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Research Note

An Augmented Galerkin Method for Singular
Integral Equations with Hilbert Kernel

S. Abbasbandy* and E. Babolian!

In this paper a Fourier series expansion method is described for a class of singular integral
equations with Hilbert kernel and constant coefficients. Furthermore, a number of numerical
examples are given showing that Galerkin method works well in practice.

INTRODUCTION

In recent papers, Delves [1] and others [2,3] described
a, Chebyshev series method for the numerical solution
of integral equations with non-singular kernels or some
particular singular kernels, for example Green’s func-
tion kernel, logarithmic and Cauchy kernels and so on.

Here, a numerical solution of singular integral
equation with Hilbert kernel of the following form is
considered:
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where a,b and p are real constants, with & # O,
k(t,z) and f(z) are real periodic functions of ¢ and
z with period 27 and are assumed to be the known
Ly-functions. ¢(z) is the unknown Lo-function with
period 27 .

A theoretical consideration of the existence and
convergence theorems is described in [4,5].

As is known the set:
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is an orthonormal and complete basis for La[—,].
Therefore, every square integrable function is com-
pletely determined (expect for its value at a finite
number of points) by its Fourier series, whether this
series converges or not. The Fourier series of a contin-
uous, piecewise smooth function f(z) (with period 27)
converges to f(z) absolutely and uniformly [6].

The expansion method approximates ¢ by ¢y,
where:
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and with above assumptions, ¢y {z) converges to ¢(z)

in the mean, i.e.,
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Obviously, « the index of Equation 1 is zero. Let:
0 = arg(a — ib),

be the characteristic number of Equation 1. If s = 0,
then there are two cases, [0]» # 5 or [0], = %, where
the notation [:c],r denotes the number congruent to x
in [0, 7) for the modulus = [4].

Suppose f(z) and k(t,z) are continuously differ-
entiable. If [f]. # I and p is not an eigenvalue of
k(t,z), then Equation 1 has a unique solution which
can be obtained using Galerkin equations (otherwise
Equation 1 has an infinity of solutions). If [4], =
when ¢ = 0 and Equation 1 is a first kind integral
equation, under the constraint condition,
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then Equation 1 has an infinity of solutions but if the
following additional condition is imposed (unisolving
condition),

1 T

— t)dt =C
5 _Ww()d ,

where C is a given real constant, then Equation 1 has
a unique solution [4].
The last condition imposes:

a0:2C’,

to the Galerkin equations.
In the next section, the following formulae are

used,
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in the sense of Cauchy principal integral (see [7]) to
obtain Galerkin equations.

THE AUGMENTED GALERKIN
ALGORITHM

The Galerkin equations for the coefficients a; and b; in
Equation 2 are:

AX=F, (3)

where, for 1 =0,1,..., N,
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and:
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and fori=1,..., N,

ANsi; =1 [ — by
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and:

AN iy (N+i) = anbi
+u/ / k(t,z)sinizsin jtdt dz ,

7=1,...,N.
Fori=0,1,...,N,
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F, = f(z)cosizdz ,

—_7

and fori=1,...,N,

Finyy = f(z)sinizdzx ,
and:

X= [ao,al,...,aN,bl,bz,...,bN]t y
where:

_{z =0
B g0,
and 6;; is Kronecker delta. When a = 0 (in the second
case), only ag is set equal to 2C.
The augmented Galerkin scheme of [2] is used to
find a solution for Equation 3.

The assumption that Equation 1 has an Lo-
solution, implies that the representation:
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is convergent in Ly space and as a result:

xD . x
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i=0 i=1
Therefore, the following constraints are imposed:

|ai|§6i=C’f€_T,i=O,1,...
b)) <6 =Cst ", i=1,...

with C; > 0 and r > I to Equation 3 for having
an Ly solution, where 1 = max(1,i) [2]. In other
words, when the mentioned constraints are satisfied,
it is expected that a;’s and b;’s belong to I2 and hence
the obtained solution belongs to Le. The constants
Cr and r play the role of regularization parameters
and some strategies are discussed in [2] to determine
suitable values for them. Here, Strategy 1 described in
[2] is used, in which:

Cr = NFlleo /I &lloo

where A must be set heuristically, say 2 < A < 10 (it
can be proved that A > 1).



62

COMPUTATIONAL DETAILS

To compute integrals in Equation 3, m-panel Gauss-
Kronrod Quadrature rule with ¢-points is used. Hence,

7rf(:v)TR(i:v) dr ~ (=1)
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/ k(z,z)TR(iz)TR (jz)dzdz

where:

yj- =z;—1+21,
TR(z) and TR'(z) may be sin(z) or cos(z) and ws and
z, are weights and nodes for ¢-point Gauss-Kronrod
quadrature rule, respectively.

To solve Equation 3, the augmented Galerkin
scheme of [2] is considered:

Minimize |AX — F|| | (4)
Subject to
la;| < 6 =Cp1 77,
|bjl <85 =Csj 77,
1=0,1,...,N,

i=12,...,N,

where A and F are numerical approximations to A and
F.

NUMERICAL EXAMPLES AND RESULTS

Here, a set of three examples are considered. All
computations were carried out on an IBM-PC using C
language and long double precision. Computed errors
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are defined as follows:

1wl = \/E el - el

1Bl = Max, li(s:) -

QON(Si)l 3

where s; = —m + iw /50.

Example 1
For -r <z <,

iy
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— /—7; (#)2 o(t) dt = 7 — sin(z),

with solution ¢(z) = cos(z).

Here, f(z) and k(z,y) are analytic functions and
the Fouriér series of them are known and ¢(z) is in C°,
therefore, the regularization parameter, r, can take any
value.

Example 2
For - v <z <,

1 (7 t—zx
<p(x)+%/ o(z) cot 5 dt

-7

7rt 2
+/ -;xcp(t)dtzﬂ—

3

sin{iz)
72 ’

_42( 1) ip1008(3T) —

=1

with solution ¢(z) = z2. All functions have the same
behavior as in Example 1 and 7 can take any value.

Example 3
For - m <z <m,

1 iy

t—=x
— cot dt
or | o(z)

+ /W sin(t) sin(z)p(t) dt

—T

=12 (wsin(m) + i(_l)ﬁ-l wj&) ,

i=1

with solution ¢(z) = z(7 — z)(7 + z) and r can take
any value.

Results for the above examples are presented in
Tables 1-3. Tables give the accuracy, || En||2, obtained
by the augmented Galerkin.algorithm form =1 orm =
2 (number of panels in integration) and by different
values for r and A in -examples with ¢ = 15.
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Table 1. Results for Example 1.

| r=5A=4 r=2,A=10
[ m=1 m =2 m =2
N IEwN || oo [En|l2 I BN lloo 1Enll2 N | Ex|loo | En iz
2 3.68E-13 2.14E-13 3.75E-16 2.42E-16 2 3.75E-16 2.42E-16
3 3.50E-9 1.97E-9 1.23E-15 6.50E-16 3 1.23E-15 6.50E-16
4 1.50E-6 8.91E-7 3.33E-13 1.98E-13 4 3.33E-13 1.98E-13
5 1.15E-4 7.13E-5 3.33E-13 1.98E-13 5 3.33E-13 1.98E-13
6 2.60E-4 1.36E-4 3.05E-9 1.89E-9 6 3.05E-9 1.89E-9
7 3.31E-4 1.45E-4 3.05E-9 1.89E-9 7 3.05E-9 1.89E-9
8 3.66E-4 1.47E-4 1.37E-6 8.72E-7 8 1.37E-6 8.72E-7
9 3.59E-4 1.38E-4 1.37E-6 8.72E-7 9 1.37E-6 8.72E-7
10 1.51E-1 1.06E-1 1.42E-5 8.97E-6 10 1.04E-4 7.03E-5
t=15
Table 2. Results for Example 2.
r=1,A=10 r=22=10
m=1 m =2 m=1
N | Enleo I En |2 [Enleo | B iz N [Exllea ([ Enllz
2 1.20 3.70E-1 1.20 3.70E-1 2 1.20 3.70E-1
3 7.68E-1 2.21E-1 7.68E-1 2.21E-1 3 7.68E-1 2.21E-1
4 5.26E-1 1.49E-1 5.26E-1 1.49E-1 4 5.26E-1 1.49E-1
5 3.74E-1 1.08E-1 3.74E-1 1.08E-1 5 3.74E-1 1.08E-1
6 2.83E-1 8.22E-2 2.70E-1 8.18E-2 6 2.83E-1 8.22E-2
7 2.83E-1 1.63E-1 1.97E-1 6.45E-2 7 2.83E-1 1.63E-1
8 1.64 9.94E-1 1.59E-1 5.23E-2 8 5.10E-1 2.62E-1
9 3.47 1.68 1.45E-1 4.34E-2 9 7.37E-1 3.13E-1
10 4.38 1.86 1.33E-1 3.67E-2 ]L TA4TE-1 2.88E-1
t=15
Table 3. Results for Example 3.
r=1,A=10 P =2,A=10
m=1 m =2 m =
N [Ex|loo [|Enll2 | En oo IEnllz N |EN|loo | Enll2
2 7.12E-1 3.53E-1 7.12E-1 3.53E-1 2 7.12E-1 3.53E-1
3 3.70E-1 1.59E-1 3.70E-1 1.59E-1 3 3.70E-1 1.59E-1
4 2.26E-1 8.62E-2 2.25E-1 8.62E-2 4 2.25E-1 8.62E-2
5 1.59E-1 5.39E-2 1.48E-1 5.27E-2 5 1.48E-1 5.27TE-2
6 2.75E-1 1.61E-1 1.08E-1 3.49E-2 6 1.08E-1 3.49E-2
7 2.14 1.35 8.13E-2 2.45E-2 7 8.13E-2 2.45E-2
8 1.13E+1 6.59 6.15E-2 1.79E-2 8 6.15E-2 1.79E-2
9 3.57E+1 1.97E+1 4.73E-2 1.36E-2 9 4.73E-2 1.36E-2
10 3.75E+1 2.03E+1 J 4.02E-2 1.06E-2 10 4.02E-2 1.06E-2
t=15
CONCLUSIONS zero and the method presented for small values of

From the above resuits, it is concluded that the
augmented Galerkin method allows an almost routine
solution of Hilbert integral equations. In Example 1,
the exact coefficients ag, a2,a3,... and by, bs,... are

N is very accurate. But for Example 2, ag,a1,...
and for Example 3, b1, bs,- - are non-zero and hence
a large value for N must be chosen. Table 4
shows ||En|l2 for exact Fourier coefficients of ¢(z)
in Examples 2 and 3. Table 4 shows that the
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Table 4. ||En||2 for exact Fourier coefficients of ().

N Example 2 Example 3
2 0.370239 0.353477
3 0.221158 0.158695
4 0.148709 0.086192
5 0.107584 0.052678
6 0.081816 0.034878
7 0.064531 0.024464
8 0.052347 0.017922
9 0.043430 0.013581
10 0.036709 0.010575
12 0.027448 0.006824
14 0.021553 0.004685
16 0.017602 0.003364
18 0.014845 0.002497
20 0.012852 0.001899

method presented here works well in practice, these
numbers are the lower bound of obtained ||Ex||2 in
Tables 2 and 3.

It is important to note that the elements of
matrix in Equation 3 do not tend to zero as
N — oo and therefore, direct methods or it-
erative methods cannot be used to solve Equa-
tion 3, but solving Equation 4 is independent
of N under some mild conditions that are valid
here [2].
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