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Abstract. E�cient management of providing home health care services requires many
considerations. In this paper, a mathematical model for the daily sta� routing and
service scheduling is developed for home health care companies. In this model, both
economic factors and qualitative service-oriented performance measures are simultaneously
optimized. To make the model more realistic, many real situations such as considering
di�erent quali�cations and diverse vehicles for sta� members, di�erent requirements
and predetermined preferences for patients, possible temporal interdependencies between
services, and Continuity of Care (CoC) are taken into account. We also added some
important constraints related to blood sampling requirements, which make our proposed
model more complex. The proposed model is a Mixed-Integer Linear Programming (MILP)
model that belongs to an NP-hard class of optimization problems. To solve such a
complex mathematical model, a Genetic Algorithm (GA) is proposed to �nd near-optimal
solutions. We use some randomly generated test instances with di�erent sizes to evaluate
the performance of the GA. Finally, it is demonstrated how the proposed solution scheme
can end up with proper scheduling and routing policies compared to those obtained through
exact methods.
© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

How to provide services from a certain depot to the
demand points has always been one of the main
topics in transportation systems. The demand for
providing services at home has remarkably grown in
recent years. Furthermore, there are many changes in
the socio-cultural and economic lifestyles of people in
developed and developing countries. Therefore, the
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traditional pattern of delivering health care services
should inevitably change to a new and enhanced home
health care pattern. Home health care, as an important
issue in the supply chain, can be viewed as a logistics
network with di�erent entities: a home health care
company, where the process of delivering services is
initiated, and the demanding points, where the caring
services are delivered to the patients. The main reasons
for the increasing demand for home health care services
would be summarized as follows [1]:

1. The limited capacity of hospitals and remarkable
growth in world populations which leads to high
expenses for hospitalization;

2. An increase in life expectancy due to enhancement
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Figure 1. The proportion of the population in the
European Union (27 countries).

of nutrition plans and improving lifestyles, which
leads to more elderly people in society;

3. Changing the preferences of people to receive ser-
vices in their homes instead of going to hospitals
and walk-in clinics.

Among the aforementioned items, the increasing size
of the elderly population would be the most prominent
factor, which could make home health care quite bene-
�cial and attractive for business practitioners and aca-
demic researchers. Figure 1 demonstrates an increasing
trend in older people in many European countries from
2005, which is expected to continue to 2050 [1].

Today, many home health care companies should
provide a wide variety of services to patients; therefore,
they have to employ sta� members with various quali-
�cations and skills (e.g., a person having permission to
prescribe medications or having enough ability to do
bathing for special elderly patients, professional nurses,
speci�c physicians, chiropractors, and massagers). Fur-
thermore, whereas sta� members are manually sched-
uled, the time schedules are not usually reliable which
means that the required services and proper assignment
of human resources (i.e., sta� members) could not be
suitably accomplished [2,3]. The home health care
companies should also consider the level of quali�cation
and time window (i.e., considering available periods
for patients and sta� members) for each service. This
means that the required services for a patient should be
provided by eligible sta� members with consideration
of the desired time windows for both respective patients
and sta� members. Some interdependent services that
should be performed in serial or parallel orders could
exist.

Moreover, one can choose the sta� member based
on the genders or mother tongues, which could be an
important issue for some countries with more emigrants
such as Canada. In this case, the respective patient
chooses the features of the sta� members such as
her/his tongue or gender, and the manager of the home
health care center should specify which sta� members
would handle the related service in the preprocessing
phase of the model construction. In other words,
more than a single sta� member would be eligible

to perform the service. It can also be assumed that
patients have already registered and experienced the
respective requirements in the past days or have some
information about the sta� members via their relatives
or friends. Considering all these aforementioned issues,
which would be called the patients' preferences, is
recognized as Continuity of Care (CoC) in the home
health care literature. This is a challenging issue in
health care services, in which the sta� member who is
in favor of the patient should provide some required
services. By adding the performance measure of CoC,
both patients and sta� members would have more
friendly relations. This feature is usually incorporated
into the optimization model for long-term perspectives.
However, addressing it in a daily-based model would
be problematic and questionable. The main reasons
for considering CoC in the daily scheduling of home
health care problems, as we mentioned, would be
the patient experiences or the information obtained
via their relatives or friends for a sta� member. In
fact, some patients are quite familiar with the sta�
members who provide the required services at the home
health center. Therefore, CoC could be taken into
consideration for the daily planning horizon in which
this advantage is given to patients to nominate favorite
sta� members for their requirements.

Few studies have considered all the above limita-
tions of the objectives mentioned in the optimization
mode [4{6]. Speci�cally, considering interdependent
services (the necessity of performing two services si-
multaneously or in a speci�c order) becomes a hot
topic in providing home health care services (e.g.,
papers Kergosien et al. [5], Rasmussen et al. [6],
and Mankowska et al. [7]). The sta� working plans
are usually manipulated based on trial and error to
be matched with required interdependency between
services; as a result, the quality of the plan could
decrease signi�cantly. Moreover, in a few papers, the
use of CoC for home healthcare issues is considered
a basic performance measure [8{10]. Here, it should
be mentioned that the Home Healthcare Routing and
Scheduling Problem (HHCRSP) in this situation could
be very distinct from the well-known multiple traveling
salesman problem with time windows. In our problem,
the patients requirements must be compatible with
the quali�cations of the sta� members. Furthermore,
a patient would need several dependent/independent
requirements and there is a possibility that a sta� could
visit a patient several times. All these changes make
this problem speci�c, which cannot be tackled with
developed solution schemes used for solving travelling
salesman problem.

In this paper, MILP model is proposed for the
HHCRSP. The goals are to determine the daily route
of each sta� member and to schedule the service
requirements of the patients. Moreover, the compat-
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ibility between sta� members' quali�cations and the
requirements, which should be occurred at a certain
time horizon, are taken into consideration in our
proposed model. In our proposed formulation, a single
sta� member must perform each required service by
one patient (i.e., single service). In addition, inter-
dependent services are incorporated into the model
in two di�erent ways. The �rst one includes the
services requiring two sta� members at the same time,
called simultaneous services (e.g., bathing and lifting
a disabled patient). The second includes all services
that should be executed within a predetermined time
distance with a speci�c priority (e.g., giving medication
to a patient at a certain time before/after a meal with
a one-hour time distance between them).

In general, we develop a mathematical formula-
tion considering heterogeneous sta� members, possible
interdependencies between services, and various travel
times depending on vehicle speeds. The model also
considers the speci�c limitations pertinent to getting
the blood samples. To the best of our knowledge,
this is the �rst attempt to consider all these limita-
tions in a mathematical model. A Genetic Algorithm
(GA) is also developed to solve this complex problem.
The remainder of the paper is organized as follows:
Section 2 presents a literature review of the latest
research related to HHCRSP. Section 3 is devoted to
explain all respective assumptions, the parameters, and
the decision variables and to present the mathematical
formulation. Due to the high complexity of the model,
a GA is extended and explained in detail in Section 4.
Section 5 is dedicated to computational results by
which the e�ciency of the model and the proposed
solution scheme are investigated. Finally, conclusions
are made and some possible suggestions for further
research are recommended in Section 6.

2. Literature review

A survey of the literature shows that the research on
the HHCRSP has relatively attracted less attention
compared to various Vehicle Routing Problems (VRP)
[11{14] categorized home care logistics management
problems as operational decisions including transporta-
tion and sta� logistics functions. Sta� routing is one
of the decisions included in \transportation manage-
ment". The routing problem that considers the time
window of each service, the frequency, the number of
repetitions, and the duration of the service leads to
routing and scheduling problems. The optimal routing
and scheduling decisions could be very inuential in
reducing costs and satisfying the patients and that is
why many practitioners in-home health care industries
mainly focus on �nding the optimal/near-optimal solu-
tions for these two decisions. For further information,
the readers could refer to Guti�errez and Vidal [14].

Moreover, Fikar and Hirsch [15] conducted a thorough
and detailed review of the home health care routing and
scheduling papers and classi�ed them into two groups:
single- and multi-period. All research studies in this
review paper are categorized in terms of di�erent char-
acteristics (e.g., temporal precedence, visiting patterns,
multi-objective, and dynamic or stochastic settings).
They also discussed di�erent objectives, constraints,
and the respective solution methods used in home
health care problems.

The followings present some important papers
addressing the HHCRSP. Begur et al. [16] were the �rst
researchers who presented a decision support system for
tour and roster planning. The goals were to minimize
the total travel time and balance the workload of
heterogeneous sta� members. The heuristic approach
proposed for solving the problem was based on both
savings heuristics and nearest neighbor approaches in
order to re-optimize each route. Cheng and Rich [17]
presented a MILP model for the problem of determin-
ing an optimal schedule with the aim of minimizing
the total cost of overtime (for full-time sta�) and part-
time work (for part-time sta�) and the total distance
traveled by sta�. In this paper, a two-phase heuristic
approach was also proposed to tackle such a problem.
They found an initial solution using a randomized
greedy algorithm in the �rst phase and improved it
using a local search method in the second phase.
Bertels and Fahle [18] proposed a combination of linear
programming and constraint programming to �nd ini-
tial solutions for an assignment and routing problem.
These solutions were improved by two metaheuristic
approaches: tabu search and simulated annealing. The
objectives were to minimize the total travel time and
to maximize the satisfaction of both patients and sta�
members. Eveborn et al. [19] described an operational
system called LAPSCARE for both patients allocation
to sta� members and visit schedules. They formulated
the problem using a set-partitioning model to assign
the patients to the routes of the available sta�. A
repeated matching heuristic was presented to solve
the problem. Their main goals were to reduce the
total travel time and to increase patients satisfaction.
Br�aysy [20] investigated a real-world case in Finland
for home care services and used a commercial solver
to determine the routing of sta� members in di�erent
scenarios. Akjiratikarl et al. [21] modeled a home
health care problem in the UK with the aim of minimiz-
ing the traveling distance. They presented a solution
scheme based on particle swarm optimization to �nd
near-optimal scheduling plans for visiting patients.
Furthermore, a mathematical programming model was
presented by Bredstr�om and R�onnqvist [4] for routing
and scheduling of vehicles. Kergosien et al. [5] also
extended the multiple traveling salesman problems to
be matched to the home health care case in which
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the number of nodes was exactly equal to the number
of required services. Trautsamwieser and Hirsch [22]
presented a mathematical model for nurses scheduling
using real data in Austria. Elbenani et al. [9] proposed
a mathematical model for the HHCRSP and used the
scatter search approach to solve such a problem. In this
paper, some speci�c medical restrictions were consid-
ered about the requirements of returning all blood sam-
ples to the respective laboratory within a certain time
interval. Furthermore, each nurse and each patient
should be assigned to one section according to their
home address. The objectives were to minimize the
total travel time, the daily cost for the di�erent nurses,
a penalty cost for violation of CoC, and a penalty cost
for each patient in a section visited by a nurse from
di�erent sections. Rasmussen et al. [6] formulated the
home health care problem using the set-partitioning
model and developed a solution method based on
the branch and price approach to �nd the optimal
routing and scheduling solution. Their model could
bring the temporal dependences into di�erent types of
optimization models. The goals were to minimize the
total traveling costs and the uncovered visits as well
as to maximize the sta�-visit preferences. Mankowska
et al. [7] presented a comprehensive mathematical
formulation for �nding the optimal daily planning
of sta� members. The objectives were to minimize
the total travelling distance and total tardiness and
maximal tardiness that occurred in providing services.
They solved the model using an e�ective heuristic
method. Hiermann et al. [23] developed a general
framework in the home health care context for a real-
world multimodal scheduling problem. In this paper,
a two-stage approach was also proposed to solve such
a problem by considering sta� and customer satisfac-
tion. They used stochastic procedures or constraint
programming techniques to generate initial solutions
in the �rst stage and improved them in the second
stage by one of four metaheuristics (memetic algorithm,
variable neighborhood search, scatter search, and a
simulated annealing hyper-heuristic).

Duque et al. [24] studied a home care plan-
ning problem faced by Landelijke Thuiszorg, a non-
pro�t organization that delivers home care services
in several Belgian regions. Each region had its own
region manager, who should schedule proper actions
for available caregivers. This problem was formulated
based on a set partitioning problem that aims to
maximize the service level and minimize the total
distance traveled by the caregivers. Afterward, a
two-stage solution strategy had been designed to ef-
�ciently solve the optimization model with multiple
objectives in a hierarchical order which was developed
for the planning problem. Furthermore, Redjem and
Marcon [25] addressed the challenges of routing and
scheduling problem under coordination and precedence

constraints in which patients could need multiple sta�
members for their requirements. In this paper, the
visits were performed simultaneously and probably
in a predetermined order. To solve the sta� mem-
bers routing problem, they developed a new heuristic
approach where its complexity was not sensitive to
the temporal dependencies rate. In addition, Fri�ta
et al. [26] provided a general variable neighborhood
search to solve the HHCRSP with synchronization and
time windows constraints. In this paper, each patient
required multiple visits and some visits needed more
than a single sta� member. Accordingly, the sta�
members should have the same starting and �nishing
times (synchronization of the arrival of sta� members).
The main objective of the model was to minimize the
total travel times. Decerle et al. [27] proposed a mixed-
integer programming model for HHCRSP with hard
and soft patients time window and synchronization
constraints. The objectives were to minimize the total
travel time and the penalties obtained through vio-
lating the patients time window and the synchronized
visits. They presented a memetic algorithm to solve the
developed model. Moreover, Liu et al. [28] developed
a route-based mathematical programming model for
the caregiver routing and scheduling problem with
stochastic travel and service times. They used a chance
constraint to cope with the uncertainty of the travel
and service times. The goals were to minimize the
expected total operational cost of selected routes and
the penalty value for non-visiting customers.

Also, a dynamic approach was proposed by
Demirbilek et al. [29]. Moreover, performing a certain
visit and transporting medical facilities and medicine
between the health care institutions and the patients
homes are discussed by Regis-Hern�andez et al. [30] who
solved the dimensioning problem for innovative HHC
services with devices and disposable materials, as a
joint dimensioning of human and material resources.

Finally, we focus on reviewing the three impor-
tant aspects of HHCRSP: (1) performance measures
or objectives, (2) decisions and constraints, and (3)
solution schemes. For this purpose, we add three tables
in which our research study is compared to the most
relevant papers in the �eld in terms of the objective
functions, the constraints, and the solution schemes.
Table 1 demonstrates most objectives or performance
measures handled in the reviewed papers. It should be
noted that each group comprises an extensive class of
possible performance measures or objective functions.
For example, time measures could encompass travel
and waiting times, and cost measures could consist of
travel, assignment, and scheduling costs. Each of the
objective functions used in a paper is shown with a
symbol (

p
) in the pertinent cell. As illustrated in this

table, the authors have mainly focused on time, cost,
and preferences.
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Table 1. Performance measures and objectives considered in the literature.
Performance measures

Paper Cost
measures

Time
measures

Distance
travelled

Patient
preferences

Sta�
preferences

Workload
balancing

Uncovered
visits

Begur et al. [16] {
p

{ { {
p

{
Cheng and Rich [17]

p
{

p
{ { { {

Bertels and Fahle [18] { {
p p p

{ {
Eveborn et al. [19]

p
{

p p p
{ {

Br�aysy [20] { {
p

{
p

{ {
Akjiratikarl et al. [21] { {

p
{ { { {

Bredstr�om and R�onnqvist [4] {
p p p p p

{
Kergosien et al. [5] { {

p
{ { { {

Redjem and Marcon [25] {
p

{ { { { {
Trautsamwieser and Hirsch [22] { {

p p p
{ {

Elbenani et al. [9]
p p

{ { {
p

{
Rasmussen et al. [6]

p
{ { {

p
{

p
Liu et al. [36]

p
{ { { { { {

Mankowska et al. [7] { {
p p

{ { {
Decerle et al. [27]

p p
{ { { { {

Liu et al. [28]
p

{ { { { { {
This paper {

p p p p
{ {

Table 2. Constraints and decisions considered in the literature.

Constraints and decisions

Paper Time
windows

Compatibilitya Sta�/patient
preference

Interdependency Blood sampling
requirements

Simultaneity Precedence

Begur et al. [16]
p p

{ { { {

Cheng and Rich [17] {
p

{ { { {

Bertels and Fahle [18] {
p p

{ { {

Eveborn et al. [19]
p p p p

{ {

Br�aysy [20] {
p p

{ { {

Akjiratikarl et al. [21]
p

{ { { { {

Bredstr�om and R�onnqvist [4]
p

{ {
p p

{

Kergosien et al. [5]
p p

{
p

{ {

Redjem and Marcon [25]
p

{ { { { {

Trautsamwieser and Hirsch [22]
p p p

{ { {

Elbenani et al. [9]
p

{
p

{ {
p

Rasmussen et al. [6]
p p p p p

{

Liu et al. [36]
p

{ {
p p

{

Mankowska et al. [7]
p p p p p

Decerle et al. [27]
p

{ {
p

{ {

Liu et al. [28]
p

{ { { { {

This paper
p p p p p p

a Compatibility between sta� members' quali�cations and the requirements.

Afterward, some of the most common decisions
and constraints considered in the papers are presented
in Table 2. As it is observed, providing high-quality
services has received more attention by satisfying some
constraints such as the compatibility between sta�
members' quali�cations and the requirements, time
windows, and patient/sta� preferences. However, some
real-life constraints (e.g., blood sampling requirements)
have received relatively less attention.

Table 3 demonstrates the solution approaches

considered in the reviewed papers, which are catego-
rized into three general groups: exact methods, meta-
heuristics, and hybrid methods, i.e., a combination of
two previous methods. According to Table 3, the group
of metaheuristics is the most popular category in real-
life applications.

Finally, the important general information of
some respective research studies is summarized in
Table 4. Homogenous sta� members mean that all
available caregivers have the same skills. That is, there
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Table 3. Solution approaches considered in the literature.

Solution approaches

Paper Exact methods
(Metaheuristic

methods
Hybrid

methods
Begur et al. [16] {

p
{

Cheng and Rich [17] { {
p

Bertels and Fahle [18] { {
p

Eveborn et al. [19] { {
p

Br�aysy [20] { { {
Akjiratikarl et al. [21] {

p
{

Bredstr�om and R�onnqvist [4] { {
p

Kergosien et al. [5] { {
p

Redjem and Marcon [25]
p

{ {
Trautsamwieser and Hirsch [22] {

p
{

Elbenani et al. [9] {
p

{
Rasmussen et al. [6]

p
{ {

Liu et al. [36] {
p

{
Mankowska et al. [7] {

p
{

Decerle et al. [27] {
p

{
Liu et al. [28]

p
{ {

This paper {
p

{

Table 4. Overall comparison of the papers published in the area of Home Healthcare Routing and Scheduling Problem
(HHCRSP).

Sta� Time windows for Performance measures

Paper Hom.a Het.b Interdependency Sta� Patient Cost
measures

Service quality
measures

Begur et al. [16] {
p

{ { {
p

{

Cheng and Rich [17] {
p

{ {
p p

{

Bertels and Fahle [18] {
p

{
p p p p

Eveborn et al. [19] {
p p

{
p p p

Br�aysy [20] {
p

{ { {
p

{

Akjiratikarl et al. [21]
p

{ {
p p p

{

Bredstr�om and R�onnqvist [4]
p

{
p p p p p

Kergosien et al. [5] {
p p p p p

{

Trautsamwieser and Hirsch [22] {
p

{
p p p p

Elbenani et al. [9]
p

{ {
p p p p

Rasmussen et al. [6]
p

{
p p p

{
p

Mankowska et al. [7] {
p p

{
p p p

Decerle et al. [27] {
p

{ {
p p p

Liu et al. [28] {
p

{ {
p p p

This paper {
p p p p p p

a Hom.: Homogeneous; b Het.: Heterogeneous.

are no di�erences between the sta� who perform the
requested services. While heterogeneous sta� members
mean that there are caregivers with di�erent capabili-
ties and some of them don't have permission to do some
requested services. As it is observed in Table 1, the
majority of the papers related to the HHCRSP assume
that the services required by a patient are independent.

However, if temporal interdependencies are properly
incorporated into the home health care model, it will
be more realistic, therefore appropriate-decisions can
be made. In addition, the issue of considering interde-
pendent services in family health care received a great
deal of attention by Eveborn et al. [19], Bredstr�om
and R�onnqvist [4], Kergosien et al. [5], Rasmussen
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et al. [6], and Mankowska et al. [7]. Furthermore,
most of the aforementioned research studies consider
both the cost of providing services and the quality of
services [4,6,7,9,18,19,22,27]. The total distance/time
traveled by sta� members is usually a measure for the
operational costs. However, the patients preferences
(i.e., meeting the patient requirements within prede-
termined time windows and having CoC) and the level
of satisfying sta� members (i.e., visiting patients in
the desired time window by sta� members) are some
important quality measures. Only a few papers took
the desired time windows for patients/sta� members
and temporal interdependencies among services into
account [4{6].

We also use a GA-based algorithm to solve our
proposed routing and scheduling problem. GA is
one of the common methods to solve the VRP. The
following papers are some of the well-known samples
in which GAs are used in routing problems. Baker
and Ayechew [31] investigated the application of a GA
for the VRP with a time window and demonstrated
that this algorithm could compete with tabu search
and simulated annealing. Liu et al. [32] studied the
eet size and mix VRP and presented a GA for solving
the problem with a single depot and heterogeneous
eet. Ghoseiri and Ghannadpour [33] presented a bi-
objective VRP with a soft time window in which goal
programming method and GA were considered to be
a solution. Tasan and Gen [34] presented a genetic-
based method to solve the Vehicle Routing Problem
with Simultaneous Pickup and Delivery (VRPSPD).
Wang and Chen [35] proposed a model for VRPSPD
with a hard time window. They used GA to cope with
the model with a single depot. Also, Liu et al. [36]
presented two mixed-integer programming models for
VRPSPD with a hard time window. GA and tabu
search algorithms were two solution methods they used
to cope with their proposed models of home healthcare
problems. In another paper, Pankratz [37] proposed a
group GA that uses a time window to solve VRPSPD.

2.1. Contributions
In this paper, we develop a comprehensive MILP
model for the HHCRSP, taking into account the time
window of sta� and patients, and increasing the time
interdependency between services (i.e., simultaneous
services or services with prede�ned precedence). The
model considers di�erent quali�cations for sta� mem-
bers and di�erent requirements for patients who could
have their own preferences (e.g., CoC). However, in
our paper, this is assumed that most patients are
quite familiar with the sta� members providing the
required services in the home health care center. In
addition, the travel times are computed based on
the mode of transportation. The model generates
routing and scheduling solutions in which all services

should be performed. In fact, although performing
some required services could be delayed, all patients
must be ultimately visited by at least one quali�ed
sta� member within contract working time or overtime
periods. The model also considers the break-time
(mealtime or rest time) for all sta� members. Some
other medical restrictions in which all blood samples
should be returned to the designed laboratory in a
speci�c time interval are also imposed into the model.
Indeed, we attempt to provide an integrated model
for the HHCRSP involving the essential characteristics
that occur in reality but are often neglected. There
are some papers that have considered some of the real-
life constraints; however, to the best of our knowledge,
we have not seen a comprehensive paper including all
these constraints together. In other words, we believe
that this research paper is the �rst attempt to bring
all these real-life constraints to a single optimization
problem. It should also be noted that the developed
model with such constraints belongs to the category of
NP-hard problems. Therefore, we extend a GA-based
solution scheme to solve the proposed optimization
model for real-life problems within a reasonable time,
suggested by Liu et al. [28]. The followings are the main
important advantages of our research study compared
with other studies:

� We considered one single node for each patient with
one required service. For example, in the case of
two requirements for a patient, we considered two
nodes called virtual nodes as they are not limited
to a patient and include services as well. These
changes are performed in the preprocessing phase
which makes the model more manageable;

� There is no limitation in our proposed model to
apply it in daily, weekly, or even monthly home
health care routing and scheduling problems. In
a weekly or monthly home health care problem, it
is assumed that a patient could be visited multiple
times within a week or month. In other words,
multiple nodes could be considered in the network
for a patient having multiple visits in a week or
month. The relation between these nodes is handled
based on the type of interdependency and the time
windows determined by patients and sta� members
for each visit. For instance, in the preprocessing
phase of making the optimization model, in the case
of two visits in a week with a two-day time interval,
the minimum and maximum time distance between
these two nodes should be set to two and seven days,
respectively;

� CoC could be taken into consideration for the daily
planning horizon in which this advantage is given to
patients to nominate favorite sta� members for their
requirements. In daily scheduling, we assume that
patients have already registered and experienced
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the respective requirements in past days or have
some information about the sta� members via their
relatives or friends. In fact, some patients are
quite familiar with the sta� members providing the
required services in the home health care center;

� There is also no restriction to consider di�erent
blood, break, and depot centers for each sta�
member. The proposed optimization model could be
simply customized for the new problems of multiple
nodes in blood, interruption, and storage centers.
Each of these nodes has its own time window and
time duration exactly the same as service nodes that
should be specifed by the manager before making
the optimization model.

3. Modeling the problem

In this section, we �rst start with the problem de�-
nition and then continue with considered assumptions
for making the model. All needed notations and the
mathematical formulation of the developed optimiza-
tion model are then presented.

3.1. Problem de�nition
The HHCRSP is de�ned by the completed graph (N;E)
where N is composed of a central depot (i.e., home
health care company) and patients, and E is the set
of edges between two nodes. In this network, sta�
members are dispatched from the central depot to
the patients homes to provide service requirements.
Without loss of generality, we can consider multiple
locations as central depots without any amendments in
the optimization model in terms of the constraints and
the objective function. In our proposed formulation,
each node represents one required service by one
patient, that is, there is only a single service in each
node, which must be performed by a single sta�.

In fact, the goal of the HHCRSP is to determine
the sta� routes and schedule the requirements of the
logistics network in a certain time horizon on a daily
basis, such that the virtual penalties and real costs
are minimized. If the total tardiness of providing
services to patients (virtual cost) is minimized, it
can indicate that good responsiveness to patients is
a vital issue in the HHCRSP. Travel time (real cost)
should be decreased based on distance traveled by sta�
and the speed of his/her vehicle. In general, there
are two types of measures for providing home health
care services: (1) travel time-oriented and (2) service
quality-oriented. In this planning problem, each service
should be performed in a given time window. The
sta� members are considered heterogeneous, that is,
each sta� is quali�ed for certain services. In addition,
each patient has particular requirements. Generally,
patients are divided into two groups with respect to
their service requirements: patients requiring single

services (e.g., single visit), and those requiring interde-
pendent services (e.g., bathing and giving medication
to a patient before/after a meal with a prede�ned time
distance between them).

3.1.1. Assumptions
� The vehicles could have di�erent velocities, that

is, a di�erent type of vehicles could be taken into
consideration (i.e., eets are heterogeneous);

� The model is developed for a single depot, that is, all
sta� members should start their travels for providing
required services from a speci�c location;

� There are bidirectional connections between all pos-
sible pairwise nodes (i.e., each sta� member could
travel from any node to other nodes);

� Four virtual nodes are de�ned: 0, n+1, blood, break.
They correspond to the initial and the end nodes of
the route, the destination node related to returning
the blood samples, and the destination node related
to breaking (mealtime or rest time), respectively;

� Each node represents one service, which must be
assigned to only one sta� member. In other words,
in the case of more than one service for a patient, it
could virtually become di�erent from multiple nodes
with zero distances;

� The optimization model is constructed for routing
and scheduling of home health care center in a
speci�ed area where all sta� members live near the
center of providing services.

3.2. Preprocessing phase
In this paper, the aim is to consider a more general
state of the routing and scheduling problem for home
health care services. Generally, a patient could require
several services of the same type, or di�erent types,
which can be interdependent, or independent from
each other. To incorporate all these situations into
a mathematical model, we generate a matrix showing
the service requirements of all patients such that
there is only one identity element in each row of the
matrix. This means that there could be di�erent rows
pertinent to one patient; however, in each row, only
one service can be assigned. In other words, from a
logistics network point of view, each row of the matrix
represents a single node in the network, indicating a
pair of a patient and a service requirement.

Suppose that we have a logistics network con-
sisting of k patients and each of them has nk service
requirements. The number of all patient-related nodes
(i.e., all possible pairwise of the patients' locations and
their needed services) in the network, namely n, is
equal to the sum of all required services for all patients
(i.e.,n = n1 + n2 + ::: + nk). Therefore, the logistics
network comprises these patient-related nodes and four
other virtual nodes corresponding to the home health
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care company. It should be noted that if a patient
needs more than one sta� member for a service, the
respective service is converted to some virtual services
called simultaneous services whose numbers are equal
to the number of needed sta� members. When we
de�ne \virtual nodes" for the initial, end, break, and
blood nodes in the network, it means that these nodes
are in the same location (i.e., they are not physically
di�erent) in our problem de�nition. Therefore, we
should create four nodes to handle the optimization
problem. Analogously, when we say \virtual services"
and de�ne multiple nodes in the network, it means that
the requested service by a patient should be performed
by multiple sta� members. In fact, we have only one
service in this case; however, to handle it through the
optimization model, we create multiple nodes called
virtual nodes. Obviously, if the initial and end nodes
are not physically di�erent, there is no reason to call
them virtual. Figure 2 schematically illustrates how
we create di�erent nodes in the logistics network of
the home health care problem. It should be noted
that the initial, end, blood, and break nodes could
be physically located in di�erent points. In terms of
model construction, there is no restriction that sta�
must return to HHC for rest and meals. However,
without loss of generality, we assumed that all these
virtual nodes are physically the same to make the
model simple.

In the case of considering multiple locations for
these nodes, the proposed model could be implemented

without any amendments in the model in terms of the
constraints and the objective function.

3.3. Problem formulation
Under the explained assumptions in Subsection 3.1.1,
we developed a MILP for the HHCRSP. In the fol-
lowing, all needed indices, parameters, and decision
variables together with the mathematical model for-
mulation are explained.

3.3.1. Index sets
The index sets of the provided model are de�ned in
Table 5.

3.3.2. Parameters
For the interdependent services (i; j) 2 P d, the per-
mitted time interval between start times of the required
services at nodes i 2 P 0 and j 2 P 0 is bounded between
a minimal time distance, �min

ij , and a maximal time
distance, �max

ij .If �max
ij = �min

ij = 0, both services at
nodes i and j have to be simultaneously initiated (i.e.,
if a service requires two sta� members, this service is
converted to two virtual services called simultaneous
services). If �max

ij � �min
ij > 0, it means that the service

at node j should be started no sooner than �min
ij and no

later than �max
ij after starting the service at node i. It is

worth mentioning that to have a better understanding
of interdependent services. We assign larger indices
to those nodes whose respective services need to be
performed later than other services.

For each node i 2 P 0, a time window [ei; li] is

Figure 2. Di�erent nodes in the logistic network.

Table 5. Sets used in the model of HHCRSP.

P Index set of all services required by the patients
V Index set of all sta� members
P 0 Index set of all nodes on the logistics network; i.e., P 0 = P [ 0; n+ 1; blood; break
P d Set of pair of nodes requiring timely interdependent services
P sim Set of pair of nodes requiring simultaneous services
P prec Set of pair of nodes requiring services with precedence
P+ Index set of all patients (nodes) requiring a blood sampling
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Table 6. Parameters used in the model of HHCRSP.

qvi The quali�cations of the sta� members, which is equal 1 if sta� member v 2 V is quali�ed
to perform the required service at node i 2 P 0 and 0 otherwise

�min
ij The minimal time distance between service start times at nodes i and j, i.e., (i; j) 2 P d
�max
ij The maximal time distance between service start times at nodes i and j, i.e., (i; j) 2 P d

[ei; li] Time window of node i 2 P 0

duri The time duration of performing the service required by node i 2 P 0

dij Traveling distance between nodes i 2 P 0 and j 2 P 0

ttijv Travel time between nodes i 2 P 0 and j 2 P 0 in the route of sta� member v 2 V
COCjv The preferences of patients, which is equal to 1 i� node j 2 P 0 prefers sta� member v 2 V for

providing its required service and 0 otherwise
worktimev The contract working time of sta� member v 2 V
[esta�v ; lsta�v ] Time window of sta� member v 2 V
T Time horizon
M A very large number, which is equal to the maximum working time allowed to sta�
�1, �2, �3, �4, and �5 The coe�cients of the respective terms in the objective function

Table 7. Decision variables used in the model.

The routing of the sta� members

xijv

8>><>>:
1 if sta� v 2 V moves from i 2 P 0 to j 2 P 0

for providing the service required bynode j

0 otherwise

tiv The start time of the required service at node i 2 P 0 provided by sta� member v
zi Tardiness of service required by node i 2 P 0

ovv The overtime of sta� member v 2 V
l twv; u twv The deviations of the desired time window of sta� member v 2 V

given for the start of the required service. In the case
of arriving at the patient location (node i) sooner than
ei, the sta� member must wait until the Lower Bound
(LB) of the time window is reached, otherwise, they
can start providing the service. Obviously, there is a
penalty if the sta� gets the node later than li. For all
simultaneous services whose nodes belong to P sim, the
services can be started when all needed sta� members
are available. It is also clear that the time windows
for all simultaneous services pertinent to a patient are
the same. For all pairwise of services in pprec, the
start times should be arranged taking into account
the respective distances �min

ij and �max
ij . The distance

between any two nodes i 2 P and j 2 P is denoted
by dij . We assume that the travel time from i to j
travelled by sta� v 2 V is proportional to the distance
dij , denoted by ttijv. Brief explanations of all needed
parameters are presented in Table 6.

3.3.3. Decision variables
The main decision variable representing sta� routing
is xijv. tiv is the start time of the required service

performed by sta� member v 2 V at node i 2 P 0.
If the time of providing the service is started with
delay (i.e., after li in the respective time windows),
a penalty cost called tardiness value, zi, is imposed in
the objective function. This cost is calculated by the
time span between tiv and li. In the case that sta�
v 2 V works more than his/her contract working time,
an overtime value ovv is computed. Finally, if a sta�
v 2 V starts his/her tasks before the LB of his/her
desired time window, esta�v , and beyond the upper
bound of his/her desired time window, lsta�v , a penalty
function called the violation values, l twv and u twv,
areimposed to the objective. l twv is computed using
the di�erence between esta�v and the start time of
his/her work and u twv is calculated using the distance
between the start time of his/her work and lsta� v. The
decision variables are summarized in Table 7.

3.3.4. Objective function
The companies always try to decrease the costs, in-
crease the quality of the services, and accordingly
increase the satisfaction level of the patients and sta�
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members. In this paper, we consider �ve performance
measures as follows:

1. The total time traveled by all sta� members to
provide the required services is given by:X
v2V

X
i�P 0

X
j�P 0

ttijvxijv:

Assuming that sta� members have di�erent vehicles
with di�erent speeds, the travel time between two
nodes depends on the sta� who are supposed to
provide the required services.

2. The total tardiness in providing services to the
patients is given by

P
i�P 0

zi where the services start

beyond their time windows. In fact, if the sta�
arrives at the patient's home later than the upper
bound of the respective time window, the objective
is penalized. Because the salaries of all sta� mem-
bers are assumed to be paid on a daily basis with
regard to their contracts, considering no penalty in
the objective would be reasonable in the case of the
early arrival of the sta� members (i.e., before the
respective time windows of patients). Moreover,
if the waiting of the sta� members for providing
services leads to overtime, the objective is properly
penalized in the third term.

3. The total overtime of the sta� members is given by:P
v2V

ovv.

4. The total violation of CoC is given by:X
j�P 0

X
v2V

CoCjv:durj :

 
1�X

i�P

xijv

!
:

In fact, if a sta� member, who is in favor of the
respective patient, performs the required services,
no penalty is considered in the objective function;
otherwise, a penalty equivalent to the duration of
the service is imposed into the objective. Taking
this term into consideration not only improves the
relation between the sta� and the patient but also
improves the quality of the services.

5. The violation of the sta�'s time windows is given
by:X
v�V

(l twv + u twv) :

In fact, we consider a soft constraint by which
all services should be preferably performed within
the respective time windows of sta� members. Of
course, the respective cost for violating these soft
constraints could be quite high which means that
the constraint is converted to hard ones for some
speci�c cases or patients.

The above cost components could be linearly combined
with each other to make a weighted objective function
written as follows, where �1; �2; �3; �4, and �5 are
the given coe�cients for the respective terms of the
objective function:

min z=�1
X
v2V

X
i�P 0

X
j�P 0

ttijvxijv+�2
X
i�P 0

zi+�3
X
v2V

ovv

+ �4
X
j�P 0

X
v2V

CoCjv:durj :

 
1�X

i�P

xijv

!
+ �5

X
v�V

(l twv + u twv) : (1)

3.3.5. Problem constraints
There are two important sets of constraints called
sta� routing and scheduling. All these constraints in
addition to other speci�c constraints are explained as
follows:

� Constraints related to sta� routing:X
i2P 0

x0;i;v =
X
i2P 0

xi;n+1;v = 1; 8v 2 V; (2)

X
j2P 0

xjiv =
X
j2P 0

xijv; 8i 2 P; 8v 2 V; (3)

X
v2V

X
j2P 0

xjiv = 1; 8i 2 P 0; (4)

xijv � qvj ; 8i; j 2 P 0; v 2 V; (5)

xijv 2 f0; 1g ; 8i; j 2 P 0; v 2 V: (6)

Constraint (2) ensures that the route of each sta�
member starts and ends in the central depot. Con-
straint (3) is inow-outow conditions or ow conser-
vation constraint, which guarantees that after visiting
a node, each sta� member must leave the node. This
constraint also makes sure that the sta� routes remain
circular. Constraint (4) indicates that each required
service is assigned to exactly one sta� member. The
domains of the routing variables are determined in
Constraint (5), in which a sta� v can execute the
service required by the node j 2 P , provided that
sta� � is quali�ed to perform this service. Such a
constraint eliminates many binary variables related to
those service requirements that are incompatible with
the quali�cation of a sta� member. Constraint (6)
enforces integrality restrictions on the binary variables.

� Constraints related to sta� scheduling:

tiv + duri + ttijv � tjv +M (1� xijv) ;
8i 2 P 0; j 2 P 0; v 2 V; (7)
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tiv � eiX
j2P

xjiv; 8i 2 P 0; v 2 V; (8)

tiv � liX
j2P

xjiv + zi; 8i 2 P 0; v 2 V; (9)

tjv2�tiv1 � �min
ij �M

 
2�X

k�P 0

xkiv1�
X
k�P 0

xkjv2

!
;

8 (i; j) 2 P d; v1; v2 2 V; (10)

tjv2�tiv1 � �max
ij +M

 
2�X

k�P 0

xkiv1�
X
k�P 0

xkjv2

!
;

8 (i; j) 2 P d; v1; v2 2 V; (11)

tiv; zi; ovv � 0; 8i 2 P 0; v 2 V: (12)

Constraint (7) determines the start times of the services
with respect to the duration of performing the services
and the travel times between two nodes. In fact, this
constraint indicates that the start times of the services
along the route of a sta� member are strictly increasing.
Constraints (8) and (9) control the start times of the
services that should comply with the time windows of
the patients. Each patient has the propensity to be
served in a given time window. It should be noted
that the LBs of the nodes time windows have to be
satis�ed (i.e., they are considered as hard constraints)
while the upper bounds could be violated (i.e., they
are considered as soft constraints). In other words, if
the upper bound of the time window of node i, li, is
overshot, a tardiness, zi > 0 , is added to the starting
time of providing the required service in that node.
It is worth noting that in some speci�c requirements
(e.g., an injection that should be performed within a
speci�c time interval) the upper bound should be hard;
however, for many other requirements of patients it
would be soft. Temporal interdependences are managed
by Constraints (10) and (11) in which the bounds of
time distances between two interdependent nodes must
be satis�ed. One of the most important interdepen-
dences is \simultaneousness", in which the minimum
and maximum time distances get zero values. Finally,
non-negative Constraint (12) control non-negativity
restrictions on scheduling, tardiness, and overtime
variables.

� Other constraints related to increasing e�ciency of
the problem:

tn+1;v � t0;v � T; 8v 2 V; (13)

ovv � tn+1;v � t0;v � worktimev; 8v 2 V: (14)

Constraint (13) controls the total working time for

a sta� member which should not be larger than the
time horizon. The total overtime of each sta� member
with respect to his/her contract working time is also
calculated in Constraint (14). In fact, if a sta� waits
until the time window of a patient opens up, the home
health care organization usually has to compensate for
this waiting time by considering overtime for providing
other services.

In this paper, we assumed that the initial, end,
blood, and break nodes are located in the home
health care center. As it was mentioned, we can
consider multiple locations as central depots without
any amendments in the optimization model in terms of
the constraints and the objective function. In other
words, we should specify the set of central depots
for all sta� members, which could be their homes,
in the preprocessing phase and create needed virtual
nodes for these new central depots. The respective
constraints such as the Constraints (2), (13), and (14)
in the optimization model have a minor change in
indexes (e.g., x0;i;v is replaced with xhome v ;i;v in which
\home v" is the initial node number for sta� member
�). It means that all the respective changes should be
performed in the preprocessing phase and no changes
happen in the number or the form of constraints and
objective functions.

t0;v � estaffv � l twv; 8v 2 V; (15)

tn+1;v � lstaffv + u twv; 8v 2 V: (16)

Constraints (15) and (16) take the desired time win-
dows of sta� members into account in a soft way. This
means that if the time window for a sta� member is
violated, a penalty function equivalent to the sum of
l twv and u twv are added to the objective function.

1+(lblood�ti;v)�M
24X
j2P

xj;blood;v+1�X
j2P 0

xjiv

35 ;
8i 2 P+; 8v 2 V; (17)

tblood;v � lblood :
X
j2P 0

xj;blood;v ; 8v 2 V; (18)

tblood;v � ti;v; 8i 2 P+; v 2 V: (19)

The above constraints are pertinent to the blood
samples. Based on medical and biological reasons, all
blood samples should be returned to the home health
care center within a prede�ned time. If there is any
node requiring the blood sampling in the route of a
sta� member, he/she has to return it to the virtual
blood node before the upper bound of the time window
corresponding to that node without any tardiness. In
summary, Constraint (17) means that whenever a sta�



3704 Z. Entezari and M. Mahootchi/Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 3692{3718

member takes a blood sample at least in one node
i 2 P+, then he/she must visit the virtual destination
nodeblood before lblood . Constraint (18) assures that
the sta� v 2 V returns to this virtual node before
the upper bound of its time window. Constraint (19)
ensures that the nodeblood is visited after the last blood
sample has been taken. For more details, one could
refer to Elbenani et al. [9].X
i2P 0

xi;break;v = 1; 8v 2 V: (20)

Constraint (20) assures that every sta� member must
visit the break node, which is de�ned as a virtual node
(it could be the same as a home health care center
in reality). As we explained, there is no limitation to
consider di�erent break nodes for each sta� member.
In particular, the proposed optimization model could
be simply customized to new problems with multiple
nodes for break times. Each break node has its own
time windows and time duration, which are exactly
the same service nodes that should be speci�ed by
the modeler before making the optimization model.
In our case study, we only considered one as a single
breakpoint with a speci�c time window for all sta�
members, which can be easily extended to multiple
nodes in other problems.

Bertels and Fahle [18] demonstrated that the
routing and scheduling problem in home health care
without considering temporal interdependencies is also
NP-hard. In our proposed model, there are more
variables and linear constraints compared to other
analogous models, which make our model even more
complex. Therefore, to �nd a good solution (i.e., near-
optimal solution), we need an appropriate solution
scheme. A major focus of this paper is to propose a
solution scheme based on GA, which can appropriately
solve our NP-hard model constructed for real-life ap-
plications.

4. GA as the solution scheme for solving the
HHCRSP

Using exact methods such as those provided in GAMS
to �nd the optimal solution for large instances is
computationally expensive. This means that the op-
timization problem is intractable for exact solutions by
conventional methods and the optimal solution cannot
be reached within a reasonable time. In this section, we
applied a GA-based algorithm, which could handle the
respective models made for real-life problems. GA is a
bio-inspired, probabilistic search method based on the
natural selection method which was initially developed
by Holland [38]. Gen et al. [39] proved that GA would
be a proper approach to acquire near-global solutions.
In the following, we explain how to apply the GA-
based algorithm for solving the routing and scheduling

problem. We made some changes to the traditional GA
in order to resolve the model within a reasonable time
and produce a more quali�ed solution.

4.1. Solution representation
The most important part of using metaheuristics as
a solution in the practical optimization model is to
provide proper constraints handling to satisfy them in
an appropriate way. To handle the constraints and to
implement the coding procedures, three matrixes must
be de�ned. In other words, to consider the assign-
ment and scheduling of services in the HHCRSP, each
possible solution (chromosome) is introduced by three
matrices: (1) assignment matrix (A), (2) scheduling
matrix (S), and (3) the matrix representing the start
time of providing services for each sta� member (T0).
The procedures for making these matrices are described
as follows:

a. The initial part of a chromosome is a 1� n matrix,
in which n is the number of all service requirements
and each node is randomly assigned to a sta�
member, which the quali�cations of the sta� must
be compatible with the respective service require-
ments. (i.e., each member in the matrix A speci�es
the sta� member who should provide the corre-
sponding required service). Each entry is selected
based on Uniform (1; cardinality (fv jqvi = 1g));

b. The second part of a chromosome is a by n +
2v matrix whose members are determined as a
permutation from 1 to n + 2v. In fact, this part
of the solution determines the sequence of visiting
the patients by sta� members. It should be noted
that in such a matrix, the nodes corresponding to
blood and break are used as virtual nodes, which are
also de�ned and replicated according to the number
of sta� members (i.e., each member in matrix S
speci�es providing a required service or going to a
virtual node);

c. The �nal part is a 1 � v matrix representing the
times that the sta� members start their works. For
this matrix, a random continuous value is uniformly
chosen between 0 and T .

To make the solution representation more clear, we
present an example by which the process of �nding all
routes of sta� members is explained. The assignment
matrix, scheduling matrix, start time matrix, routes,
and schematic network of the feasible solution for the
example are denoted in parts of Figure 3, respectively.
As it is illustrated in this �gure for n = 9 and � =
3, there are �fteen nodes in which 10, 11, and 12
represent the virtual nodes blood that correspond to
sta� members 1, 2, and 3, respectively. The same
explanation can be repeated for 13, 14, and 15 as the
virtual nodes break. Therefore, each of these virtual
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Figure 3. The Solution representation for the explained example.

nodes is assigned to one sta� member, that is, a sta�
member assigned to a virtual node is not allowed to go
to other virtual nodes.

In this example, we end up with three routes as
there are three sta� members. As it is demonstrated in
part d of Figure 3, the �rst node would be 13 as matrix
S is started with this node, which solely corresponds to
the �rst sta� member. Therefore, the starting point for
the �rst sta� member is node 13. The next node after
node 13 in matrix S is virtual node 11, which solely
corresponds to the second sta� member, therefore it is
put in the second route. The third node in matrix S is
1, which has to be assigned to the second sta� member
based on matrix A. Therefore, this node is placed
in the second route after the virtual node 11. The
next node based on matrix S is 10, which corresponds
to the virtual node blood for the �rst sta� member.
As a result, considering the sequences in matrices S
and A, nodes 8, 7, and 4 also correspond to the �rst
route, nodes 14, 9, and 2 belong to the second route,
and �nally, nodes 12, 5, 15, 3, and 6 are assigned
to the third route. To have feasible routes, some re-
routing procedures should be performed. Since there
is not any node that requires a blood sampling, node
10 (blood1) is removed from the �rst route. The same
thing occurs for the virtual node 11 (blood2) in the
second route. Moreover, as returning to the blood
node in each route should take place after visiting
all the nodes with blood sampling requirements, the
sequence of 5 and 12 must be reversed. To make it a
general rule, if the node blood is located after all nodes
that require a blood sampling, this route is feasible,
otherwise, the node blood must be put right after the
last assigned node in which the blood sample needs to
be taken.

4.2. Decoding
The whole process of decoding is schematically illus-
trated in Figure 4. As obvious in this �gure, after
generating the three matrices and the feasible routes
which have been fully explained in the previous section,
the start times of all required services could be calcu-
lated. Using these start times, the objective function of
our proposed model given by Eq. (1) is computed. In
addition, two penalty functions corresponding to soft
Constraints (13) and (18) are estimated based on both
the start times of required services and the start times
in matrix T0. All this information can be used to �nd
the �tness function value for the respective solution
(chromosome).

The following equations are used to �nd the
penalties:

pnf1 =
vX
k=1

max ft (n+ 1; k)� t (0; k)� T; 0g ; (21)

pnf2 =
vX
k=1

max ft (bloodk; k)� l (bloodk) ; 0g ; (22)

where pnf1 and pnf2 are the total violation of con-
straints related to the time horizon (Constraint (13))
and delays in returning the blood samples to the
blood node for all sta� members (Constraint (18)),
respectively. The �tness function is also calculated
using the following formula:

Fitness function value = objective function value

+ �(1+ (pnf1+pnf2)) ;
(23)

where  is a prede�ned coe�cient that should be
determined by decision-maker/s.
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Figure 4. Flowchart of the decoding process.

The �tness function, the sum of the objective and
penalty functions determined by the degree of infeasi-
bility, is the only criterion by which we could choose
the next generation and �nd an appropriate solution.
It is worth mentioning that any chromosome in the
current generation (parents) with the lowest/highest
�tness function in a minimum/maximum objective is
not necessarily transferred to the next generation.

4.3. Proposed operators
The solution quality and the speed of convergence de-
pend on the algorithm parameters. These parameters
include:

1. Number of generations, which a�ects the solution
quality;

2. Population size, which is e�ective for the search in
the solution space;

3. Crossover rate, which determines the probability
of performing the crossover operator on a chromo-
some;

4. Mutation rate, which speci�es the probability of
performing the mutation operator on a chromosome
to avoid getting trapped in a local optimal solution.

In our genetic-based solution scheme, three crossover
and mutation operators are used. In fact, to �nd
more feasible solutions through crossover and muta-
tion, these operators run for each part individually.
Without the mentioned partitioning, we could not �nd
a feasible and good solution at a reasonable time for
our problems. In the following, all these operators are
explained in detail.

4.3.1. Crossover operator
The crossover operator plays a major role in creating
successive generations. In fact, the role of this operator
is to locally search the solution space and to �nd
better o�springs in a limited space. The probability
of crossover (pc) is a prede�ned parameter that should
be determined based on the problem size. Choosing a
suitable crossover operator for generating o�springs is
quite dependent on the structure of the chromosome.
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As mentioned earlier, each chromosome contains three
matrices, where the crossover operator must be per-
formed on all three parts in a di�erent way in order for
o�springs to become feasible. These are explained in
details as follows:

a. The appropriate crossover operator for A is a
uniform crossover. In the uniform crossover, after
producing a mask matrix with zero/one genes, each
gene of the o�spring is chosen with respect to the
corresponding genes in the mask and the respective
parents. If the value of the gene in the mask
matrix is equal to zero, the respective genes in both
parents should be replaced, otherwise, the genes
for o�springs are the same as the parents. Figures
5 and 6 demonstrate how the crossover operation

Figure 5. Mask process of producing both o�springs.

Figure 6. O�springs after crossover operation for matrix
A.

is performed on the matrix A with nine service
requirements. As it is schematically illustrated,
the �rst gene in the mask matrix is zero, leading
to replacing the respective genes of the parents for
�nding the �rst genes of two o�springs. This has to
be repeated for all eight remaining genes to produce
the o�springs;

b. The appropriate crossover operator for S is a type of
single-point crossover. However, this crossover op-
erator must be properly adjusted such that it could
consider the permutation structure to avoid any
gene repetition. This type of crossover is called as
the adjusted single-point crossover operator. In the
�rst step, two chromosomes (parents) are split using
a randomly selected point, namely the crossover
point. All genes in both o�spring before this point
are the same genes of their parents; However, after
this point, the genes of the o�spring de�nitely
change. Finally, for making the second part of the
�rst o�spring, we should go through all genes in the
second parent, �nd all non-repeated genes in the
�rst part of the �rst parent, and put them in the
second part of the �rst o�spring without changing
their orders. The second o�spring is made in a
similar way. Given that the proposed crossover
operator is executed under the assumption that
the permutation attribute in the matrix S and the
di�erence between all genes are considered, it is
obvious that the solution in the o�spring is also
feasible. The procedure of producing o�springs in
the matrix S with nine service requirements and
three sta� members is depicted in Figures 7 and 8;

c. The appropriate crossover operator for T0 is a
continuous type of uniform crossover in which a 1�v
matrix (�) including v uniformly random numbers

Figure 7. The proposed crossover point for matrix S.

Figure 8. O�springs after crossover for matrix S.
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Figure 9. The proposed crossover for matrix T0.

between 0 and 1 is initially generated. Each gene
should be computed using a convex combination
of the respective gene in the generated matrix and
the corresponding genes in two selected parents.
The process of producing o�springs where there
are three sta� members is illustrated in Figures 9
and 10.

4.3.2. Mutation operator
The main role of this operator is to prevent getting
trapped in the locality. In fact, this operator performs
random perturbations to selected solutions leading
to a gene sudden alteration by which the solution
space would be remarkably dispersed. In other words,
the search space using the operator would be more
extended, that is, new information that is more valu-
able could be injected into the population. However,
this operator should have quite a lower probability
(pm) compared with the crossover operator due to the
issue of divergence. Here, we explain in detail how
the mutation operator is performed for three solution
matrices:

a. The appropriate mutation operator for A is a
type of uniform mutation. In the �rst step of
this operator, a 1 � n matrix including n random
numbers which are uniformly distributed between
zero and one is produced. All the genes in a selected
parent smaller than a prede�ned rate (e.g., � = 0:1)
are candidates to be modi�ed. The respective can-
didates should be replaced with new sta� members
who are randomly chosen from a set

h
1; jV jquali�ed

i
,

where jV jquali�ed is the total number of all quali�ed
sta� members for the pertinent services in the can-
didate genes. This causes the constraint related to
the quali�cation of sta� members (constraint (5)) to

Figure 11. The proposed mutation point for matrix A.

Figure 12. O�springs after mutation for matrix A.

be satis�ed and the feasibility is therefore guaran-
teed. Figures 11 and 12 demonstrate the procedure
of the mutation operator for the matrix A with
nine service requirements. It should be mentioned
that the quali�ed sta� members for the second and
sixth genes (candidate genes) are f1,2g and f2,3g,
respectively;

b. Regarding the particular structure of the scheduling
chromosome, implementing a mutation operator
for S consists of two vital phases: (1) randomly
choosing two elements of the matrix S and (2)
randomly selecting one of the operations among
swap, reversion, and insertion. In other words,
given two selected genes in the respective matrix, a
random integer number between 1 and 3 is selected
(1, 2, and 3 are related to swap, reversion, insertion
operators, respectively). In the swap operation,
the two genes should be replaced. In the reversion
operation, all genes between the two selected genes
are entirely reversed. In the insertion operation,
the larger gene should be shifted to right after the
smaller gene;

c. The appropriate mutation operator for T0 is a type
of uniform mutation, in which the times for starting
the services for each sta� member are changed such
that it does not violate the time horizon. The
pseudo-code is demonstrated in Figure 13 where
� is a prede�ned coe�cient that determines the
maximum range of variations in each gene.

4.3.3. Selection operator
To form the next generation, the numer \p" of the

Figure 10. O�springs after crossover for matrix T0.
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Figure 13. Pseudo-code of mutation operator for T0.

best solutions amongst the previous generation and
the new o�springs must be retained. Selection is also
the process of choosing all pair-wires of chromosomes
on which the crossover operators are performed. The
purpose of de�ning such an operator is to select parents
with higher �tness functions that could produce better
o�springs. In this paper, the Roulette wheel method
has been used as the selection operator.

5. Computational experiments

Since there are usually no accepted benchmark sets in
the literature or the respective data sets are not fully
available, this study cannot provide a comparison with
real or benchmark examples. This would be also a
common approach in many recently published papers
to use make-up examples to investigate the e�ciency of
their proposed models and solution schemes. One can
refer to [13] for observing the list of these papers. Here,
we initially start with a simple example to evaluate
the validity of the model and the proposed solution
scheme. Then, in the second part of the experiments,
we generate many instances with di�erent sizes (i.e.,
small- to large-sized instances) to show the e�ciency
of the solution method in di�erent problems. The
proposed model and the solution scheme were imple-
mented in GAMS and MATLAB R 2013b, respectively.
In addition, all calculation experiments were performed
on a laptop computer with 2.40 GHz Intel Core i5 CPU
and 4 GB RAM memory.

5.1. The �rst part of the experiments (validity
of the model and the solution scheme)

Assume that there is a problem consisting of a home
health care center and six real patients (i.e., patients
locations) in a logistics network of 1000�1000 distance
units (The travelling distances are calculated using
Euclidean way). These patients are categorized into
two groups: (1) The �rst group denotes the patients
requiring single services (i.e., the �rst four patients)

Table 8. Speci�cations of the patients.

Node i Duration duri
(time unit)

Time window

ei li
0 0 0 600
1 40 185 348
2 30 250 227
3 30 115 145
4 50 132 391
5 30 258 314
6 30 258 314
7 30 152 350
8 30 152 350
9 15 0 600

blood 5 0 280
break 25 370 500

and (2) The latter refers to the rest of the patients who
require two interdependent services. Set P includes all
patient-related nodes (1; 2; � � � ; 8), in which nodes 1, 2,
3, and 4 are pertinent to the �rst four patients requiring
single service, nodes 5 and 6 are associated with
the �fth patient requiring two simultaneous services
(P sim = f(5; 6)g), and two other nodes 7 and 8 are
associated with the sixth patient requiring two services
with �xed precedence (P prec = f(7; 8)g). Thus, set
P 0 =

S
Pf0; 9; blood; breakg, where 0, 9, blood, break

are four virtual nodes corresponding to the central
depot. As a result, there are 12 nodes including the
virtual nodes in this network. In addition, only one
patient requires a blood sampling service (set P+ =
f4g). The duration of time for providing services to
patients and time windows are demonstrated in Table
8. The time distances between all pair-wires of service
requirements are speci�ed as follows. The required ser-
vices by nodes 7 and 8 (i.e., patient 6) must be started
within a time interval of

�
�min
7;8 = 15; �max

7;8 = 40
�
. Since

the required services by nodes 5 and 6 (i.e., patient 5)
must be started simultaneously, then the time distances
�min
5;6 ; �max

5;6 ; �min
6;5 and �max

6;5 are set to zero. The rest of the
minimal and maximal time distances in the o�-diagonal
members of the matrices are �xed to �600 (�T ) and
600 (T ), respectively, while all diagonal members are
set to zero (i.e., �min

i;i = 0 and �max
i;i = 0).

Moreover, the quali�cations of three sta� mem-
bers V = f1; 2; 3g based on di�erent requirements of
the nodes, conversion coe�cient of traversed distance
to travel time (fv), work time, and the desired time
window are illustrated in Table 9. All members of
the priority matrix COCiv, which indicates the CoC
between all pairwise of nodes and sta� members, are
set to zero except for COC3;2 which is set to one.
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Table 9. Speci�cations of sta� members.

Sta� v Quali�cation of sta� members qvi fv work timev Time window

0 1 2 3 4 5 6 7 8 9 blood break esta� v lsta� v

1 1 0 0 0 1 0 1 1 1 1 1 1 0.068 300 200 500

2 1 1 1 1 0 1 0 0 0 1 1 1 0.070 200 0 250

3 1 1 1 1 0 1 0 0 0 1 1 1 0.070 140 400 600

Figure 14. Optimal solution of the explained example.

Furthermore, all the respective coe�cients pertinent
to performance measures in the objective function are
equal to each other (i.e., �1 = �2 = �3 = �4 = �5 =
1
5 ). The parameter M is also assumed to be equal to
600.

The optimal solution for this example is repre-
sented in Figure 14, where the path of each route and
the schematic view of the routes in the whole network
are depicted in Figures 14(a) and (b), respectively. The
start time of performing the required service at node
i provided by sta� member v, (tiv), has been speci�ed
at the top of each node (part (a)). As observed, the
simultaneity of the services required by nodes 5 and
6 and the precedent relationship between the services
required by nodes 7 and 8 are met. The optimal
value of the objective function is 174.852, the total
distance traversed by all sta� members is 308.943 time
units, the total tardiness occurred when providing the
service requirements is 73.767 time units, and the total
overtime of all sta� members is 135.248 time units.

It can be observed that most of the time windows
of patient-related nodes are ful�lled except that the ser-

vice requirements of nodes 2, 7, and 8 start with a delay
of 31.495, 6.136, and 36.136 time units, respectively.
It is worth mentioning that no sta� member arrives
at a node before opening the time windows of the
patients. Thus, if there are no interdependent services
in two nodes, the service requirement is performed
immediately after the arrival of sta� members at a
patients home. In addition, sta� members 1 and 2 must
work 35.965 and 99.283 time units over their contract
working time while the overtime for sta� member 3 is
zero. Also, the required service at node 3 is provided
by sta� member 2, that is, the respective COC is
satis�ed. Therefore, the fourth performance measure
becomes zero. Moreover, only the LB of the desired
time window for sta� member 2 and the upper bounds
of time windows determined by sta� members 1 and 3
are met.

A similar solution is also obtained using GA for
the above example that veri�es the validity of the
proposed solution scheme. Figure 15 demonstrates the
trend of convergence of GA, which ends up with the
same objective function of the exact method.
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Figure 15. Convergence diagram of the example.

5.2. The second part of experiments
(comparing e�ciency of GA in di�erent
problems)

5.2.1. Description of test instances
We employ six sets of randomly generated instances
with di�erent characteristics (refer to Table 10). For
each of these sets, �ve instances with di�erent values in
the nodes coordinates, quali�cation matrix, and so on
are created. It should be mentioned that the traveling
distances between all pairwise nodes are generated
using a uniform distribution function ranging between
0 and 2000, that is, all generated nodes are located in
an area of 2000� 2000 distance units.

To achieve the matrix of travel times, the distance
matrix is determined by Euclidean distance using the
coordinates of the nodes in the network. Therefore, the
travel times can be formulated as ttijv = fv:dij ; 8i; j 2
P 0; 8v 2 V , in which ttijv is the travel time between
nodes i and j of sta� member �, dij is the traveling
distance between these nodes, and fv is the conversion
ratio of distance to travel time (speed inversion). It
should be noted that the amount of fv really depends

on the eet types of vehicles. We do not distinguish
between the �ve prede�ned performance measures and
the weights for all sub-goals in the objective function
are assumed to be equal. All the respective parame-
ters used in our proposed model are demonstrated in
Table 11.

To set the parameters of each instance, the ran-
dom numbers should be generated within the intervals
speci�ed in Table 11 for all parameters. For example,
a possible value for �ijmax is obtained by summing
two random values generated within two time intervals
[0,70] and [5,50]. In addition, the maximum di�erence
between the upper and LBs for the time window of each
patient-related node is assumed to be 200 time units.

5.2.2. Numerical results of the exact solution of the
optimization model

To investigate the performance of our model in which
there is one node for each service required by the
patient (we call it model 1), we implemented the
model in which there is only one node per patient
(we call it model 2). The second model is used by
Mankowska et al. [7]. It is quite obvious that the
problem dimension in model 2 is signi�cantly smaller
than the �rst model, especially for large-scale problems.
For example, assume a problem instance with seven
real patients and three sta� members in which �ve
patients require a single service and two others require
interdependent services. Using the �rst model, the
network ends up with thirteen nodes (i.e., seven nodes
for real patients and two nodes for virtual patients, and
four nodes for virtual nodes, which �nally correspond
to the home health care center). However, in the case
of using the second model, the total nodes including
virtual nodes in the example become eleven (i.e., seven
nodes for patients and four nodes for virtual nodes
corresponding to the home health care center). It
should be noted that as the number of patients and
the number of their required services increase, the
di�erence in the number of nodes between the two
models would signi�cantly rise.

Table 10. Speci�cations of considered instances sets.

Instances
set

Number of
patients

Number of
patients requiring

interdependent services

Number of
nodes along

with the
virtual nodes (

��P 0��)
Number of

sta� members
(jV j)

A 3 1 8 2

B 7 2 13 3

C 10 3 17 3

D 12 4 20 4

E 25 8 37 5

F 38 8 50 10
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Table 11. Values of our parameters used in the model.

Parameter Value Description

�1
1
5 The coe�cient of the �rst performance measure in the objective function

�2
1
5 The coe�cient of the second performance measure in the objective function

�3
1
5 The coe�cient of the third performance measure in the objective function

�4
1
5 The coe�cient of the fourth performance measure in the objective function

�5
1
5 The coe�cient of the �fth performance measure in the objective function

fv [0:68; 0:80] The conversion coe�cient of distance traveled to travel time
�min
ij [0; 70] The minimal time distance between service start times at every two interdependent

nodes i and j with precedent relation (in minutes)
�max
ij �min

ij + [5; 50] The maximal time distance between service start times at every two interdependent
nodes i and j with precedent relation (in minutes)

duri [5; 40] The time duration of performing the service required by patient-related node i
(in minutes)

T 600, 1000 Time horizon (in minutes)

Table 12. The results of solving the model with two types of modeling.

Size
���P 0��� ��P 0��� 1� jV j� Instance Type of

modeling
W CPU

time
Gap
(%)

13� 12� 3

B1
Model 1 180.579 35.45

11.185
Model 2 200.78 31.73

B2
Model 1 246.181 26.78

{
Model 2 Infeasible {

B3
Model 1 302.384 18.22

11.021
Model 2 335.710 13.92

B4
Model 1 91.904 10.52

{
Model 2 Infeasible {

B5
Model 1 207.912 22.44

8.848
Model 2 226.308 18.42

17� 16� 3

C1
Model 1 493.770 579.97

38.727
Model 2 685.002 588.11

C2
Model 1 620.683 602.30

7.415
Model 2 666.707 525.53

C3
Model 1 512.577 638.81

{
Model 2 Infeasible {

C4
Model 1 351.800 3560.06

30.689
Model 2 459.764 3662.20

C5
Model 1 504.177 487.34

28.865
Model 2 649.708 395.04

As it is shown in Table 12, despite the enlarge-
ment of the problem size and a slight increase in CPU
time, there would be better values of the objective
function for each instance in the �rst type of modeling.
The relative gap between them ranges from 7 to 38%,

which increases for larger instances. In the second
type of modeling, each sta� member is prevented from
performing both interdependent services. This means
that the return of a sta� member to an already visited
patient would violate the start time of the earlier visit
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Table 13. Research domain and the levels of factors in the Genetic Algorithm (GA).

Factors

Population size Number of generations

Levels
Small

instances
Large

instances
Small

instances
Large

instances
Crossover

rate
Mutation

rate

1 100 200 70 100 0.7 0.1

2 150 230 100 150 0.8 0.2

3 200 270 150 200 0.9 0.3

and create a cycle in the route of the sta� member. In
other words, the same sta� member cannot perform the
second interdependent service for one single patient.

It should also be noted that contrary to the �rst
model, there would be an infeasible solution in the
second model for the situation where only one sta�
member is available to provide both interdependent
services for a patient. The main reason for this issue is
that the structure of the second model is designed in
such a way that no sub-cycle in the �nal routes could
be created. As obvious in Table 12, the �rst model
ends up with feasible solutions in all situations while
its objectives are more suitable compared to those in
the second model.

5.2.3. The performance of the GA
As mentioned earlier, due to the complexity of our
proposed model, if the problem scale is large enough, it
is likely that the best solution cannot be found within
a reasonable time using the current accurate methods.
Therefore, we extended a GA to cope with such
problems. We demonstrate how this algorithm could
end up with high-quali�ed solutions (near-optimal solu-
tions) in some small- and medium-sized test instances.
Then, we report the �nal solutions obtained using
this algorithm for some large-scale problems where the
current exact methods are usually able to �nd any
solutions. It should be noted that all the results of
GAMS are extracted within 60000 seconds of CPU
time.

5.2.4. Parameter setting and taguchi design
As we have some kind of generating random numbers
or sequences when using metaheuristic algorithms,
di�erent �nal routes could be obtained at the end of
all implementations. A metaheuristic algorithm for
solving an optimization model is a reliable solution
scheme if the �nal solutions in all implementations
are meaningfully close to each other. To have such
a solution quality, the respective parameters including
population size, number of generations, crossover prob-
ability, and mutation probability should be properly
adjusted. These parameters need to be optimally set
through running a variety of experiments in di�er-

ent problem instances. We must employ a suitable
technique in the design of experiments to �nd the
optimal level of e�cient parameters. We used the
Taguchi method, a well-known approach for adjust-
ing the parameters of the metaheuristic algorithms.
This approach can remarkably reduce the number of
experiments for parameter tuning Fraley et al. [40].
Here, we used Minitab 16 to implement Taguchi designs
and parameter tuning. The research domain and the
respective levels of factors are recorded in Table 13.

Based on the suggestion of the Minitab, we
selected the nine-experiment option. The solution
scheme is then implemented multiple times using the
respective levels in each experiment for both small
and large instances. The best solution amongst all
the implementations for each experiment is selected
as the �nal solution. Signal to noise ( SN ), as the
�rst priority, is formulated as equation � =

� S
N

�
=

�10 log
� 1
m

�P
i

�
yi2
�
, where m is the number of exper-

iments and yi is the response of the process in the
ith experiment. The average value of the objective
function and the average value of CPU time are also
chosen as the second and third priorities, respectively.
Therefore, the higher S

N ratio with the lower average
of the objective function and the CPU time is more
suitable for decision-maker/s and the respective level of
parameters should be selected. The optimal and suit-
able values for the GA parameters with consideration
of priorities are demonstrated in Table 14.

5.2.5. Results analysis
In this section, the results obtained through GAMS
and GA are compared with each other. It is worth
mentioning that GAMS uses the Branch and Bound
(B&B) algorithm to solve optimization models. The
following table demonstrates the LB obtained through
GAMS, the value of the objective functions obtained
using GAMS (WB&B) and the GA-based solution
scheme (WGA), and the CPU times (in seconds) for
all generated problems. In addition, the relative
gap between LB and WB&B , reported by GAMS, is
demonstrated in the �fth column, which is calculated
using the equation relative gap = (WB&B�LB)

WB&B
. The
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Table 14. Optimal level of controllable factors in the Genetic Algorithm (GA).

Parameters The optimal level
for small problems

The optimal level
for large problems

Population size 100 230
Number of generations 100 200
Crossover probability 0.7 0.9
Mutation probability 0.1 0.3

Table 15. Numerical results for test instances.
B&B algorithm GA

Size (jP 0j � jP 0j � 1� jV j) Instance LB WB&B
relative
gap (%)

CPU
time

WGA
CPU
time

Gap (%)

8� 7� 2

A1 45.959 45.959 0.00 0.76 45.959 29.19 0.00
A2 72.552 72.552 0.00 0.38 72.552 33.56 0.00
A3 46.247 46.247 0.00 0.25 46.256 28.99 0.02
A4 75.054 75.054 0.00 0.36 75.064 28.77 0.01
A5 39.561 39.561 0.00 0.34 39.561 28.24 0.00

13� 12� 3

B1 180.579 180.579 0.00 35.45 182.843 77.99 1.25
B2 246.181 246.181 0.00 26.78 247.195 76.62 0.41
B3 302.384 302.384 0.00 18.22 304.685 85.47 0.76
B4 91.904 91.904 0.00 10.52 93.116 83.20 1.32
B5 207.912 207.912 0.00 22.44 210.592 69.54 1.29

17� 16� 3

C1 493.777 493.777 0.00 579.97 508.672 154.66 3.02
C2 620.683 620.683 0.00 602.30 633.813 140.59 2.12
C3 512.577 512.577 0.00 638.81 527.036 195.65 2.82
C4 351.800 351.800 0.00 3560.06 357.279 184.45 1.56
C5 504.177 504.177 0.00 487.34 515.635 143.73 2.27

20� 19� 4

D1 155.788 817.439 80.94 60000 815.006 1380.40 �0:30
D2 146.228 911.223 83.95 60000 903.769 1277.31 �0:82
D3 401.991 708.942 43.30 60000 709.452 1224.91 0.07
D4 660.352 660.352 0.00 40827.02 664.837 1379.746 0.68
D5 236.692 742.703 68.13 60000 730.706 1236.88 �1:62

37� 36� 5

E1 { { { 60000 1346.160 5105.85 {
E2 { { { 60000 1395.275 4949.08 {
E3 { { { 60000 1620.380 4932.52 {
E4 { { { 60000 1527.837 4889.09 {
E5 { { { 60000 1385.675 4834.36 {

50� 49� 10

F1 { { { 60000 1640.960 10847.36 {
F2 { { { 60000 1762.986 10601.17 {
F3 { { { 60000 1926.015 10134.23 {
F4 { { { 60000 1903.256 10133.94 {
F5 { { { 60000 2190.284 10290.16 {

last column represents the gap between WB&B and
WGA computed using the following equation:

gap =
�
WGA �WB&B

WB&B

�
� 100: (24)

As it is illustrated in Table 15, the optimal values
of the objective function are almost the same as the

objective function values achieved using the GA in
small- and medium-sized instances (in sets A, B, and
C) and the gap is only at most 3.02 %. Another
interesting point is that all instances in sets A, B,
and C are optimized within at most 638 seconds using
B&B except C4, while GA ends up with almost the
same objectives in at most 195.65 seconds, which
are reasonably less than the CPU times observed by
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B&B. The large-sized instances in set D cannot be
solved optimally in 60,000 seconds using B&B and only
feasible solutions are achieved. However, GA could
obtain feasible solutions with close objective values to
those obtained through GAMS in quite shorter CPU
times (at most 1380.40 seconds). The relative gaps
for these instances uctuate between 43% and 84%,
except for D4 that is solved exactly within 40827.02
seconds (i.e., the relative gap is zero). The gaps are
{0.30%, {0.82%, 0.07%, and {1.62% for D1, D2, D3,
and D5, respectively. A negative gap means that the
objective function value of GA is better than that
of B&B (it should also be noted that GAMS cannot
solve the optimality of these instances). However,
GA saves at least 98% of the CPU time considered
by B&B to obtain the same objective function value
in order to obtain the same objective function value
for all instances in set D. Therefore, a signi�cant
improvement can be obtained in less computational
time. For large instances in sets E and F, the B&B
algorithm could not �nd any feasible solution and any
LBs within 60000 seconds; however, GA �nds feasible
solutions within maximum 10847.36 seconds (about
3 h), which is certainly a practical time for making
decisions. These results con�rm that the solution
scheme could suitably obtain optimal or near-optimal
solutions within a limited computational time even for
large-sized instances.

Furthermore, Figure 16 also illustrates that the
objectives for both exact and metaheuristic methods
are almost the same for small- and medium-sized
instances. However, as the size of the problems
increases, exact methods cannot yield a solution within
a reasonable time while the GA leads to a feasible
solution in a more limited time. In Figures 17 and 18
the trend of convergence of GA for instances D3 and
F1 are depicted.

6. Conclusions

The primary goal of paying much attention to home
health care is to improve the welfare of communities
by providing high-quality services to satisfy people's
health requirements in their homes. The home health
care problem involves sta� members routing and ser-
vices scheduling in which the performance measures
such as total system costs and patient/sta� satisfaction
levels are optimized. In this regard, we developed a
comprehensive mathematical model in which all sta�
members could have speci�c quali�cations and skills
(heterogeneous sta� members); therefore, they can
provide some limited services compatible with their
de�ned abilities. Whereas each sta� member could
have his/her own vehicle, she/he can traverse a distance
between two nodes less than others, that is, the speed
of vehicles could be di�erent. The interesting feature of

Figure 16. Comparison of the value of the objective
function using B&B and Genetic Algorithm (GA).

Figure 17. Convergence diagram of the example D3.

Figure 18. Convergence diagram of the example F1.

the proposed model, which would make it more useful
in real situations, is that the sta� members could work
over the working times approved in their own contracts
(i.e., the consideration of overtime in the model). It
is also assumed that all service requirements should
be provided within prede�ned time windows for both
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patients and sta� members. To make the model more
exible, the starting time of patients time windows
is considered as a hard constraint, while its ending
value is a soft constraint. In addition, all sta� mem-
bers could have a break period within a routine day.
Compared with other works in the previous literature,
the remarkable feature of the model we developed is
that it also considers Continuity of Care (CoC), related
required services, and blood sampling requirements.
In other words, proper preferences in choosing desired
sta� members could be done by patients, the respective
services could be accomplished simultaneously or with
prede�ned precedence, and all blood samples must be
returned to the blood center (i.e., central depot) within
a speci�ed time window.

To incorporate all these features into our math-
ematical model, we constructed the respective home
health care network using some virtual nodes. The
interesting point is that due to the nature of the
model and its respective modi�cation, the model ends
up with a feasible solution in all di�erent situations.
This means that all required services are eventually re-
sponded by the quali�ed sta� members; however, they
could be implemented with some delay. Moreover, we
used our resources in an e�ective way so that one sta�
member can provide two interdependent services with
precedent relations. Therefore, the total cost could be
remarkably decreased and su�cient time/money could
be saved. In addition, since the CoC is incorporated
into the proposed model, both patients and sta�
members would have more friendly relations which
leads to higher patients satisfaction. There is also no
limitation in our proposed model to apply it in daily,
weekly, or even monthly Home Healthcare Routing and
Scheduling Problem (HHCRSP). Furthermore, there
is no serious restriction to consider di�erent blood,
break, and depot centers for each sta� member. The
proposed optimization model could be simply cus-
tomized to new problems with multiple nodes for these
centers.

Due to the complexity of the model, it cannot
be solved through traditional optimization methods
for real-life problems. Therefore, a Genetic Algorithm
(GA) has been extended which can be used for most
routing and scheduling problems. By comparing the
developed algorithm with the exact solutions of small
and medium-scale problems, the e�ciency of our pro-
posed solution could be revealed.

The model can be extended for a stochastic situ-
ation where some respective parameters are uncertain.
A dynamic approach could also be presented in which
the process of accepting (canceling) the new (existing)
patients and rescheduling the required services are
taken into account. Moreover, two di�erent situations,
which include performing a certain visit and transport-
ing medical facilities and medicine between the health

care institutions and the patients homes, can also be
incorporated into the model.
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