1331

�1 � �4 � �2 � �5 � �3

@ = 2
LS(r1) = 0:1738; LS(r2) = 0:1317;
LS(r3) = 0:1262; LS(r4) = 0:1441;
LS(r5) = 0:1320

�1 � �4 � �5 � �2 � �3

@ = 3
LS(r1) = 0:1719; LS(r2) = 0:1284;
LS(r3) = 0:1247; LS(r4) = 0:1426;
LS(r5) = 0:1309

�1 � �4 � �5 � �2 � �3

@ = 4
LS(r1) = 0:1698; LS(r2) = 0:1252;
LS(r3) = 0:1230; LS(r4) = 0:1412;
LS(r5) = 0:1297

�1 � �4 � �5 � �2 � �3

According to Table 2, we can easily get that the
best choice is �1 and the ranking results by taking
di�erent values of � are a little di�erent. This is
because when @ = 1, the LZWMSM operator does not
take account of the interrelationship between di�erent
attributes. For the same alternative, the score function
LS(~zi) becomes smaller as the value of parameter @
increases. Qin and Liu [43] pointed out that parameter
can be regarded as the risk preference of the DM. In
di�erent realistic MADM problems, DMs can select
suitable values of @ according to di�erent risk prefer-
ence. The risk preference DM can choose a lager value
of @, or a smaller value. In the application, we generally
use the round function [ ] to obtain the @ value as [n=2],
where n is the number of aggregated elements. Qin
and Liu [43] explained that when @ = [n=2], the DM
remains neutral which could be rational.

5.3. The validity
To prove the validity of this method, we will use the
method presented by Wang et al. [28] (it is worth
noting that in this example, the attribute weights are

deterministic and additive, i.e.
4P
j=1

wj = 1) to deal

with the same example. To make the results more
convincing, we will use the same linguistic scaled model
as the method proposed by Wang et al. [28] to deal
with the evaluation information A&(ij) of LZNs as:

F5 (sg) = �g

=

8><>: a
T
2 �aT2 �g
2a

T
2 �2

�
g = 0; 1; 2; : : : ; T2

�
a
T
2 +ag�T2 �2

2a
T
2 �2

�
g = T

2 + 1; T2 + 2; : : : ; T
�

and then we can get the result through LZWMSM
operators. Table 3 shows the ranking results of the
two di�erent methods.

As is clear from Table 3, when � = 1, our ranking
result and those obtained by Wang et al. [28] are the
same, because, in our method (@ = 1) and that of Wang
et al. [28] the interrelationship between di�erent argu-
ments is not considered. This can be taken as a strong
evidence to prove the validity and e�ectiveness of our
method. In addition, when @ = 3, the ranking results of
the two methods are di�erent. The reason is that Wang
method proposed in [28] used the extended TODIM
approach and cannot take account of the interrela-
tionship between di�erent multi-attributes. However,
the method based on LZWMSM operator can consider
the interrelationship of multiple attributes by de�ning
di�erent value of @. In real MADM problems, there are
more or fewer connections between di�erent attributes,
so it is not accurate to consider them independently in
many cases. For example, when we choose a travel
mode, we could consider two factors including weather
and tra�c conditions, but snowy days could cause
tra�c congestion. Therefore, the method using the
LZWMSM operator has a wider range of applications.

5.4. Further comparison analysis
From the above analysis, we have proved the usability
of our proposed method based on LZWMSM opera-
tor. Next, to better illustrate the superiority of our
proposed method, we will use the method proposed by
Qiao et al. to deal with the example in Subsection 5.1.
[44]. The �nal comparison results are shown in Table 4.

As is clear from Table 4, when @ = 1, the optimal
solution obtained by Qiao method [44] and our method
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Table 3. Ranking results by using Wang's method and method based on LZWMSM operator.

Method Score values LS or priority weight P Ranking

Method by Wang et al. [28] based on Z � TODIM
�(r1) = 1; �(r2) = 0:350;
�(r3) = 0; �(r4) = 0:558;
�(r5) = 0:262

�1 � �4 � �2
� �5 � �3

LZWMSM (@ = 1)
LS(r1) = 0:147; LS(r2) = 0:119;
LS(r3) = 0:112; LS(r4) = 0:124;
LS(r5) = 0:118

�1 � �4 � �2
� �5 � �3

LZWMSM (@ = 3)
LS(r1) = 0:143; LS(r2) = 0:113;
LS(r3) = 0:109; LS(r4) = 0:121;
LS(r5) = 0:118

�1 � �4 � �5
� �2 � �3

Table 4. Ranking results by using Qiao's method and method based on LZWMSM operator.

Method Score values LS or Priority weight P Ranking

Method by Qiao et al. [44]
�(r1) = 1:148; �(r2) = �0:572;
�(r3) = �0:248; �(r4) = 0:089;
�(r5) = �0:417

�1 � �4 � �3
� �5 � �2

LZWMSM (@ = 1)
LS(r1) = 0:1757; LS(r2) = 0:1346;
LS(r3) = 0:1276; LS(r4) = 0:1455;
LS(r5) = 0:1331

�1 � �4 � �2
� �5 � �3

is the same. However, the ranking results of the two
methods are slightly di�erent. The reason is that when
the expert evaluates the attribute by using qualitative
linguistic form, Qiao method [44] needs to convert the
linguistic information into Triangular Fuzzy Numbers
(TFNs) in the calculation process, which will result
in a certain degree of information loss. The method
we proposed and the method proposed by Wang et
al. [28] both use LSFs to directly process the LZNs
evaluation information, which can reduce the degree of
information loss. Therefore, the method proposed in
this paper may get more practical results.

In short, compared with some existing methods,
the MADM method based on the LZWMSM operator
could be more convenient and exible, because the
models such as [6] which are based on the traditional
algorithm or rules are so complicated. In addition, our
method is more general due to the consideration of the
interrelationships between multiple attributes based on
di�erent situations.

Through the above comparison, we can summa-
rize the advantages of our method as follows:

1. We use operations presented by Wang et al. [28]
and choose di�erent LSFs to calculate the result,
which are easier and more exible than the method
in [44]. Besides, the method in [44] needs to convert

linguistic assessment information into TFNs for
calculation which could lead to the loss of the
original information. We omit the intermediate
conversion steps which can reduce the loss of the
original data, therefore our results could be more
realistic;

2. Compared with the method in [28], the MSM oper-
ator we use can take account of interrelationship
between di�erent numbers of attributes and can
also reect the attitude of the DMs, so that we
can select di�erent values of @ according to di�erent
actual scenarios. Obviously, in real life, the method
which uses LZWMSM operator could be convenient
and has a wider range of applications than Wang
method.

3. As an extension sub-class of Z-number, LZN pro-
posed in [28] uses the LVs to represent Z-number
two components that can combine the advantages of
Z-numbers and LTs. Many of the speci�c MADM
issues are urgent and vague. Compared with
quantitative evaluation, DM is more likely to give
some simple qualitative evaluations, so that LZNs
are more exible and practical in that situation.

Through the comparisons and analysis of the
above issues, it could be concluded that the proposed
method which is based on the LZWMSM operator
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could be more general than some other methods of
aggregating LZN.

6. Conclusions

We extend Maclaurin Symmetric Mean (MSM) opera-
tor to handle Linguistic Z-Number (LZNs) by using the
new operations introduced by Wang et al. [28] which
are easier and more exible than the traditional opera-
tions in which the Language Scaling Functions (LSFs)
are used. Then we propose the Linguistic Z-Number
MSM (LZMSM) operator and Linguistic Z-Number
Weight MSM (LZWMSM) operator, and explore sev-
eral properties of them. Moreover, several special cases
are also investigated, and a Multi-Attribute Decision-
Making (MADM) method is given using LZWMSM
operator. Compared with some existing methods, our
presented method could be more general and exible.
The signi�cant advantage is that our MADM method
can consider the interrelationship between di�erent
numbers of parameters with exibility by considering
di�erent values of parameter @. Besides, the method
based on LZWMSM operator uses LZNs for evaluation,
which can not only consider the reliability of the
constraint A&(x), but also is more exible in many
speci�c environments.

In future research, we should expand the Z-
number more deeply. In this regard, the topics such as
exploring the more rational operations, uncertainty of
A&(x) and B�(x) in LZNs can be mentioned as examples.
In addition, we should combine some operators to
make better use of LZN to deal with realistic MADM
problems [45{48].
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