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Periodic Solution of a Certain Class of
Nonlinear Fourth Order Differential Equation

B. Mehri* and D. Shadman!

In this paper the fourth order differential equation is considered:

:L‘(4) + fs(CL‘”)CL‘m + fz(:l:’):L‘” +f1(CL‘)CL" +g(t,m’x/,m/’x///) =p(t) , (1)

where f; is continuous and the functions g and p are continuous and w-periodic in t. Here Leray-
Schauder principle, as suggested by Giissefeldt [1], is used to prove the existence of nontrivial

periodic solutions of Equation 1.

INTRODUCTION

In [2,3], Ezeilo considered the following differential
equation:

"+ '(/)(CL‘/)CL'” + ¢(:L‘):L‘/ + e(CL‘,CL',am”) = p(t) )

where, under certain conditions on the nonlinear terms
1,1 and 8, Ezeilo proved the ultimate boundedness
of the solutions. Later Reissig [4] proved that these
conditions were also sufficient to show the oscillatory
character of these solutions provided p is periodic.
Here, under similar conditions, the existance of an w-
periodic solution of Equation 1 is proved.

Furthermore, the differential Equation 1 is stud-
ied and the following equations are defined:

P(t) = /0 p(s)ds , Fi(ws) = /0 fi(©)de ,
i=1,2,3.

THEOREM 1

Assume:

i) F3(zs)sgnzs — +o0 as |z3| — oo,
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it) |g(t,z1,22,23,24)] < K for all the values of
independent variables and:

g(t, 1,22, 23, 34) sgnzy > 0 for |z1| > b,
iil) |Fa(xe) — bza| < M (b > 0,a constant),
iv) [P(t)] <m, forall t (f; p(t)dt =0).

Then, there exists at least one w-periodic solution for
Equation 1.

Proof
Using the following notations, let u € [0, 1]

Flon ) = g fle) = 5= (),

i=1,2,3

Fi(as, ) = /0 “ fe e

1 1-
= —F(z;) - —

i=1,2,3.
g(t, T1, 2,23, T, ) = pg(t, T1, T2, T3, 24)

T
1+|:L‘1| ‘

+(1 - K



It follows that:

Fi(2:,0) = 5 [Fi(w:) = Fi(~2:)] = ~F(~2,,0)

Fi(z;,1) = Fy(=i), i=1,2,3
(t,z1,%2,3,24,0) = K_* (odd)
g\t,T1,%2,23,24, = 1+|$1|

Evidently the following relations hold:
i) F3(z3,u)sgnxz — oo as |x3| — oo uniformly with
respect to p € [0, 1],
u)l |g(t7$1,$2,$3,$4,,u)| §u|g(t,:1:1,:1:2,:1:3,:1:4)|
+2(l-p) < K,pel0,1],

g(t,wl,wz,ws,u)sgmlZ(l_u)Klfiflcll
>0, |z1| 2 h,pe0,1].
i) |Fp(zz,p) — baa| =

Fy(ze) 1-up

EEr Enilad
b.’Ez 1—,U.

— 51 +bm('—x2)

< |Balz2) — bzs
1_

+ ﬁ |Fa(=22) = b(=22)| < M.

Next, the following first order system depending
on the parameter p is considered.

Ty = x4 + [bzy — Fo(x2, )]
— Fi(z1,p) — F3(zs, p) + pp(t) ,

Ty = —cxy—brz+[cz1 —g(t, x1, T2, 23,24, )],  (2)

where the constants ¢ and b are such that ¢ > %. In
the vector form of:

0 1 0 0
0 0 1 o0
2= Az + f(t,z,u), A= o 0o o 1l°
—c 0 =6 O
Al 0
T2 o 0
= T3  f bro — Fy — Fy — F3+ up
Ty cry — g
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Since the characteristic equation:
det A\l —A) =X +b)\24+c=0,

has no purely imaginary roots, the homogeneous linear
system:

2= Az, (4)

admits only the trivial w-periodic solution z(¢) = 0 [5].
System of Equation 2 (or 3) is equivalent to the
fourth order differential equation:

sW4fa(2” w)a" + fole, p)a” + fi(z, p)z’
+g(t,z, 2", 2", 2", u) = pp(t), (5)

which is identical to Equation 1 for g = 1.
For u = 0, the nonlinear terms F, F3, F3 and ¢
are odd with respect to z;, 22, 3, that is:

f(t7 _:'370) = —f(t,.’E,O) )

where f(t,z,p) is the nonlinear perturbation term in
Equation 3. This term is a continuous function of:

(t,z, 1) € [0,w] x R* x [0,1] .

For t € [0,w] the w-periodic solution z(t) of Equa-
tion 3 can be represented as the continuous solution of
the integral equation:

2(t) = T(a(t), ) = / “Glt-m) F(ra(r) )t (6)

or shortly as:
Vi(z) = x(t) - T(2(t),n) =0 .

The Green matrix G(s), s € [~w,w], is continuous
for s # 0 and it fulfils the jump condition:

GO+) -G )=E .

Let B be Banach space, B = {z(t) € C[0,w] :
z(0) = z(w)} normed by ||lz|| = supl|z(t)], t €
[0,w]. Then the operator T' generates a continuous
and compact mapping of the normed product space
B x [0,1] into the Banach space B. The periodic
solution of Equation 3 correspond to the fixed points
of T' or to the null vector of V,,.

Let Sg = {2(t) : llall = R}, Br = {a(t) : |lall <
R}. On the sphere Sg, the vector field V, (Voo =
z — T(z,p)) is studied for every fixed p € [0,1]. If
there is no null vector on Sg, the vector fields V; and
V, are called homotopic. The rotations of homotopic
vector fields are identical. Since V; is an odd vector
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field, its rotation is an odd number. The rotation of
Vo on the sphere Sg being different from zero, the
ball Br contains at least one null vector of V5. This
result is also true of all vector fields V,(x € [0,1]).
Consequently for every p, the system of Equation 3
admits at least one w-periodic solution #(¢) with norm
llzll < R [6,7].

If it could be shown that the solutions of integral
Equation 6 are a priori bounded, (]|z| < R, R a uniform
bound) then only two alternative possibilities exist:

a. For p = 1 there is at least one solution z(t) of the
integral equation with norm R,

b. Such a solution does not occur and the vector field
V(0 < g £ 1) has no null vector on the sphere Sg,
but at least one null vector within Bg.

In any case, the theorem is proved and, therefore,
the differential Equation 1 has a periodic solution
bounded by R.

To obtain a priori estimate, a periodic solution
of the System 2 is considered. The components z3(t)
and z4(2) are studied with the aid of positive auxiliary
function:

1
W3, z4) = 5(533% + z5)

— K(|z3| + |z4|~ | |z3] — |24 |)

b+1
sgn(zs - 24) + 2%1(2 :

It should be noted that W(z3,z4) tends to infinity as
|[z3[ + [z4] — o0.

To evaluate the total derivative, W', the following
cases are considered.

case 1, xg - x4 > 0
If |z3| < |z4], then:

b+1
W = %(bx% +23) - 2K]us| + 20 K*

W' = bzsz} + zazy — 2Kz5sgnzs .
Substitute from Equation 2 in the expression for W

W' = ~bz3 F1 + bxz(bsy — F3) — brs Fs
+ bzsup — z49 — 2K x4 88023
+ 2K Fy sgnzs — 2k(bzg — F3)sgnzs
+2KFysgnxz — 2K upsgnas ,

or:

W' < bles|{M; + Mz + m} + |z4](|g] — 2K)
+ 2K {M; + M2+ m}
+ 2K|F3| < |z3]|{b(M1 + Mz +m) — K}
+2K{M, + My + Mz +m} .

Choose K > b(M; + Mz +m). Then w' < 0 for:

2K(M1 +M2 +’ITL)

sl > =60 3 7 m) @

Now if ,504' < ICE;;'J

W = %(b:v% +z2) - 2K |z4) + 2bTT1K2 ,

W' = bzszy + z47y — 2K 5 sgn z3 .
Substituting from Equation 2,

W' = — bxsF1 + bxs(bze — F2) + buzsp
—brsF3 — 249+ 2Kbxz +2Kgsgnzy ,

W' <blzs|{M1 + M3 + m} + |z4] |g|
+ 2Kb|xs| + 2K? — bz Fs .

By (i)’ given « there exists 8 such that |F3| > o if
|z3] > p. Hence:

W' < — |z3]
{ba — [b(M1 + M2 +m +2K) + K|}
+2K? .

If bao > K + 5(M; + My + m) + 2K), then W' < 0 for:

|z3| > max

{o . |
"ab—[K+b(M; + My +m +2K)] | -

case 2, x3 ¢4 < 0
Here again first assume that |z3| < |z4|. Then:

1 b+1
W= §(bxg +23) + 2K |z3| + 2%1(2

= b3zl + 247y + 2Kz sgnxs .
Substituting from Equation 2:

W' <blzg|{M1 + My + m} + 24| K — 2K |z4|
+ 2K (M, + M3+ 2m)



Or:

w’ Sbll‘;;l{Ml + Mo +m} — Kl.’l?gl
+2K(M1 +M2 +2m) .

Choose K > b(M1 + M2 + m), then W’ < 0 for:

2K(M; + My +m)

31> B + 20 7 2m) - ®

Next assume |z3| > |z4|. Then:
1 b+1
W =2 (ba} +23) - 2K fas| + 2%1{2

W' = bzszy + zaz), + 2Kzhsgnzs
= bxs(bxe — Fo) — bxgFy — bxg F3+buzsP
—x49 — 2Kbxzsgnxy — 2K gsgnay
+2Kgsgnzs .

Finally the following is obtained:

w! Sbl-TSl(Ml + My + ’ITL) + |.’E4|K + 2bK|.’173|
+ 2K — bjzs| || .

Again for & > 0 there exists § > 0 such that
|F3| > a if |z3] > B. Therefore:

W' <|zs|{b(M1 + Mz + m + 2K) + K — ba}
+2K?

If ba > K + b[M; + M3 +m + 2K, then W’ < 0 for:

|zs| > max

5 2K? }
{ "ba— [K +b(M; + My +m +2K)] |’ o)
9

Therefore W', the total derivative, by virtue of
Equation 2 satisfles W’ < 0 if max{|z3| — Hs,|z4| —
H,} > 0, where Hs and Hy are given by the right sides
of Inequalities 7-10.

By Lyapunov second method [6,8,9] the following
estimates are obtained:

lz3(t)] < B3, |za(t)| < Ba,

where the bounds B3z and B, are determined by
b,m, My, Mo, K and the properties of F3 which do not
depend on .

Next, zo(t) and z;(t) are estimated. Assume
z'(tp) = 0, then for ¢y <t < tp+w:

z'(t) = /t 2" (r)dr ,

to

|z'(t)] <Bsw = Bs, or |z2(t)| < Bs .
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To find a bound for z1(t), Equation 1 is integrated from
0 to w to get:

/ow g(t, z(t),z'(t), 2" (to))dt =0 .

This equation contradicts relation (ii)’ if |z, (t)| > A for
all t. Consequently,

|z1(7)| < b for some 7 € (0,w) .

On the interval 7 < ¢ < 74w, |z1(¢) — z1(7)| =
[t —7| |z2(T+8(t —T))| hence, |z1(t)| < h+w?Bs = B;.
By virtue of the periodicity of z(t), this relation holds
for all £.

Denoting R = +/B? + B2 + B3 + B}, it is noted
that the alternative possibilities (a) and (b) on which
the proof is based, must exist.

THEOREM 2

Consider the differential equation:
z® + a3z + asz” + a13’ + agz
+9(t,z,2', 2", ") = p(t) , (10)

where the constants ap, az, as are assumed to be posi-
tive, a; < 0. The functions p and g are continuous and
p is w-periodic. Now if:
1) |g(¢, 21,22, 23,24)] < M for all values of indepen-
dent variables,

i) g(t,z1,%s,23,24)8gn 21 > 0 for |z1| > h (R >0, a
constant),

iii) |P(t)| <m, [; p(t)dt =0,

then differential Equation 10 has an w-periodic solu-

tion.

Proof
Consider the following differential equation:

£ taz2" + aoz + plasz” + ar1a’)
= u{p(t) — g(t,z,2',2",2"")} , (11)

where p € [0,1]. For p = 0 a homogeneous differential
equation, z(4) + ayz’” + aox = 0, is obtained. Clearly
this equation has no nontrivial w-periodic solution
provided that ag > % is chosen.

To get the required a-priori bounds, both sides of
Equation 11 are multiplied by z'" and are integrated
from 0 to w:

as /0 "Rt - /0 ")t =

p / o) — gt 2(), (1), " (1), " ()] 2" (8) dt .
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Therefore, the following is obtained:

a3/ z 2dt — ay / z Zdt
0 0
S / |p(t) —g(t,$1,$2,$3,$4)|$”1dt,
0
and using Schwartz inequality yields to,
/ [z (£)]*dt < D3 = < (m + M)?
0 a3
Applying Wirtinger’s inequality yields to,
/ 2" (@))%t < ( / [ (£)]2d¢ < Dy
w
—(Eﬂ Ds »
/ =/ ()Pde < ( / [ (£)]2d¢ < D:
w2
—(Eﬂ D2

By Rolle’s theorem, there exist points t; and o €
(0,w) such that z"(t2) = 2'(¢1) = 0 and hence,

:c”(t):/tt:c’”(t)dt a:'(t)=/tt:v”(t)dt

Applying Wirtinger’s inequality again yields to,
1/2

o) < [ ool s { [ erorad o

< (wD3)1/2 = D"

1/2

|z’ (t)] < /Ow|m”(t)|dt < {/Owlzv"(t)|2dt} Wl/2

< (wDy)?=D".

To get an estimate on z/(¢), Equation 11 is
integrated from ¢ to ¢,

2" (t) = — aglz'(t) — 7' (t0)] — ag/ x(t)dt

— paglz"(t) — 2" (t0)]
— paq[z(t) — z(to)]

i i
+,u/b(t)dt-—u/g(t z, ',z g'")dt.
io i

0

= 0 for ¢y €
Then, the

It has been assumed that z/(to)
(0,w), by virtue of periodicity of z'(t).

following is.obtained:
[z (t})| < 2a2D" + apwD + 2a3D" + 20, D
+(m+ M)w=D".

Subsequently, z(t) is substituted in Equation 11 and is
integrated from O to w,

ag /Ow:c(t)dt =
L / " gt 5(t), ' (2), " (2), " (£))dt
0

Now, suppose |z(t)| > h for all ¢. Multiplying the above
equation by sgnz a contradiction by assumption (ii) is
set, hence |z(7)| < h for some 7 € (0,w).

For ¢ € 1,7 + w], [z(t) — z(7)| = (¢t — 7)[z'(T +
6(t — h),0 < 8 < 1|z(¥)] € h+ D' = D. By virtue
of periodic character of z(¢) the above estimate must
hold for all ¢.

Denoting:

R=/(D"V+ D" + (D) + D7,

again the alternative statements (a) and (b), on which

the proof of Theorem 1 is based, must hold.

THEOREM 3

If the condition a; < 0 is dropped, then, under the
assumptions of Theorem 2, it can still be proved that
Equation 11 possesses an w-periodic solution.

Proof
Again, assuming z(t) is periodic, Equation 11 is multi-
plied by ="’ and is integrated from 0 to w:

a3/ z 2dt — al/ T 2dt =
0
/w

Let a}’,b{' and af,, b be, respectively, the coeflicients
of the Fourler series for z'"(t) and z"(t). Then,

2 [ 2mk
ay = —/ ”’(t) cos =22 gt
0 w

g(t,z, ', 2", ")z dt . (12)

w
_ Ark
-2

_ 27rkb
w

”(t) sin @dt
w



by = %/0 z'"(t) sin 2::)—kdt
dwk [

-7 ).
27k,

=——a .
o %

z''(t) cos 2—ﬂ'k-dt
w

Applying Parseval’s equalities, yields to:
2"2dt = £ a,2+b,2
|| =53 @ o)

472 w " "
2 2
2 g % th

or:

e 1 42 w "
/ a: 2dtzi2/ «"2dt .
0 w* Jo

Substitutions in Equation 12, yields to:
2 w
_ ajw m2dt
(o) [ =
w nr w n
303/ T 2dt—al/ x 2dt
0 0

w 1/2
< (m—}-M)\/Z{/ m”2dt} ,
0

or:

w 1/2 2
{/ z 2dt} < M =D3 .
0

= 4m2a9 — ajw? (13)

Using this result, the proof can be completed by
following the same steps as in Theorem 2.

EXAMPLE

Consider a mass-spring-dashpot system shown in Fig-
ure 1. One side of the mass m4 is connected to the
dashpot ¢ and a nonlinear spring in parallel. The
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other side of the mass m; is connected to the mass ms
through a linear spring k;. The mass ms is connected
to the linear spring k2. The system is rigidly fixed
at both ends. In addition, an w-periodic force h(t)
acts on m; in horizontal direction. It is assumed that
coulomb’s friction pu exists between the masses m; and
mq and the supporting floor. The force displacements
relationship of the spring k is assumed to be given by

F = ¢(¢).

Differential equations for the masses ms and m;
are:
maex"” + k1 (x ~ €) + kox + pmaegsgn(z’) =0,
mi€” + (&) + c€ + k1 (€ — 7)
+ pmigsgn(€’) = h(t) .

The following differential equation for the displace-
ment, z, of the mass my is obtained:

W tazz"” + asz” + a1z’ + aox
+ f(z,2', 2", ")y = h(t) , (14)

k — pk1tk — (k ki1+k
where aozm_lﬂ'z;;’ a; = C;nlj-—mg-, as = (—1— 4 _1+_2.) and

mi m1msg
az = le Also,

k1
mime

f(w,wl,wll,zlﬂ) —

{6(€) + pmagsgn(z’) + pmagsgn(€’)} .

The displacement £ of m; is related to z by:

= kbt ks kza: + P2 BM29 sgn(z') . (15)
k1 k1 k1

£

Applying Theorem 3, the masses mi,ms and
spring constants k; and ks must satisfy the following
inequality:

4k 2
2 (k_1 + ky + kz) .
mims ma m1me

—¢

h(t)
k
WA
m1
]
e

~—>$
AW ﬁvavvu’

Figure 1. Mass-spring-dashpot system.
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Next, following inequality is considered:

flz,2',2",2"")sgnz > 0.

The following inequality must hold:

&(&)sgnz + pg(masgnz’ +mysgné’)sgnz>0.

Assuming the following force-displacement relationship
for the nonlinear spring &:

$&) =¢+af®, a>0, (16)

the following inequality is obtained:
¢sgnz+afdsgnz
+pg(mosgnz’ +mysgné)sgnz > 0.
Clearly the above inequality is satisfied if:
Esgnz + pg(mesgnz’ +mysgné’)sgnz > 0.

or:

Esgnz — pg(my +me) >0.

Using Equation 15, the following inequality is obtained:

e
ky ky
m
—%—ug(ml +mg) >0 .

Therefore, if h is chosen as follows:

"k + ko

T2 (D)2 + pg(my + my + 2
k]_ k]_ (17)

where D} is given by Statement 13, then |z| > h implies
f(z,z', 2", 2" )sgnz > 0.
Next from Equation 15,

k +k
|£| < 1 2|$| | N|+ /1'7]:‘29 ,
1

or:

g < 2R

w *
HE(ngﬂﬂ-+E%22.
1 1
|€] < A is obtained, where:

k1 + ko
A=FrtRe
k1 h
ki +k w 1/2 pmag
(B ) Dy 4 2

and h is given by Equation 17.

Hence |f(z,z’,z",2")| < M is obtained where
M = A+aA3+pug(m;+ms). Tt follows that differential
Equation 15 has at least an w-periodic solution.

CONCLUSION

Using the Leray-Schauder principle, it has been shown
that, Equation 1 under conditions set in Theorem 1
possesses an w-periodic solution. The results obtained
were used to show the existence of periodic solution
for the particular case of Equation 10. These consid-
erations were, then, applied to the mechanical system
(Figure 1) to show its periodic behavior.
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Galerkin Approximations for a
Semilinear Stochastic Integral Equation

B.Z. Zangeneh'!

In this paper, the Galerkin method is used to approximate the solution of the H-valued integral

equation:

Xt=/t Ut — s)fe(Xs)ds + Vi,

oo

where H is a real separable Hilbert space. U(t) is a semigroup generated by a strictly negative
definite, self-adjoint unbounded operator A, such that A~! is compact and f is of monotone
type and is bounded by a polynomial. Furthermore, V; is a cadlag adapted process.

INTRODUCTION

Let H be a real separable Hilbert space with norm
| || and inner product { , ). Suppose (@, F, F:, P)
is a complete stochastic basis with a right continuous
filtration and {W;,t > 0} is an H-valued cylindrical
Brownian motion with respect to (2, 7, F;, P) . Con-
sider the stochastic semilinear equation:

dX; = AXidt + fi(X¢) dt +dWe (1)

where A is a closed, self-adjoint, negative definite,
unbounded operator such that A~! is nuclear. A mild
solution of Equation 1 with initial condition, X (0) =
X, is the solution of the integral equation:

X =U(t,0) X0 + /t Ut — 3)fs(Xs)ds
0

+ /Ot Ut — s)aw, , (2)

where U(t) is the semigroup generated by A.

Marcus [1] has proved that when f is independent
of ¢t as well as w and uniformly Lipschitz, then the
solution of Equation 2 is asymptotically stationary.
To prove this, Marcus studied the following integral
equation:

X, = / " Ut = s)f(X.)ds

+ /_ t Ut — $)dW,, (3)

oo

1. Department of Mathematical Sciences, Sharif University
of Technology, Tehran, I.R. Iran.

where the parameter set of the processes is extended
to the whole real line. This gave the motivation for
studying the existence of the solution of a more general
equation:

X, =/_t Ut — )fo(Xs)ds + Vi, (4)

oo

where U(t) is a semigroup generated by a strictly
negative definite, self-adjoint unbounded operator A
such that A~! is compact, f is of monotone type,
bounded by a polynomial and V; is a cadlag adapted
process. In [2], the existence and the uniqueness of
the solution to Equation 4 is proved. In this paper it is
proven that finite dimensional Galerkin approximations
converge strongly to the solution of Equation 4. In
[3] this result is used to prove the stationarity of the
solution of Equation 4. Results of this paper are
presented in [4] without proof.

PRELIMINARIES

A Semilinear Evolution Equation

Let g be an H-valued function defined on a set D(g) C
H. Recall that g is monotone if, for each pair, z,y €

D(g),

(g(z) —g(y),z—y) >0.

We say g is bounded if there exists an increasing
continuous function 7 on [0,00) such that ||g(z)| <
¥(||z|)), Yz € D(g). g is demi-continuous if, whenever
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(z,,) is a sequence in D(g) which converges strongly to
a point x € D(g), then g(z,) converges weakly to g(x).
Consider the following integral equation:

X, = /tU(t— f(X.)ds + Vi, (5)
0

where f,V and the generator A of the semigroup U
satisfy the following hypothesis.

Hypothesis 1

a) U(t) is a semigroup generated by a strictly negative
definite, self-adjoint unbounded operator A such
that A~! is compact. Then there is A > 0 such
that ||U(2)]] < e

b) Let p(t) = K(1 + ?) for some p >0, K > 0. —f
is a monotone demi-continuous mapping from H to
H such that ||f(z)|| < ¢(||z|) for all z € H.

c) Let r = 2p%. V; is cadlag adapted process such that
supe g E{||V2l|"} < oo.

Proposition 1

Suppose that f , V, A and U satisfy Hypothesis
1. Then Equation 5 has a unique adapted cadlag
(continuous, if V; is continuous) solution. Furthermore,

X&) < [Vl + /0 N £(s, V(s)lds . (6)

For the proof see [5].

The Stability of the Solution
Proposition 2

Let f! and f? be two mappings satisfying Hypothesis
1 bounded by functions ¢; and 2 respectively.

Suppose V1, V2, U! and U? satisfy Hypothesis
1. Let X%(t), i = 1,2 be the solution of the integral
equations:

X’(t):/o Uit — 8) F1(X(s))ds + V¥(2). (7)

Define v3(t) and I as:
V0= [ W9 -U =D s,

T
=4 /0 MY (X3 (s) — FH(XN(s))|Pds -

Then the following is obtained:

1X2@) - XTI < 4V - VI O)I?

+4lVE)l?

2

+I (_/Ote_z’\SHV"’(s) -V (s)”zds)

t Z
+1 (/ e‘z’\s||V3(s)||2ds)
0

+ / e f(X(5)) — (X7 (s))||?ds.
0 ®)

For proof see [6].-

EXAMPLES

A Semilinear Stochastic Evolution Equation
The existence and uniqueness of the solution of the
integral Equation 2 have been studied in [7]. Marcus
assumed that f is independent of w € Q and ¢t € S and
that there are M > 0, and p > 1 for which:

(f(u) = fv),u—v) < —Mlu-o|,
and:
If (@)l < C(1 + [JullP~).

Marcus proved that this integral equation has a
unique solution in LP(§2, LP(S, H)).

As a consequence of Proposition 1, this result can
be extended to a more general f and the existence of
a strong solution of Equation 2 which is continuous
instead of merely being in LP(Q, LP(S,H)) can be
shown.

The Ornstein-Uhlenbeck process V; = fot Ut —
s)dW (s) has been well-studied e.g., in [8] where they
show that V; has a continuous version. Therefore,
Equation 2 can be rewritten as:

X = /tU(t — 8)fs(Xs)ds + V4,
0

where V; is an adapted continuous process. Then, by
Proposition 1, the Equation 2 has a unique continuous
adapted solution.

A Semilinear Stochastic Partial Differential
Equation

Let D be a bounded domain with a smooth boundary
in R%. Let —A be a uniformly strongly elliptic second
order differential operator with smooth coefficients on
D. Let B be the operator B = d(z)Dy + e(z), where
Dy is the normal derivative on 8D, and d and e are in
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C*®(8D). Let A (with the boundary condition Bf = 0)

be self-adjoint.
Consider the initial-boundary-value problem:

% + Au= fy(u)+ W on D x[0,00),
Bu=0 on 8D x [0, 00), 9)
©(0,z) =0 on D,

where W = W (t, ) is a white noise in space-time for
the definition and properties of white noise (see [9]),
and f; is a non-linear function that will be defined
below. Let p > %. W can be considered as a Brownian
motion W; on the Sobolev space H_, (see [9] Chapter
4, page 4.11). There is a complete orthonormal basis
{ex} for Hy.

The operator A (plus boundary conditions) has
eigenvalues {Ax} with respect to {ex}, ie., Ae;, =
Aker, Vk. The eigenvalues satisfy X;(1 + X;7) < oo
if p > £ (see [9] Chapter 4, page 4.9) Then [A71]P
is nuclear and —A generates a contraction semigroup
U(t) = e~*4. This semigroup satisfies Hypothesis 1.

Now consider the initial-boundary-value Problem
9 as a semilinear stochastic evolution equation:

dug + Augdt = fi(ug)dt + dW; | (10)

with initial condition u(0) = 0, where f : S x 2 x
H_, — H_, satisfies Hypothesis 1(b) relative to the
separable Hilbert space H = H_,. The mild solution
of Equation 10 (which is also a mild solution of Problem
9) can be defined, to be the solution of:

ut=/0 U(t—s)fs(us)ds+/0 Ut — 5)dWs. )

Since W; is a continuous local martingale on the
separable Hilbert space H_p, then fot U(t — s)dW, has
an adapted continuous version (see for example [10]).
If the following is defined

¢
Vt:=/ U(t — s)dW,
0

then by Proposition 1, Equation 11 has a unique
continuous solution with values in H_,.

A SEMILINEAR INTEGRAL EQUATION
ON THE WHOLE REAL LINE

Let us reduce the integral Equation 4 to the following
integral equation:

X = / t Ut — $)f(Xs + Vs)ds . (12)

The following theorem translates Proposition 1 to
the case when parameter set of the process is the whole
real line.

B. Z. Zangeneh

Theorem 1

If A, f and V satisfy Hypothesis 1, then the integral
Equation 12 has a unique continuous solution X such
that:

t
1% < / e N (|[Va)ds (13)
1
B{IX]} < 5 sup BE(IV.D} = Ki (14)

For proof see [2].

Galerkin Approximations

Let U(t) be a semigroup generated by a strictly nega-
tive definite closed unbounded self-adjoint operator A
such that A~! is compact. Then there is a complete
orthonormal basis (¢,) and eigenvalues 0 < Ay < A; <
A2 < ... with A, — oo, such that A¢, = —A,dn.

Let H, be the subspace of H generated by
{do, %1, ..., on—1} and let J,, be the projection operator
on H,.

Define:

fn = Jnf; Vn(t) = Jn V(t)a
Un(t) = V() Jn ,

and define X,,(t) and X (¢) as solutions of:

Xo(t) = / C Ut — $)fu(Xa(5))ds + Valt) |
~eo (15)

and:
X(t):/t Ut — s)f(X(s))ds + V(2) . (16)

Now the following theorem can be proved.

Theorem 2
If AU, f and V satisfy Hypothesis 1, then one has:

E(|| Xn(t) — X)) — O.
Proof
Define:
XE(t) = /1t Un(t — 8)Fa(XE(s))ds + Va(2),
—k
x40 = [ k U(t = 5)f(X*(s))ds + V(2),
and:

Vn,k(t):/t(Un(t —5) = U(t — s)f(X*(s))ds.

k



Stochastic In*egral Equation

By Proposition 2, the following is obtained:
[ X5(8) = X*ON? < 4lIValt) = V)
+ 4] V(O

+1I (/_t e220%||V,(s) — V(s)||2ds> '

k

1
t 2
+I (/ e”"SIIVn,k(S)IIzdS)
—k

+ / ¢29%)| £,,(X (s)) — F(X(5))|[ds.
—k
(7)

Taking expectations and using the Schwartz in-
equality and Fubini’s theorem, Statement 17 implies
that:

E{|X5() =X )17} < 4E{IVa () = V(OII%}

+ 4E{||Vo ()1}

+ B [0 BV -V (175

1
2

et ([ w 0 B[V (9]

+ [ Bl XE) - FXE)IPs. (9)

oo

It is first shown that:

E{(|X5(t) - X*(#)[|?} —» 0 uniformly in & .
(19)

Since V,, = J,V and f, = J.f, the first, third
and 5th term of the right hand side of Statement 18
converge to zero. Then to prove Statement 19 it is
enough to show that E(||V,, x(t)||?) converges to zero
uniformly in £ and t € (—oo,T].

By using ||f(z)|| £ C(1 + ||z||?) and Statement 6,
it is shown that:

supe pE(|V(8)]|*) < o0 ,

and, using Fubini’s theorem, one has:

SuPteRE(”Vn,k(t)|I2) < SuPteRE{l + ”V(t)”p}

0
/_ U (=s) = Un(—s)||2ds .

o)

11

Since:
U(=8) = U,(—3s)||z — 0 for s < 0 and

[U(=8) = Un(=s)llz < e,
then by the dominated convergence theorem:

supre p (|| Vv (8)II*) — 0
Then:
E(|| Xnx(t) = X*(t)||?) = 0 uniformly in & .

uniformly in & .

By the proof of Theorem 1 (see [2]), then E(||Xn (t) —
X)) — 0as k — oo, hence E(|| X*(t) - X(¢)||) = 0
and it is obtained that E(|| X.(¢)— X (¢)||) — 0. Q.E.D.
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